NONEXISTENCE OF REGULAR MAPS BETWEEN HOMOGENEOUS PROJECTIVE VARIETIES

SHRAWAN KUMAR

1. Introduction

The base field is the field of complex numbers \mathbb{C}. We study non-existence of non-constant regular maps from a partial flag variety $X=G / P$ to another partial flag variety $X^{\prime}=G^{\prime} / P^{\prime}$, where G (resp. G^{\prime}) is a connected simple algebraic group and $P \subset G$ (resp. $P^{\prime} \subset G^{\prime}$) is a parabolic subgroup. Observe that there is no uniqueness of the presentation $X \cong G / P$, e.g., the projective space $\mathbb{P}^{2 n-1}$ is the homogeneous space of $\operatorname{SL}(2 n)$ as well as $\operatorname{Sp}(2 n)$ (see Remark 4 for an exhaustive list).

The main result of this note is the following theorem (cf. Theorem 1):
Theorem: Let G, G^{\prime} be as above and $P($ resp. B' $)$ be a parabolic subgroup of G different from its Borel subgroup (resp. a Borel subgroup of G^{\prime}). Then, there does not exist any non-constant regular map from G / P to G^{\prime} / B^{\prime}.

In Section 3, we recall some results on the non-existence of non-constant regular maps from a partial flag variety X to another partial flag variety X^{\prime} (but, by no means, an exhaustive list). Also, we make the following conjecture (cf. Conjecture 5):

Conjecture: Let X, X^{\prime} be two homogeneous projective varieties as above. Then,
(a) Assume that X is different from $\mathbb{P}^{2 n}$ (for $n \geq 1$) and
minss rank $X>$ maxss rank X^{\prime},
where minss rank and maxss rank are defined in Definition 3 Then, there does not exist any non-constant regular map from X to X^{\prime}.
(b) If $X=\mathbb{P}^{2 n}$ (for $n \geq 1$) and there exists a non-constant regular map from $X \rightarrow X^{\prime}$, then

$$
\text { minss rank } \mathbb{P}^{2 n-1}=n-1 \leq \text { maxss rank } X^{\prime} \text {. }
$$

Acknowledgements: The above theorem was proved (partially supported by then NSF grant number DMS-0070679) and communicated to J. Landsberg in a letter dated September 17, 2002. We decided to publish this note now due to its renewed interest. We thank J. Landsberg and A. Parameswaran for some helpful conversations.

[^0]
2. The main theorem and its proof

We prove the following theorem, which is the main result of this note.
Theorem 1. Let G, G^{\prime} be simple and connected algebraic groups and let P (resp. B^{\prime}) be a parabolic subgroup of G different from its Borel subgroup (resp. a Borel subgroup of G^{\prime}). Then, there does not exist any non-constant regular map from G / P to G^{\prime} / B^{\prime}.
Proof. Let $H^{*}\left(G^{\prime} / B^{\prime}\right)$ be the singular cohomology of the full flag variety G^{\prime} / B^{\prime} with real coefficients. Then, by the Bruhat decomposition of G^{\prime} / B^{\prime}, $H^{*}\left(G^{\prime} / B^{\prime}\right)$ has a Schubert basis $\left\{\epsilon^{w}\right\}_{w \in W^{\prime}}$, where W^{\prime} is the Weyl group of G^{\prime} and $\epsilon^{w} \in H^{2 \ell(w)}\left(G^{\prime} / B^{\prime}\right)(\ell(w)$ being the length of $w)$. We declare a cohomology class ϵ non-negative if $\epsilon=\sum_{w} a_{w} \epsilon^{w}$ has all its coefficients a_{w} non-negative and write it as $\epsilon \geq 0$. Observe that by a classical positivity theorem (cf., e.g., [Ku1, Corollary 11.4.12]), for any $v, w \in W^{\prime}$, the cup product of two non-negative classes is non-negative.

Let $f: G / P \rightarrow G^{\prime} / B^{\prime}$ be a regular map. We first prove the theorem in the case P is a maximal parabolic subgroup of G but not a Borel subgroup (in particular, G is not isogeneous to $\mathrm{SL}(2)$; thus G / P is not isomorphic with \mathbb{P}^{1}). Consider the induced map $f^{*}: H^{2}\left(G^{\prime} / B^{\prime}\right) \rightarrow H^{2}(G / P)$. For any $x \in H^{2}\left(G^{\prime} / B^{\prime}\right)$, since $H^{2}(G / P)$ is one dimensional (spanned by a Schubert class denoted ϵ_{o}), $f^{*}(x)^{2}$ is a non-negative class. Choose a basis $\left\{x_{i}\right\}$ of $H^{2}\left(G^{\prime} / B^{\prime}\right) \simeq \mathfrak{h}_{R}^{\prime *}$ (under the Borel isomorphism [Ku1, Definition 11.3.5]) such that $\sum_{i} x_{i}^{2}$ is W^{\prime}-invariant (use the W^{\prime}-invariant positive definite form on $\mathfrak{b}_{\mathbb{R}}^{*}$). Here $\mathfrak{h}_{\mathbb{R}}^{\prime *}$ is the real span of the weight lattice of G^{\prime} (with respect to the fixed choice of a maximal torus in $\left.G^{\prime}\right)$. Thus,

$$
\sum_{i} x_{i}^{2}=0 \in H^{4}(G / B)
$$

since $H^{*}\left(G^{\prime} / B^{\prime}\right)$ does not have any W^{\prime}-invariant except in $H^{0}\left(G^{\prime} / B^{\prime}\right)$. Write $f^{*}\left(x_{i}\right)=d_{i} \epsilon_{o}$, for $d_{i} \in \mathbb{R}$. Hence,

$$
\begin{equation*}
0=f^{*}\left(\sum_{i} x_{i}^{2}\right)=\sum_{i}\left(f^{*}\left(x_{i}\right)\right)^{2}=\sum_{i} d_{i}^{2} \epsilon_{o}^{2} \geq 0 . \tag{1}
\end{equation*}
$$

Now, $\epsilon_{o}^{2} \in H^{4}(G / P)$ is non-zero by Wirtinger Theorem (cf. [GH, Page 31]). (This is here we have used the assumption that G / P is not isomorphic with \mathbb{P}^{1}.) Hence, by the above equation, each $d_{i}=0$. Thus, $f^{*}\left(H^{2}\left(G^{\prime} / B^{\prime}\right)\right)=0$. This forces f to be a constant since

$$
H^{2}(G / B) \simeq \operatorname{Pic}(G / B) \otimes_{\mathbb{Z}} \mathbb{R}
$$

(and similarly for G^{\prime} / B^{\prime}) and a very ample line bundle on G^{\prime} / B^{\prime} pulls-back via f to a non-trivial line bundle if f is non-constant. This completes the proof of the theorem in the case P is a maximal parabolic subgroup of G.

We come now to the case when P is not a maximal parabolic of G (and not a Borel subgroup). Take any parabolic subgroup $Q \supset P$ of G such that P is a maximal parabolic subgroup of Q and Q / P is not isomorphic with \mathbb{P}^{1} (i.e., the unique extra simple root contained in the Levi subgroup
of Q is connected to one of the simple roots for the Levi subgroup of P in the Dynkin diagram of G). Then, the variety Q / P is isomorphic with a variety of the form H / L, where H is a simple and connected algebraic group and L is a maximal parabolic subgroup of H different from its Borel subgroup. Thus, from the maximal parabolic case proved above, we get that f restricted to Q / P is constant and so is f restricted to $g Q / P$ for any $g \in G$. Hence, f factors through G / Q as a regular map f_{Q}, i.e., we have the following commutative triangle:

where π is the canonical projection. Continuing this way, we get that f descends to a regular map $\bar{f}: G / \bar{P} \rightarrow G^{\prime} / B^{\prime}$, where \bar{P} is a maximal parabolic subgroup of G. Thus, the theorem follows from the case of maximal parabolic subgroups of G proved above.

3. Review of some related results and a conjecture

We recall the following results on the existence (or non-existence) of regular maps between projective homogeneous varieties:

Theorem 2. Let $G(r, n)$ denote the Grassmannian of r-dimensional subspaces of \mathbb{C}^{n}.
(a) (due to Tango [T]) There does not exist any non-constant regular map from $\mathbb{P}^{m} \rightarrow G(r, n)$ for $m \geq n$.
(b) (due to Paranjape-Srinivas [PS]) There exists a finite surjective regular map $f: G(r, n) \rightarrow G(s, m)$ if and only if $r=s$ and $n=m$. Moreover, in this case, f is a biregular isomorphism.
(c) (due to Hwang-Mok [HM]) Let G be a simple and connected algebraic group and let P be a maximal parabolic subgroup of G and let $f: G / P \rightarrow Y$ be a surjective regular map to a smooth projective variety Y of positive dimension. Then, either G / P is biregular isomorphic to the projective space $\mathbb{P}^{n}, n=\operatorname{dim} G / P$, or f is a biregular isomorphism.
(d) (due to J. Landsberg- unpublished) There does not exist any nonconstant regular map from $\mathbb{P}^{5} \rightarrow G(3,6)$. Also, there is no non-constant regular map from $\mathbb{P}^{6} \rightarrow \mathrm{SO}(10) / P(5)$, where $P(5)$ is the maximal parabolic subgroup of $\mathrm{SO}(10)$ obtained from deleting the 5-th simple root (following the convention in [Bo, Planche IV]).
(e) (due to Naldi-Occhetta [NO]) Any regular map from $f: G(r, n) \rightarrow$ $G(s, m)$ for $n>m$ is constant.
(f) (due to Muñoz-Occhetta-Solà Conde [MOS]) Let G be a simple and connected algebraic group of classical type and P a parabolic subgroup different from its Borel subgroup. Let M be a smooth complex projective variety such that e.d. $(M)>e . d .(G / P)$, where e.d. (effective good divisibility) is defined in loc cit., §1. Then, there are no nonconstant regular maps from $M \rightarrow G / P$.
(g) (due to Bakshi-Parameswaran [BP]) Let P_{i} be the minimal parabolic subgroup of $\mathrm{SL}(n)$ such that its Levi subgroup has (only) one simple root α_{i} (following the convention in [Bo, Planche I]. Then, any regular map $f: \mathbb{P}^{3} \rightarrow \mathrm{SL}(n) / P_{i}$ is constant for $i \in\{1, n-1\}$. Moreover, any regular map $f: \mathbb{P}^{4} \rightarrow \mathrm{SL}(n) / P_{i}$ is constant for any i. Further, there exist non-constant regular maps $f: \mathbb{P}^{3} \rightarrow \mathrm{SL}(n) / P_{i}$ for $i \in\{2, \ldots, n-2\}$.

Definition 3. Let $X=G / P, X^{\prime}=G^{\prime} / P^{\prime}$ be as in the beginning of Introduction. Define the minimum (resp. maximum) semisimple stabilizer rank of X as the minimum (resp. maximum) of the ranks of the semisimple part of the Levi component of P (for all possible realizations of X as G / P, with G a simple and connected algebraic group and P a parabolic subgroup). Denote these ranks by minss rank and maxss rank respectively.

Observe that the stabilizer rank of X is equal to the rank of G - rank of the Picard group of X.

Remark 4. The list of non-isogeneous simple and connected G, G^{\prime} such that $X=G / P \simeq G^{\prime} / P^{\prime}$ (for some parabolic subgroups $P \subset G$ and $P^{\prime} \subset G^{\prime}$) is as follows (cf. [O] or [D, §2] $]$:

1. $G=\operatorname{SL}(2 n), G^{\prime}=\operatorname{Sp}(2 n), X=\mathbb{P}^{2 n-1}$, (for $n \geq 2$)
2. $G=\mathrm{SO}(7), G^{\prime}=G_{2}, X$ is the quadric of dimension 5
3. $G=\mathrm{SO}(2 n+2), G^{\prime}=\mathrm{SO}(2 n+1)$ (for $\left.n \geq 2\right), X$ is the variety of isotropic subspaces of dimension n in $\mathbb{C}^{2 n+1}$, where $\mathbb{C}^{2 n+1}$ is equipped with a non-degenerate quadratic form.

We make the following conjecture:
Conjecture 5. Let X, X^{\prime} be two homogeneous projective varieties as in the above Definition. Then,
(a) Assume that X is different from $\mathbb{P}^{2 n}($ for $n \geq 1)$ and

$$
\text { minss rank } X>\text { maxss rank } X^{\prime} \text {. }
$$

Then, there does not exist any non-constant regular map from X to X^{\prime}.
(b) If $X=\mathbb{P}^{2 n}$ (for $n \geq 1$) and there exists a non-constant regular map from $X \rightarrow X^{\prime}$, then

$$
\text { minss rank } \mathbb{P}^{2 n-1}=n-1 \leq \text { maxss rank } X^{\prime} .
$$

[^1]Example 6. (due to J. Landsberg) Consider the map

$$
\begin{aligned}
\mathrm{SL}(4 p) / P_{1}=\mathbb{P}^{4 p-1} \rightarrow & \mathrm{SO}(6 p) / P_{1}=Q^{6 p-2}, \quad\left[x_{0}^{1}, x_{1}^{1}, \ldots, x_{0}^{2 p}, x_{1}^{2 p}\right] \mapsto \\
& {\left.\left[\left(x_{0}^{1}\right) 2,\left(x_{1}^{1}\right)^{2}, x_{0}^{1} x_{1}^{1}, \ldots,\left(x_{0}^{2 p}\right)^{2}, x_{1}^{2 p}\right)^{2}, x_{0}^{2 p} x_{1}^{2 p}\right], }
\end{aligned}
$$

where $Q^{6 p-2}$ is the smooth quadric of dimension $6 p-2$. Now, restrict this map to a general hyperplane $\mathbb{P}^{4 p-2}$ to get a non-constant regular map from $\mathbb{P}^{4 p-2} \rightarrow Q^{6 p-2}$. Observe that minss rank $\mathbb{P}^{4 p-2}=4 p-3$ and maxss rank $Q^{6 p-2}=$ $3 p-1$.

Remark 7. Let $\left\{V_{t}\right\}$ be a family of rank two vector bundles on \mathbb{P}^{3} parametrized by the formal disc of one dimension. Assume that the general member of the family is a trivial vector bundle. Then, is the special member V_{0} also a trivial vector bundle? This question is a slightly weaker version of a question by Kollár and Peskine on complete intersections of a family of smooth curves in \mathbb{P}^{3}. An affirmative answer of the above question on vector bundles is equivalent to the non-existence of non-constant regular maps from $\mathbb{P}^{3} \rightarrow \mathcal{X}$, where \mathcal{X} is the infinite Grassmannian associated to affine $\operatorname{SL}(2)$ (cf. [Ku2]).

References

[BP] Bakshi, S. and Parameswaran, A. J.: Morphisms from projective spaces to G / P, Preprint (2023).
[Bo] Bourbaki, N.: Groupes et Algèbres de Lie, Ch. 4-6, Masson, Paris (1981).
[D] Demazure, M. : Automorphismes et déformations des variétés de Borel, Invent. Math. 39, 179-186 (1977).
[GH] Griffiths, P. and Harris, J.: Principles of Algebraic Geometry, John Wiley \& Sons, Inc. (1994).
[HM] Hwang, J. and Mok, N.: Holomorphic maps from rational homogeneous spaces of Picard number 1 onto projective manifolds, Invent. Math. 136, 209-231 (1999).
[K1] Kumar, S.: Kac-Moody Groups, their Flag Varieties and Representation Theory, Progress in Mathematics Vol. 204, Birkhäuser (2002).
[K2] Kumar, S.: An approach towards the Kollár-Peskine problem via the Instanton Moduli Space, Proceedings of Symposia in Pure Mathematics Volume 86 (2012).
[MOS] Muñoz, R., Occhetta, G. and Solá Conde, L.E.: Maximal disjoint Schubert cycles in rational homogeneous varieties, Math. Nachrichten (2023).
[NO] Naldi, A. and Occhetta, G.: Morphisms between Grassmannians, ArXiv:2202.11411.
[O] Onishchik, A. L.: Inclusion relations between transitive compact transformation groups, Tr. Mosk. Mat. O-va, 11, 199-242 (1962) (in Russian).

English translation: Transl., II. Ser., Am. Math. Soc. 50, 5-58 (1966).
[PS] Paranjape, K.H. and Srinivas, V.: Self maps of homogeneous spaces, Invent. Math. 98, 425-444 (1989).
[T] Tango, H.: On ($n-1$)-dimensional projective spaces contained in the Grassmann variety $\operatorname{Gr}(n, 1)$, J. Math. Kyoto Univ. 14, 415-460 (1974).
S. Kumar: Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA

E-mail address: shrawan@email.unc.edu

[^0]: THERE IS NO CONFLICT OF INTEREST. MOREOVER, ALL THE DATA IS INCLUDED IN THE MANUSCRIPT.

[^1]: ${ }^{1}$ We thank V. Popov for the reference [O] and M. Brion for the reference [D]

