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Abstract: The main result of this note asserts that a strong form of the Matroid Minor Conjecture
due to J. Draisma is not true, i.e., there exist properly ascending chains of S∞-stable ideals in
the affine coordinate ring of the affine infinite Grassmannian, where S∞ is the infinite symmetric
group. In fact, we explicitly construct such an ascending chain. His conjectures on topological
noetherian property for the affine infinite Grassmannian remain open though.

1. Introduction

Let k be any (including finite) field. For positive integers n, p, let Vn,p be the vector space over k
with basis

{x−n, x−n+1, . . . , x−1, x1, x2, . . . , xp}.

Let {x∗−n, x
∗
−n+1, . . . , x

∗
−1, x

∗
1, x

∗
2, . . . , x

∗
p} be the dual basis of the dual vector space V∗n,p.

Let Gr(p,V∗n,p) be the Grassmannian of p-planes in V∗n,p. Then, we have the Plücker embedding:

ι : Gr(p,V∗n,p) ↪→ P
(
∧p(V∗n,p)

)
, A 7→ ∧p(A), for A ∈ Gr(p,V∗n,p).

Let G̃r(p,V∗n,p) be the corresponding affine cone (under the above embedding). Thus, we get an
embedding

G̃r(p,V∗n,p) ↪→ ∧p(V∗n,p).

This makes G̃r(p,V∗n,p) a closed irreducible (affine) subvariety of ∧p(V∗n,p).
Define the surjective maps

ξ = ξn+1,p : ∧p(V∗n+1,p)� ∧p(V∗n,p)

induced from the standard inclusion of the bases and

θ = θn,p+1 : ∧p+1(V∗n,p+1)� ∧p(V∗n,p), ω 7→ ixp+1ω,

where i is the interior multiplication. Now, the maps θn+1,p+1 and ξn+1,p+1 induce the restriction
maps which are surjective:

G̃r(p,V∗n+1,p)
θ̃
←− G̃r(p + 1,V∗n+1,p+1)

ξ̃
−→ G̃r(p + 1,V∗n,p+1).

Define a partial order ≤ on Z≥1 × Z≥1 by (n, p) ≤ (m, q) if n ≤ m and p ≤ q. The above maps θ̃ and
ξ̃ give rise to a surjective map between the affine varieties (see §2 for more details):

G̃r(q,V∗m,q)→ G̃r(p,V∗n,p) for (n, p) ≤ (m, q).

Define the affine schemes:

G̃r(∞/2,V∗∞) := lim
←−−
(n,p)

G̃r(p,V∗n,p), and ∧∞/2 (V∗∞) := lim
←−−
(n,p)

∧p(V∗n,p).

Define the group

GL(∞) := lim
−−→
(n,p)

GL(Vn,p), and its subgroup N(∞) := lim
−−→
(n,p)

N(Vn,p),

1
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where N(Vn,p) denotes the normalizer of the standard maximal torus in SL(Vn,p). The standard
action of GL(Vn,p) on ∧p(V∗n,p) gives rise to an action of GL(∞) on G̃r(∞/2,V∗∞) (cf. §2 for more
details). Define the infinite symmetric group

S∞ := lim
−−→

n

S n, where S n is the symmetric group on the symbols {−n,−(n − 1), . . . ,−1, 1, 2, . . . , n}.

Then, S∞ canonically embeds in GL(∞) via the permutation matrices.

Jan Draisma kindly told us his following conjecture.

Conjecture 1.1. Let k be any field. The affine infinite Grassmannian G̃r(∞/2,V∗∞) is topologically
S∞-noetherian, i.e., every descending chain of S∞-stable Zariski-closed subsets of G̃r(∞/2,V∗∞)
stabilizes.

A slightly weaker form of the conjecture states that G̃r(∞/2,V∗∞) is topologically N(∞)-noetherian.

A stronger form of the conjecture states that any ascending chain of S∞-stable ideals in the
affine coordinate ring of G̃r(∞/2,V∗∞) stabilizes.

The main result of this note is the following (cf. Theorem 3.3).

Theorem 1.2. The strong form of the above conjecture is false, i.e., there exists an ascending chain
of S∞-stable ideals in the affine coordinate ring of G̃r(∞/2,V∗∞) which does not stabilize. In fact,
we give such an example explicitly.

Before we can explain the significance of Draisma’s Conjecture 2.6 to some important results
in Graph Theory, we need to briefly explain some of the very significant results in Matroid Minors
Theory.

We begin by recalling the following conjecture due to Rota [Ro].

Conjecture 1.3. For each finite field k, there are, up to isomorphism, only finitely many excluded
minors for the class of F-representable matroids.

Rota’s conjecture is reminiscent of the classical Generalized Kuratowski Theorem [Kur]. As part
of the Graph Minors Project, Neil Robertson and Paul Seymour were able to further generalize the
Generalized Kuratowski Theorem to obtain the WQO (Well Quasi Ordering) Theorem stated below
(cf. [RS]). Their results were published in a series of twenty three journal papers totaling more
than 700 pages from 1983 to 2004. Diestel, in his book on graph theory [Di], says that this theorem
dwarfs any other result in graph theory and may doubtless be counted among the deepest theorems
that mathematics has to offer.

Theorem 1.4. (WQO). Each minor-closed class of graphs has only finitely many excluded minors.
Equivalently, in any infinite set S of graphs, there must be a pair of graphs one of which is a

minor of the other.

Then, Robertson and Seymour proposed ideas for extending their Graph Minors Project to ma-
troids. The challenge was taken up by Jim Geelen, Bert Gerards, and Geoff Whittle. Though it is
not true that the WQO Theorem extends to all matroids. However, after extensive work for several
years, they (Geelen et al.) announced the following slightly weaker theorem (cf. [GGW, Theorem
6]) significantly extending the WQO theorem to matroids.

Theorem 1.5. (Matroid WQO Theorem). For each finite field k and each minor-closed class of
k-representable matroids, there are only finitely many k-representable excluded minors.



COUNTER EXAMPLE TO A STRONG MATROID MINOR CONJECTURE 3

According to their article [GGW], to quote them: ‘We are now immersed in the lengthy task of
writing up our results. Since that process will take a few years, we have written this article offering
a high-level preview of the proof.’

The following result (communicated to us by J. Draisma), which is fairly easy to prove, provides
a direct bridge between Conjecture 2.6 and Thorem 1.5 once we observe that θn,p+1 : ∧p+1(V∗n,p+1)→
∧p(V∗n,p) and ξn+1,p : ∧p(V∗n+1,p)→ ∧p(V∗n,p), at the level of matroids, correspond to contraction and
deletion respectively.

Theorem 1.6. Let k be a finite field and assume that the set of k-points of the affine infinite Grass-
mannian G̃r(∞/2,V∗∞), equipped with the Zariski topology, is S∞-noetherian. Then, matroids rep-
resentable over k are well quasi ordered by the minor order.

Acknowledgements: We are indebted to Jan Draisma for explaining to us his Conjecture 2.6,
showing its significance via his Theorem 1.6 to the Matroid WQO Theorem 1.5, providing all the
references [Di], [GGW], [Kur], [RS], [Ro]. We also thank Andrew Snowden for his comment
(see Theorem 3.3). This work was completed while the author was visiting the Institut des Hautes
Études Scientifiques (Bures-sur-Yvette, France) during the fall semester of 2023, hospitality of
which is gratefully acknowledged.

2. Infinite Grassmannian and theMatroidMinor Conjecture

The base field in this note is any (including finite) field.

Definition 2.1. For positive integers n, p, let Vn,p be the vector space over k with basis

{x−n, x−n+1, . . . , x−1, x1, x2, . . . , xp}.

Let {x∗−n, x
∗
−n+1, . . . , x

∗
−1, x

∗
1, x

∗
2, . . . , x

∗
p} be the dual basis of the dual vector space V∗n,p.

Define the linear maps
η = ηn+1,p : ∧p(Vn,p) ↪→ ∧p(Vn+1,p)

induced from the standard inclusion of the bases and

β = βn,p+1 : ∧p(Vn,p) ↪→ ∧p+1(Vn,p+1), ω 7→ ω ∧ xp+1.

Dually, we get surjective maps

ξ = ξn+1,p : ∧p(V∗n+1,p)� ∧p(V∗n,p)

and
θ = θn,p+1 : ∧p+1(V∗n,p+1)� ∧p(V∗n,p), ω 7→ ixp+1ω,

where i is the interior multiplication. Let Gr(p,V∗n,p) be the Grassmannian of p-planes in V∗n,p (For
generalities on Grassmannians, see [EH, §III.2.7].) . Then, we have the Plücker embedding:

ι : Gr(p,V∗n,p) ↪→ P
(
∧p(V∗n,p)

)
, A 7→ ∧p(A), for A ∈ Gr(p,V∗n,p).

Let G̃r(p,V∗n,p) be the corresponding affine cone (under the above embedding). Thus, we get an
embedding

G̃r(p,V∗n,p) ↪→ ∧p(V∗n,p),
where the image consists of the decomposable vectors (including the vector 0). This makes
G̃r(p,V∗n,p) a closed irreducible (affine) subvariety of ∧p(V∗n,p). Now, the maps

(1) ∧p(V∗n+1,p)
θn+1,p+1

←−−−−− ∧p+1(V∗n+1,p+1)
ξn+1,p+1

−−−−−→ ∧p+1(V∗n,p+1)
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induce the restriction maps which are surjective:

(2) G̃r(p,V∗n+1,p)
θ̃
←− G̃r(p + 1,V∗n+1,p+1)

ξ̃
−→ G̃r(p + 1,V∗n,p+1).

To prove the existence of θ̃, we can write

v1 ∧ · · · ∧ vp+1 = v′1 ∧ · · · ∧ v′p ∧ (v′p+1 + αx∗p+1), where v′i(xp+1) = 0∀1 ≤ i ≤ p + 1,

for some α ∈ k. Thus,
ixp+1(v1 ∧ · · · ∧ vp+1) = ±αv′1 ∧ · · · ∧ v′p

and hence θ induces the map θ̃ on the corresponding cones of Grassmannians. The existence of ξ̃
is trivial to see.

Define a partial order ≤ on Z≥1 × Z≥1 by

(3) (n, p) ≤ (m, q) if n ≤ m and p ≤ q.

We have a surjective map between the affine varieties induced from the maps θ̃ and ξ̃:

(4) G̃r(q,V∗m,q)→ G̃r(p,V∗n,p) for (n, p) ≤ (m, q).

The above map is well defined since the following diagram is commutative:

(5) G̃r(p + 1,V∗n+1,p+1)
ξ̃n+1,p+1

//

θ̃n+1,p+1

��

G̃r(p + 1,V∗n,p+1)

θ̃n,p+1

��

G̃r(p,V∗n+1,p)
ξ̃n+1,p

// G̃r(p,V∗n,p).

Define the affine schemes:

(6) G̃r(∞/2,V∗∞) := lim
←−−
(n,p)

G̃r(p,V∗n,p),

and

(7) ∧∞/2(V∗∞) := lim
←−−
(n,p)

∧p(V∗n,p).

We call G̃r(∞/2,V∗∞) the affine infinite Grassmannian.
Then, the corresponding affine coordinate rings are given by:

(8) k[G̃r(∞/2,V∗∞)] = lim
−−→
(n,p)

k[G̃r(p,V∗n,p)],

and

(9) k[∧∞/2(V∗∞)] = lim
−−→
(n,p)

k[∧p(V∗n,p)] = lim
−−→
(n,p)

S •(∧p(Vn,p)),

where S • is the symmetric algebra.
The multiplicative group k∗ acts on ∧p(V∗n,p) via multiplication by z ∈ k∗. Clearly, this k∗-action

preserves G̃r(p,V∗n,p). Moreover, ξ̃ and θ̃ both commute with this k∗-action. Thus, we get a k∗-action
on G̃r(∞/2,V∗∞). Further, ξ̃n+1,p+1 commutes with the standard GL(Vn,p+1)-actions (considering
GL(Vn,p+1) as canonically embedded in GL(Vn+1,p+1)) and θ̃n+1,p+1 commutes with the standard
GL(Vn+1,p)-actions (again considering GL(Vn+1,p) as canonically embedded in GL(Vn+1,p+1)). In
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particular, ξ̃n+1,p+1 commutes with the N(Vn,p+1)-actions and θ̃n+1,p+1 commutes with the N(Vn+1,p)-
actions, where N(Vn+1,p) denotes the normalizer of the standard maximal torus in GL(Vn+1,p).

Define the group
GL(∞) := lim

−−→
(n,p)

GL(Vn,p),

and its subgroup
N(∞) := lim

−−→
(n,p)

N(Vn,p).

Then, GL(∞) acts on G̃r(∞/2,V∗∞) as follows. Take g ∈ GL(Vn,p). Now,

(10) G̃r(∞/2,V∗∞) := lim
←−−

(m,q)≥(n,p)

G̃r(q,V∗m,q).

Each variety on the right is acted upon by GL(Vn,p) and all the maps ξ̃ and θ̃ are GL(Vn,p)-
equivariant maps. Thus, g ∈ GL(Vn,p) acts on G̃r(∞/2,V∗∞) for any pair (n, p). These actions
clearly combine to give an action of GL(∞) on G̃r(∞/2,V∗∞).

The standard action of GL(Vn,p) on ∧p(V∗n,p) commutes with the above k∗-action and hence so is
the k∗-action on G̃r(p,V∗n,p) commutes with the standard GL(Vn,p)-action. Thus, we get a k∗-action
on G̃r(∞/2,V∗∞) commuting with the action of GL(∞).

Define a bijection

µ : −N t N→ N,−n 7→ 2n, p 7→ 2p − 1, for n, p ∈ N,

where N is the set of positive integers {1, 2, . . . }. This gives rise to a well order on −N t N
transporting the standard well order on N via µ. Write a basis of ∧p(Vn,p) as follows:

xi1 ∧ · · · ∧ xip , where i j ∈ {−n,−(n − 1), . . . ,−1, 1, . . . , p}

so that i1 < i2 < · · · < ip in the above well order. Now, define

xi := xi1 ∧ · · · ∧ xip < x j1 ∧ · · · ∧ x jp

under the lexicographic order reading from the left.

The following lemma is clear.

Lemma 2.2. The above order on the basis of ∧p(Vn,p) is a well order.

Lemma 2.3. Under the embedding β : ∧p(Vn,p) ↪→ ∧p+1(Vn,p+1), ω 7→ ω ∧ xp+1, the above well
ordering on the basis of ∧p+1(Vn,p+1) restricts to the well ordering on the basis of ∧p(Vn,p).

Proof. First, let xi1 ∧ · · · ∧ xip < x j1 ∧ · · · ∧ x jp . Then, we claim that

(11) xi1 ∧ · · · ∧ xip ∧ xp+1 < x j1 ∧ · · · ∧ x jp ∧ xp+1 :

Choose the largest ` ≥ 0 such that i1 = j1, . . . , i` = j`. If µ(p + 1) < µ(i`), then clearly
the equation (11) is true. So, assume that µ(p + 1) > µ(i`). If µ(p + 1) > µ( j`+1) > µ(i`+1),
then again clearly the equation (11) is true. So, assume that µ(i`) = µ( j`) < µ(p + 1) < µ( j`+1). If
µ(i`+1) > µ(p+1), then again the equation (11) is true. So, finally assume that µ(i`+1) < µ(p+1) and
µ( j`+1) > µ(p+1). Since µ(i`+1) < µ(p+1), the equation (11) is true since µ( j`) < µ(p+1) < µ( j`+1).

Conversely, if

(12) xi1 ∧ · · · ∧ xip ∧ xp+1 < x j1 ∧ · · · ∧ x jp ∧ xp+1,
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then we assert that xi1 ∧ · · · ∧ xip < x j1 ∧ · · · ∧ x jp : For, otherwise, assume that xi1 ∧ · · · ∧ xip >
x j1 ∧ · · · ∧ x jp . This implies xi1 ∧ · · · ∧ xip ∧ xp+1 > x j1 ∧ · · · ∧ x jp ∧ xp+1, contradicting the equation
(12). This proves the lemma. �

The proof of the following lemma is clear.

Lemma 2.4. Under the embedding η : ∧p(Vn,p) ↪→ ∧p(Vn+1,p), ω 7→ ω, the above well ordering
on the basis of ∧p(Vn+1,p) restricts to the well ordering on the basis of ∧p(Vn,p).

We recall the following definition from [AH, §3.3].

Definition 2.5. Let ≤ be a well ordering on a countable set X. Define the induced lexicographic
ordering ≤o on the set Xo of commuting monomials with terms from X as follows:

(13) x := xm1
1 . . . xma

a ≤
o y := xn1

1 . . . xna
a ⇔ (m1, . . . ,ma) ≤ (n1, . . . , na)

lexicographically from the left, where xi ∈ X, x1 < x2 < · · · < xa and mi, ni ∈ Z≥0. Then, ≤o is a
term ordering on Xo (cf. [AH, Example2.5]. Let a group G act on X. Define a quasi-ordering |G on
Xo by

x|Gy⇔ ∃σ ∈ G and z ∈ Xo : (σx)z = y.

Define the infinite symmetric group S∞ := lim
−−→n

S n, where S n is the symmetric group on the
symbols {−n,−(n − 1), . . . ,−1, 1, 2, . . . , n}. Then, S∞ is canonically embedded as a subgroup of
GL(∞) obtained via the permutation matrices.

Conjecture 2.6. (due to J. Draisma) Let k be any field. The affine infinite Grassmannian G̃r(∞/2,V∗∞)
is topologically S∞-noetherian, i.e., every descending chain of S∞-stable Zariski-closed subsets of
G̃r(∞/2,V∗∞) stabilizes.

A slightly weaker form of the conjecture states that G̃r(∞/2,V∗∞) is topologically N(∞)-noetherian.

A stronger form of the conjecture states that any ascending chain of S∞-stable ideals in the
affine coordinate ring of G̃r(∞/2,V∗∞) stabilizes.

3. A counterexample to a stronger form of theMatroidMinor Conjecture

We begin first by disproving the strong form of Matroid Minor Conjecture for ∧∞/2(V∗∞).

Proposition 3.1. The ring

R := k[∧∞/2(V∗∞)] = lim
−−→
(n,p)

S •(∧p(Vn,p)) (cf. the identity (9))

is not noetherian with respect to the S∞-stable ideals, i.e., there exists a strictly increasing se-
quence of S∞-stable ideals of R:

I1 ( I2 ( I3 ( . . . .

Proof. Using [AH, Lemma3.14], it suffices to show that |S∞ is not well-quasi-ordering. Consider
the monomials

{anbn}n≥3, where an := x−2 ∧ x2 ∧ x3 ∧ · · · ∧ xn

and bn := x−(n−1) ∧ x−(n−2) ∧ · · · ∧ x−1 ∧ x1 ∧ xn+1.(14)

We claim that anbn 6 |S∞ambm for n , m ≥ 3:



COUNTER EXAMPLE TO A STRONG MATROID MINOR CONJECTURE 7

If not, let σ ∈ S∞ be such that σ(an) · σ(bn) = ambm (observe that they both are degree 2
monomials), i.e.,(

xσ(−2) ∧ xσ(2) ∧ xσ(3) ∧ · · · ∧ xσ(n)
)

·
(
xσ(−(n−1)) ∧ xσ(−(n−2)) ∧ · · · ∧ xσ(−1) ∧ xσ(1) ∧ xσ(n+1)

)
= (x−2 ∧ x2 ∧ x3 ∧ · · · ∧ xm) ·

(
x−(m−1) ∧ x−(m−2) ∧ · · · ∧ x−1 ∧ x1 ∧ xm+1

)
.

This gives

σ ({−2, 2, 3, . . . , n, n + 1, . . . }) \ σ ({−(n − 1),−(n − 2), . . . ,−1, 1, n + 1, n + 2, . . . })

=

{−2, 2, 3, . . . ,m,m + 1, . . . } \ {−(m − 1),−(m − 2), . . . ,−1, 1,m + 1,m + 2, . . . } or
{−(m − 1),−(m − 2), . . . ,−1, 1,m + 1,m + 2, . . . } \ {−2, 2, 3, . . . ,m,m + 1, . . . }.

The above equation is equivalent to the following:

σ ({2, 3, . . . , n}) =

{2, 3, . . . ,m} or
{−(m − 1),−(m − 2), . . . ,−3,−1, 1}.

The left side of the above equation has cardinality n − 1, whereas the ride side has cardinality
m − 1. This is a contradiction since n , m by assumption. Thus, the infinite set A = {anbn}n≥3 is an
anti-chain under |S∞ (cf. [AH, Page 5173]). This proves the proposition. �

Consider the ordered basis

x−1, x−2, . . . , x−(m−1), x1, x2, . . . , xm+1 of Vm−1,m+1.

We abbreviate m + 1 by p. Consider the standard maximal parabolic subgroup P(m− 1) of SL(2m)
(with respect to the above ordered basis) obtained by deleting the (m− 1)-th node from the Dynkin
diagram of SL(2m). Thus, P = P(m− 1) is the stabilizer of the line [x∗1 ∧ x∗2 ∧ · · · ∧ x∗p] ∈ P(V∗m−1,p).
Consider the opposite unipotent radical U− = U−m−1 of P. Thus, for any g ∈ U−,

g−1(x− j) = x− j +

p∑
i=1

α
j
i (g)xi, for 1 ≤ j ≤ m − 1, and

g−1(xi) = xi, for 1 ≤ i ≤ p,

for some α j
i (g) ∈ k. In fact, U− is characterized by the above, where we allow α

j
i (g) to vary over k.

The action of U− on the dual basis is given as follows (for g ∈ U−):

g(x∗− j) = x∗− j, for 1 ≤ j ≤ m − 1, and

g(x∗i ) = x∗i +

m−1∑
j=1

α
j
i (g)x∗− j, for 1 ≤ i ≤ p,

Thus, for g ∈ U−,

(15) g
(
x∗1 ∧ x∗2 ∧ · · · ∧ x∗p

)
=

x∗1 +

m−1∑
j1=1

α
j1
1 (g)x∗− j1

 ∧ · · · ∧
x∗p +

m−1∑
jp=1

α
jp
p (g)x∗− jp

 .
With the notation as above, we have the following lemma.
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Lemma 3.2. For g ∈ U− and x = x−n1 ∧ · · · ∧ x−nq ∧ xd1 ∧ · · · ∧ xdp−q , where 0 ≤ q ≤ m − 1,
0 < n1 < · · · < nq ≤ m − 1 and 0 < d1 < · · · < dp−q ≤ p, we have the following identity:

g
(
x∗1 ∧ x∗2 ∧ · · · ∧ x∗p

) (
x−n1 ∧ · · · ∧ x−nq ∧ xd1 ∧ · · · ∧ xdp−q

)
= ± det

(
αni

m j

)
1≤i≤q; m j∈{1,2,...,d̂1,...,d̂p−q,...,p}

.

Proof.

g
(
x∗1 ∧ x∗2 ∧ · · · ∧ x∗p

)
x = det



αn1
1 (g), . . . , α

nq

1 (g), 0, 0, . . . , 0
αn1

2 (g), . . . , α
nq

2 (g), 0, 0, . . . , 0
...

...
...

...
...

αn1
d1

(g), . . . , α
nq

d1
(g), 1, 0, . . . , 0

...
...

...
...

...
αn1

d2
(g), . . . , α

nq

d2
(g), 0, 1, . . . , 0

...
...

...
...

...
αn1

dp−q
(g), . . . , α

nq

dp−q
(g), 0, 0, . . . , 1

...
...

...
...

...
αn1

p (g), . . . , α
nq
p (g), 0, 0, . . . , 0



.

By moving d1, d2, . . . , dp−q-th rows of the above matrix to the end of the matrix, we get (from the
above equation),

g
(
x∗1 ∧ x∗2 ∧ · · · ∧ x∗p

)
x = ± det

(
αni

m j

)
1≤i≤q; m j∈{1,2,...,d̂1,...,d̂p−q,...,p}

.

This proves the lemma. �

Let G̃r(∞/2,V∗∞) ↪→ ∧∞/2(V∗∞) be the Plücker embedding induced from the Plücker embeddings
G̃r(p,V∗n,p) ↪→ ∧p(V∗n,p) and let I ⊂ k[∧∞/2(V∗∞)] be the ideal generated by the Plücker relations,
i.e., the ideal of the subscheme G̃r(∞/2,V∗∞) embedded in ∧∞/2(V∗∞) via the Plücker embedding
(cf. [EH, §III.2.7]). Consider the sequence of ideals in k[∧∞/2(V∗∞)]:

(16) In := 〈S∞(a3 · b3), . . . , S∞(an · bn)〉 + I,

where ai, bi are defined by the equation (14) and S∞(ai ·bi) denotes the collection {σ(ai)·σ(bi)}σ∈S∞ .
We have the following main theorem of this note.

Theorem 3.3. The above ideals satisfy:

I3 ( I4 ( I5 ( . . . .

In particular, the ring R := k[G̃r(∞/2,V∗∞)] is not noetherian with respect to the S∞-stable ideals.
Thus, the stronger form of the Matroid Minor Conjecture (cf. Conjecture 2.6) is false.

In fact, as mentioned by A. Snowden, the ideals In are even stable under N(∞) since the aibi are
eigenvectors for the action of the maximal torus.

Proof. Fix ` > 3. It suffices to show that a` · b` < In for any n < `. This is equivalent to proving
that for any σi ∈ k[S∞], where k[S∞] is the group algebra of S∞,

a` · b` −
`−1∑
i=3

σi(ai · bi) does not vanish identically on G̃r(∞/2,V∗∞).



COUNTER EXAMPLE TO A STRONG MATROID MINOR CONJECTURE 9

Write
σi =

∑
k

zk
iσ

k
i (a finite sum) for some zk

i ∈ k and σk
i ∈ S∞.

Take m ≥ ` large enough so that each σk
i (with nonzero zk

i ) is a permutation of the basis of
Vm−1,p:=m+1. We want to show that

a` · b`−
`−1∑
i=3

∑
k

zk
iσ

k
i (ai · bi) thought of as a function on

∧p (V∗m−1,p) does not vanish identically on U−m.(17)

Now,

S •
(
∧p(Vm−1,p)

)
↪→

��

k
[
∧∞/2(V∗∞)

]
��

k
[
G̃r(p,V∗m−1,p)

]
↪→ k

[
G̃r(∞/2,V∗∞)

]
,

where S • denotes the symmetric algebra and both the vertical maps are surjective. Following the
notation in Lemma 3.2, we rewrite

det
(
αni

m j

)
1≤i≤q; m j∈{1,2,...,d̂1,...,d̂p−q,...,p}

= det
(
α

n1,...,nq
m1,...,mq

)
.

Assume, if possible, that

(18)
(
g
(
x∗1 ∧ x∗2 ∧ · · · ∧ x∗p

)) a` · b` − `−1∑
i=3

∑
k

zk
iσ

k
i (ai · bi)

 = 0, for all g ∈ U−m.

By Lemma 3.2, we get

g
(
x∗1 ∧ x∗2 ∧ · · · ∧ x∗p

)
(a` · b`) = α2

1 det
(
α1,...,`−1

2,3,...,`

)
.

Now, if g
(
x∗1 ∧ x∗2 ∧ · · · ∧ x∗p

) (
σk

i (ai · bi)
)

has any nonzero contribution to the above term, consid-
ering the action of k∗ on each of the variables αi

j for a fixed i (and any j) and similarly for k∗-action
on αi

j for a fixed j (and any i) by the same character, we should have (by Lemma 3.2):

σk
i (A) = {−C,−2, ` + 1, . . . , p,C′},

where A := {−2, 2, 3, . . . , p} and

σk
i (B) = {−D,−2, ` + 1, . . . , p,D′},

for some C,C′,D,D′ satisfying the following:

{1, 2̂, 3, . . . , ` − 1} = C t D and {1, 2, 3, . . . , `} = C′ t D′,

where B := {−(i − 1),−(i − 2), . . . ,−1, 1, i + 1, i + 2, . . . , p}.
Setting c = |C|, we get

|D| = `−2− c, |C′| = −(p− `+ c + 1) + p = `− c−1, and |D′| = −(p− `+ 1 + `−2− c) + p = c + 1.

Then,

(19) σk
i (A \ B) = σk

i ({2, 3, . . . , i})

and

(20) σk
i (B \ A) = σk

i ({−(i − 1),−(i − 2), . . . ,−3,−1, 1}).
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But,

(21) σk
i (A) \ σk

i (B) = {−C,C′}

and

(22) σk
i (B) \ σk

i (A) = {−D,D′}.

This leads to a contradiction for any i < `, since (by the equations (19) and (21)),

|σk
i (A \ B)| = i − 1 = ` − 1.

Also, by the equations (20) and (22) ,

|σk
i (B \ A)| = i − 1 = ` − 1.

This contradiction proves that the equation (18) cannot be true. This proves the theorem. �
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