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Abstract

Let I" be a finite group acting on a simple Lie algebra g and acting on a s-pointed projective
curve (2, p = {p1,..., p;}) faithfully (for s = 1). Also, let an integrable highest weight
module .7 (A;) of an appropriate twisted affine Lie algebra determined by the ramification
at p; with a fixed central charge c¢ is attached to each p;. We prove that the space of twisted
conformal blocks attached to this data is isomorphic to the space associated to a quotient
group of I acting on g by diagram automorphisms and acting on a quotient of . Under some
mild conditions on ramification types, we prove that calculating the dimension of twisted
conformal blocks can be reduced to the situation when I acts on g by diagram automorphisms
and covers of P! with 3 marked points. Assuming a twisted analogue of Teleman’s vanishing
theorem of Lie algebra homology, we derive an analogue of the Kac—Walton formula and
the Verlinde formula for general I"-curves (with mild restrictions on ramification types). In
particular, if the Lie algebra g is not of type Dj. there are no restrictions on ramification
types.
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& Verlinde formula for twisted conformal Blocks
6.1 Verlinde tormula tor basic cases
6.2 Verlinde tormula tor general F-curves
6.3 Examples
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1 Introduction

Wess—Zumino—Witten model is a type of two dimensional conformal field theory, which
associates to an algebraic curve with marked points and integrable highest weight modules
of an affine Kac—Moody Lie algebra attached to the points, a finite dimensional vector
space consisting of conformal blocks. The space of conformal blocks has many important
properties including Propagation of Vacua and Factorization, It is also known that the sheaf of
conformal blocks on the Deligne-Mumford stack of stable pointed curves is locally free. The
mathematical theory of WZW model was first established by Tsuchiya~Ueno-Yamada [27]
where all these properties were obtained. All the above propeities are important ingredients
in the proof of the celebrated Verlinde formula for the dimension of the space of conformal
blocks (cf. | I, 9, 22, 23, 28]).

One can replace algebraic curves by I'-covers of curves for some finite group I", and let I"
act on a simple Lie algebra g. Then, the theory of nvisted conformel blocks can be similarly
developed. It is related to the two dimensional orbifold conformal field theory in the literature
[2], where Birke-Fuchs—Schweigert initiated this theory from the perspective of mathematical
physics and conjectured an analogous Verlinde formula for twisted conformal blocks in
certain cases. In [13], the authors obtained similar results as in [27] for ['-curves, including
the properties of Propagation of Vacua and Factorization (under a technical assumption that
I" stabilizes a Borel subalgebra of g; which is automatically satisfied if " is cyclic), and we
constructed a flat projective connection on the sheaf of twisted covacua on the Hurwitz stack
of pointed smooth "-curves and we also proved the local freeness of the sheaf of (wisted
covacua on the Hurwitz stack of stable pointed I"-curves. Earlier, similar results were obtained
by Damiolini [6] under more restrictive conditions; in particular, where the marking points
are unramified.

This paper is a continuation of our previous work [13]. As our first main result of this
work, in Theorem 3.3, we prove that for any [-action on g, the dimension of the space of
twisted conformal blocks is the same as the dimension of twisted conformal blocks attached
to I" acting on g by diagram automorphisms and acting on a quotient curve T of T, where T
is the quotient group of I by the subgroup of elements acting on g by inner automorphisms.
In particular, when I” acts on g by inner automorphisms, the dimension of twisted conformal
blocks is, in fact, the same as the dimension of standard (nontwisted) conformal blocks on
the quotient curve, which can be computed by the usual Verlinde dimension formula, cf.
Corollary 3 4. Another application is given in Theorem 3.7, which asserts that if the quotient
group T is cyclic, then the sheaf of twisted conformal blocks on the Hurwitz stack of stable
pointed -curves is actually locally free of constant rank. Note that the sheaf of twisted
conformal blocks on the Hurwitz stack of stable pointed ['-curves is proved to be locally
free in [13, Theorem 8.9]. However, this stack may not be connected in general, and hence
a priori it is unclear that the sheaf is of constant rank.

In Sect. 4, we assume the group I" is cyclic. Under some restriction on ramification
type at marked points, in Theorem 4.7 we give a formula for the dimension of the twisted
conformal blocks in terms of the dimension of the twisted conformal blocks for covers of
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P! with 3 marked points together with the usual Verlinde numbers of higher genus. This is
achieved mainly by using the degeneration technique to create a node in £ and then using
the Factorization Theorem, thereby reducing the problem to a lower genus base curve X
(cf. Lemma 4.2). Further, by using a similar degeneration technique and the Factorization
Theorem, we reduce the problem to a M-cover of P! with only two ramified points (cf.
Lemma <.3).

In Sect. 5, we formulate a conjecture which is a twisted analogue of Teleman’s vanishing
theorem for the Lic algebra homology (cf. Conjecture 5.6). Some partial results on this con-
jecture appear in [ | 4] by the authors. In Theorem 5.7, assuming the vanishing conjecture, we
prove an analogue of the Kac—Walton formula for the dimension of twisted conformat blocks
on covers of P! by a cyclic group I" and I" acting on g by ‘standard’ automorphisms (defined
in Sect. 5.1), The main ingredient in the proof of Theorem 5.7 is the generalized Bernstein—-
Gelfand-Gelfand resolution for twisted affine Kac-Moody Lie algebras, cf, Proposition 5 .4.

The first coauthor derived a Verlinde type formula for the trace of a diagram automorphism
and defined twisted fusion rings in [15, 16]. These results (more specifically Theorem 6.2)
and Kac—-Walton formula Theorem 5.7 are two main ingredients in the proof of Theorem 6.5,
which asserts that assuming the homology vanishing Conjecture 5.6, there is a Verlinde type
formula for the dimension of twisted conformal blocks associated to covers of P! with 3
marked points and standard automorphisms of g. Earlier, we expected a relation between
the trace on conformal blocks of diagram automorphism of a simple Lie algebra and the
dimension of twisted conformal blocks for another related Lie aigebra. Even though this
explicit relationship is not exactly achieved, however the way we deduce the dimension of
twisted conformal blocks associated to covers of P! with 3 marked points gives an indirect
explanation of their relation. In particular, the formula in Theorems 6.2 and 6.5 look fairly
similar.

We finally combine all the above results and Conjecture 5.6 to prove our second main
result of the paper: Theorem .U determining the dimension of twisted conformal blocks in
a fairly general setting (under some mild restriction on the ramification type only in the case
of g = Djy). Specifically, Reduction Theorem 3.3; degeneration results Lemmas 4.2 and 4.3
(resulting in Theorem 4.7); and Theorem 6.5 for covers of P! are the important ingredients
in the proof of Theorem 6.9.

Using the machinery of crossed modular categories, under the assumption that I' stabilizes
a Borel subalgebra of g as in [ 13], Deshpande-Mukhopadhyay (8] deduced a Verlinde type
formula for the dimension of twisted conformal blocks, which is expressed in terms of S-
matrices. The basic difference in their approach and ours is that we first of all reduce the
problem to the standard automorphisms of g and then we use the degeneration technique and
the analogue of Kac—Walton formula to arrive at our dimension formula. In our approach, in
contrast to [8] we do not need to assume that I' stabilizes a Borel subalgebra, but we do need
to assume that the quotient group Iis cyclic,

2 Preliminaries

2.1 Kac-Moody theory

let g be a simple Lie algebra over C. Let ¢ be an automorphism of order m of g. Let K be

the field of Laurent series in the parameter ¢, such that o(¢) = e 't wheree = e™ and o
acts on € trivially. Let O be the ring of formal power series in r. We now define a central
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extension L(g, o) := g(%)° @ CC of g(K)° under the bracket
[x[P] 4 zC, X' [P+ Z'C] =[x, x') (PP 1+ m ™ Res;=o ((d P)P'){x. x)C. (1)

for x| P, x'[ P'] € g(K)?, z, 7’ € C; where Res;—o denotes the coefficient of t~ldtand {, )
denotes the normalized invariant form on g so that the induced form on g* satisfies (6, 6) = 2
for the highest root 8 of g.

Throughout the paper, we fix a positive integer (called the level) ¢ = 0. We also fix an
integer s > 0 denoting the number of marked points.

We use D. 4 to denote the set of highest weights of g” which parametrizes the integrable
highest weight modules of l:(g. o) of level ¢, where the level denotes the action of C, see [ | 3,
Sect. 2]. When ¢ is trivial, we also use D, to denote this set for brevity. For each A € D, o,
we will denote by (32(X), px) (or for simplicity (1)) the associated integrable highest
weight module of ﬁ(g, o) of level c.

There exists a ‘compatible’ Cartan subalgebra b and a ‘compatible’ Borel subalgebra
b O b of g both stable under the action of o such that

o = e, 2)

where 7 is a (possibly trivial) diagram automorphism of g of order r preserving h and b,
(k) € Z for any root  of g and €%" is the inner automorphism of g such that for any root
a of g, € acts on the root space g, by the multiplication ¥, and €™ acts on b by the
identity. Here 4 is an element in 7. In particular, T and e““’ commute. Moreover, r divides
m, a(h) € Z=° for any positive root « of g7 and dp(h) = % - " where Oy € (h7)* denotes the
following weight of g*:

highest root of g, ifr =1
Bp = 1§ highest short root of g*, ifr > land (g,r) # (A2,.2)
2 - highest short root of g7, if (g.+) = (A24.2).

Let L(g, 7) denote the Lie algebra with the construcnon similar to L(g, o) where o is
replaced by , m is replaced by r and ¢ is replaced by € . There exists an isomorphism of
Lie algebras (cf. [19, Theorem 8.5]):

o1 L(g,T) ~ L(g, o) ' (3)

givenby C — C and x[t/] — x[t#4%k], for any x an e':_-'f-eigenvector of 7, and x also a
k-eigenvector of ad /1. Then, the isomorph¥sm W, induces a bijection

D.g>~Dc.:. X A (4)

Remark 2.1 The explicit description of D, 4 is givenin[I3,Lemma2.1]intermsof {n, ; |7 €
I (g, o)} defined there. Also, X can be expressed in terms of numbers «;. a,." which can be
read from [ 19, pp. 54-55] via [ 19, Theorem 8.7]. For the convenience of readers, we would
like to point out that there is a typo in the formula for & in [19, Theorem 8.7]. The correct

expressionis: o = | ® H; + _‘,[ Al!;l K.

2.2 Twisted conformal blocks

Let ¢: " —» Aut(g) be a group homomorphism, where I" is a finite group and Aut(g) is
the group of Lie algebra automorphisms of g. Let T be a reduced projective I'-curve over
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€ with only (simple) nodal singularity, such that no nontrivial element of I" fixes point-wise

any irreducible component of . Unless otherwise stated, by a T -curve we will always mean

such a T-curve. For any p € X, let '), be the stabilizer subgroup of " at p. Then, Ty is

cyclic if p is a smooth point of Z. Let y,, be the ramification type at p, i.e.. y, is a generator
g

of Iy, such that it acts on the tangent space T, T by the scalar multiplication eﬁ:—

Fix a tple p = (py. p2, ..., ps) of distinct smooth points in T such that any two distinct
points are not in the same [-orbit. Assume further that each irreducible component of £ :=
L/ T contains at least one T - p;. Then, such a (£, p) is called a s-pointed I"-curve. For each
i, let y; be the ramification type at p;. Let ¢; be a y;-equivariant formal parameter at p;, i.e.,

Qi

viti = e "rily Let K, p; denote the field C((#;)) of Laurent series and let f,(g, ;) be the
associated twisted affine Lie algebra. In fact, it does not depend on the choice of equivariant
1;. We are also given a tuple A= (A, Az, ..o, As) of elements, where A; € D, ,, for each .
Following [ 13, Sect. 3], we define the foilowing space of covacua,

He () Q- @ Hi(As)
BLE\T - pIT - (A ® -+ - ® e (As))
where g{Z\T" - 5]" is the Lie algebra of C-equivariant regular maps from Z\I" - p to g, and
the action of T\I" - p on (X)) ® --- @ H2(Ar) is given by [13, Definition 3.5]. [t was
proved in [ 13] that twisted conformal blocks share similar properties with usuail conformal

blocks, including Propagation, Factorization, WZW connection, etc. Some of these results
are also proved in |¢] under more restrictive assumptions.

Yore(PA) = (S)

3 Reduction from general actions to diagram automorphisms

3.1 Akeylemma

Let G be a connected, simply-connected simple algebraic group over €, and let I' be a finite
group acting on G. Let G, denote the quotient of G by its center. Then, I' acts on Gy
naturally, Let £ be a smooth projective connected curve over C with a faithful action of ™.
We regard G ;g as the group of inner automorphisms of g, which is a normal subgroup of the
full automorphism group Aut(g}. Hence, Aut(g) acts on G,g via conjugation. Let Out(g) be
the quotient group Aut(g)/G,g.

Lemma 3.1 Suppose that we are given two group homomorphisms ¢, . I' — Aut{g) such
that ¢ - =V T — Gag, y > ()W (y) . For any T-stable affine open subset T* in Z,
if the action of T on T* is free, then there exists a regular map F: &% — Gyq such that

Fly -p)=oWF(py¥ ()™, VYpeZ*yel
Note that ¢ (¥ Y F () (y) ™" is well-defined as an element of G, since ¢ (¥ ) (y) ' € Gy
foranyy e I'.

Proof Let %, be the following (parahoric) Bruhat-Tits group scheme over £*, % :=
(% x Ga)', where % = £* /T, 7, denote the Weil restriction from £* to £*, and the
upper subscript U denotes taking I'-fixed point scheme under the action ¢ of " via conjugation
on Gag (v - 8 = ¢(¥)gd(y) ' fory € I'and g € Gqa).

Recall that a (T, G.q, ¢)-bundle on =% is a right principal Gyg-bundle # on £* with a
left Gamma-action on 2 compatible with I"-action on £ such that

y(x-g) =y} Adpy(g). foranyy e[, g € Gy, x € P.
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We now construct a (I", G4, ¢)-bundle structure 22y, on £¥ x Gyg as follows:

e Gaq-bundle: (p,x) g = (p.x-g) forany p € £* and g, x € Gyuq:
o T-action: y - (p, x) = (v - p. ¥ (¥)x¢(y) "), forany y € T

The above bundle %, by taking ¢ instead of ¢ is called the trivial (T, Gy, @)-bundle
P,

Since all the points in £* are unramified, rr*(g’,,t,)r is a ¥ -bundle, cf. [ 7, Proposition 2.9].
Now, we are in position to apply Heinloth uniformization theorem (cf. [12, Theorem L]),
which asserts that as @ -bundles, J-r*(?.;,)r is isomorphic to &;. Applying the inverse functor
7' (-} Xz+@y) (Gag) s+, we get an isomorphism of (T, G g, @)-bundles ®: Ay ~ 7 (ct.
[7, Theorem 3.2]). From the construction of &2y, we see that there exists a regular map
F: T* = G, such that

d(p,x) = (p, F(px), forany pe ¥ and x € Gyg.

By consideration of ['-equivariance, one can easily deduce that F satisfies the desired
property:
Fly p)=¢()F(p)(y)~!, foranyy e and p € T*,

3.2 Reduction theorem

We consider the following sctup:

We are given a group homomorphism ¢ : I' — Aut(g) and a projective irreducible smooth
s-pointed T-curve (Z, 7). Let £* be the complement T\(UT" - p;). Let I'g be the kernel of
the map Po¢ : I' — Out(g), where P : Aut(g) — Out(g) is the projection map and Out(g)
is the quotient group Aut(g)/Int(g) (Int(g) being the group of inner automorphisms of g).
Let T be the quonent group I/ T'g and fet % be the quotient curve L./ T'p. Let p; denote the
image of p; in ¥, and let £* denote the complement =\ - p) where p = {p1,.... psl.
Then, (. p) is a s-pointed ["-curve. Let ¢, be the composition of the following maps:

[omes Qut(g) N Aut(g),

where ¢ is a group homomorphism such that the elements in Qut(g) act on g by diagram
automorphisms, which preserve a pair (b, h) and a pinning with respect to the pair (b, h),
where b is a fixed Borel subalgebra and b is a Cartan subalgebra contained in b. Let ¢, be
the composition

ro B2 Au).

For each p;, choose a Borel subalgebra b; and a Cartan subalgebra ; contained in b; and
both preserved by ¢ (y;) and satisfying the Eq. (2), where y; is the ramification type at p;.
Let 7; be the diagram automorphism part of ¢ (y;) with respect to this choice, i.e., the image
of y; under the analogue of ¢, with respect to the choice (b;, ;) and a pinning with respect

to (bi, bi).

Lemma3.2 Forany | < i < s, there exists an inner automorphism x; of g such that

ki(b) = by, ki (h) = by, and
o= ki - ¢vi) ki (6)
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Proof By an isomorphism theorem of semisimple Lie algebras (cf. [17, Sect. 14.2]), there
exists a unique automorphism ] € Aut(g) sending the chosen pinning with respect to (b, h)
to the chosen pinning respect to (b;, ;). Since the diagram automporphisms ¢,(y;) and t;
induce the same action on the Dynkin diagram of g, we must have 1; = .fc,’ (¥ - (x,-’) v
Let D be the group of diagram automorphisms of g preserving (b;, f;) and the given pinning
with respect to (b;, b;). It is well-known that D =~ Qut(g). Thus, there exists an element
u € D such that k; := ui; is inner, x; (b) = b; and «;(h) = b;. Then, 7; and «; - ¢, (¥;i) -x"'
are two elements in D. It follows that 7; = «; - ¢, (¥;) - &; l, since 7; and ¢, (y;) have the same
image in Out(g). u]

Given a tuple A = (A1, ..., As) of dominant weights with A; € D, ., we get another
tuple A = (Ay,..., Ax) of dominant weights with A; € D, .. as described in (4). Via «;,
we can identify D r, with D, 5, where y; = ¢;(y;). We denote by A; the efement in D, j,
corresponding to A; € D, r, under the identification D; y; >~ D, j;.

We attach the space of twisted covacua Y5 rg4(p,A) to (Z, p) and ¢: ' — Aaut(g).
Similarly, we can also attach the space V)‘Z.I:.fii.(ﬁ‘ 2) of twisted covacua to the s-pointed
T-curve (. E) and the group homomorphism ¢ T > Aut{g).

Theorem 3.3 Assume that T* := Z\([ - p) does not contain any ramified points in . Then,
we have a natural isomorphism of vector spaces

Ye.ra(PA) = ¥ p g (B A).
Proof Let ¢, be the composition of the following maps:

r % Autig) 5 Out(g) 5> Aut(g).

where ¢ is as above,
By Lemma 1.1, there exists F: ¥ — G,q such that

Fy-p)=¢)F(pe(y)™'. VpeI*yel )
This gives rise to a Lie algebra homormophism & : g['i”‘]IL — gl=*)", given by
X — Adp(n*X), forany X € gl)f)*]ﬁ.

where w* X is the pull-back of the g-valued function X on v *, and Ad is the point-wise
conjugation by F. One can check that ® ¢ is an isomorphism. In fact, we construct its inverse
map Wy as follows. For any ¥ € gfZ” I, it is easy to verify that Adpa(Y) e g[E*lr"t’f,
where ()V# denotes the M-invariants via the usual action of I" on I* and the action on g
via ¢,. Then, Ad 1 (Y) descends to the desired element W (Y) € g[};*Jr.

Let F; be the image of F in G,(K),,). Define Ka,-, : I:(g, v;) = L(g, y;) as follows:

x[f1e Adg (xS + Res,,JFf'dF;.x[f])C,-, and C; — G,

1T,

where Ady. is the point-wise adjoint action, {, } is the normalized invariant form on g, and
Ci is the canonical central element. Moreover, F; ]dF,- is the g-valued 1-form, which can

be defined via an embedding p: Gag — GL(V). We regard K5, = C((#;)) the subfield of
Kp, = C((1:)), where f; = (#;)* and ¢; is the ramification index of 7: £ — T at p;. §#

2
W [t is routine to check that Ad g, is a Lie algebra isomorphism.
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Let @L(g ¥i) denote the direct sum of twisted affine Lie algebras L(g ¥i), and let
©L(g, 7:) denote the quotient of @L(g 7i) by the central elements C; — C; with i # j. Let

C denote the image of any C;. Then, EBL(g ¥:) has the 1-dimensional center C- C. Similarly,
we define the Lie algebra EBL(g ;) with the canonical center C. Let EBAd Fi: C‘L( 9. ¥} —=

EBL(g, vi) be the Lie algebra isomorphism induced from ®Ad {3
We now consider the following diagram:

sS4 I — 5 Big, ) (8)

l¢,. l@xaﬁ

e r Locj _I: .
g[Z*] ——BL(g. vi),

where Loc’;(!’) =2, Y forany Y € g[i*]f,and Locj is defined similarly. By (7), F'dF
is (T, ¢, }-equivariant. It follows that the pairing (F7'dF, 7n*Y) is I'-invariant 1-formon £*,
Hence, for any g € T - p;, the residue of (F71dF, n*Y) at g is equal to the residue at p;.
Finally, the commutativity of the diagram (8) follows from the following identity for any

Y e g[i*]’;:

!
Z —Res,, (F 'dF, n*Y) Z Res, (F~'dF,n*Y) =0,
1T pi | IFI

where the last equality follows from the Residue Theorem for (FldF, m*Yyon T (cf. [,
Chap. III, Theorem 7.14.2]).
From the commutative diagram (&), we have the following natural isomorphism:

M) Q- @ He(Ay)

— , (9)
gl (AN Q- @ H(Ay))

Yoo (P A) =

where J#.();) is regarded as a representation of ﬁ(g, ¥; } via the isomorphism Ad £
Recall the isomorphism W, : L(g, t;) = L(g, ;) from (3). It is an easy observation that

v, = Ade where F/ = t"”" € Gu(Kp,) hi € l]r' is determined by y; as in Sect. 2.1,

adh;

and 1; is the uniformizer in K}, . Moreover, by the Eq. (2), ¢(y;) = ¢; ' 7, where ¢; is an

}r\ th primitive root of unity, Set g; = ﬂ Ki - F,-_] € Gu(Kp,), where ki € G, is asA

Lemma 3.2 thought of as an element of Gaq(%), ). Then, g; € Gy (K, )r"i since

& (i) = Fl(ri) i - Fi(yi) ™!
=" e i i F ()T )
St r,.“dh" (~)e?dh" Lk i) o)
= 1 O F O 00!
= o)™ G Fi () o)
- g (I

where the second equality follows from (7), the third equality follows from (6), and the fifth
equality holds since h; € b}
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By a twisted anologue of Faltings’ lemma (ct. {I3, Proposition 10.2]}, there exists an
intertwining operator

It (). pa) = (Ha(Mi), pa, 0 Adg,)

as isomorphisms of f,(g. vi)-modules. This induces the following isomorphism of f,(g, ‘s-\)~ Y
modules

Iy (H(Ai), pr; 0 Adj;) = (HN0), pi, 0 Ady, 0 AdF)
= (4, p; 0 Adpr 0 ki)
=~ (F(N), p3, @ ki), by equation(4)
=~ (He(hi), p3,)-
'{‘herefore, the ogerator {obtained from the above isomorphism I-gl. identifying f,(g, ¥;) with
L(g. y;) under Adg; as above):
®lg: D) ® - @ H(hy) = H(K) ® - ® H()

descends to the following isomorphism

SN c® (M -
; f‘r_( ])® ® (.( !) Zaf/f:_[:‘&(f)',)\.). (]0)
I - (M) ® - - ® Helh))
Combining the isomorphisms (9) and (1()), we conclude the proof of this theorem. (]

As a corollary of Theorem 3.3, we get the following result.

Corollary3.4 Ler ', ¢. g, T, (Z, p) be as in the beginning of this Sect. 3.2. Assume that
P = (1). We further assume that T - p contains all the ramified points. Then, for any
A= (A1, ....A5) attached to p = (p1. ..., ps) with A; € D, ,,

dim 'Jf/z.r.¢(ﬁ, X) = Ng()_ti, ceey is),

where g iy the genus of T = z/T, »i € D, is attached to A; as in Sect. 3.2 and
N; (i]. ...,i_ﬁ-) is the dimension of the untwisted conformal blocks attached 1o a genus
g smooth irreducible curve and weights (M1, ..., A artached 1o any distinct poinis,
For an explicit expression of Ng T As) see [22, Theorem 4.2.19] or Theorem 6.9.
In particular, the corollary applies for any non-simply laced g (i.e., if g is of tvpe Be(€ =
2), Ce(€ = 2), Fqor Ga).

3.3 An application

We first recall the definition of stable s-pointed I'-curves from [ i 3, Definition 8.1] (a variant
of |4, Definttion 6.2.11]).

Definition 3.5 A s-pointed I'-curve (. p) (cf. Section 2.2) is called stable s-pointed I"-curve
if © is connected, & := I/ I" is a stable curve, i.e., it has at most nodal singularity and the
automorphism group of (X, p) is finite (cf. [22, Definition 2.1.1]), where 7 : £ — T is the
projection. Moreover, we require that for any node g € £ ando € %,

det(d) = [, if o fixes the two branches at g
= —1, if ¢ exchanges the two branches at ¢,

where & is the derivative of & acting on the Zariski tangent space T, (¥).
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We consider a stable s-pointed -curve (X, p = (p1, ..., ps)) of genus g with marking
datany = ((T'y, x1), (T2, x2), . . ., (T, x5)) (cf. [13, Definition 8.71). By definition, I'; is the
isotropy subgroup of " at p;. We abbreviate (I';, x;) by ¥, where y; is the generator of [';

2r/—1
such that its action on the tangent space T),, (X} isviae ™ Id, where m; is the order of T';.

Thus, the marking data » can be identified with the ramification types ¥ = (y1. y2. ... ¥s)
at p. We assume that I" - p contains all the ramified points in Z.

Remark 3.6 Under the assumption that I" - p contains all the ramified points in X, at any nodal
point ¢ € X, ¢ being unramified and stable, det(¢') = |, o fixes the two branches for any
y € I'g and Ty is cyclic (cf. [4, Corollaire 4.3.3 and the comment after Definition 6.2.3]). In
this case, any stable s-pointed I"-curve (I, p) is exactly an admissible s-pointed I"-cover in
the sense of Jarvis—Kaufmann-Kimura |18, Definition 2.1,2.2]. The only difference is that,
in our definition, stable s-pointed I"-curves are connected, and admissible s-pointed I'-covers
defined in [18] can be disconnected.

Let Wg'r.; be the Hurwitz stack of stable s-pointed I"-curves of genus g with marking
data 7, cf. [13, Sect. 8]. Then, 7M r; is a proper and smooth Deligne-Mumford stack of
finite type, cf. [13, Theorem 8.8]. We can attach the sheaf ¥} r ¢ (¥, 5;) of twisted covacua on
Mgy, where X = (A1, ..., As) with &; € Dc.y,. When I" stabilizes a Borel subalgebra
of g, the sheaf ¥, 1 4(¥, 1) is locally free over M r ;. cf. [13, Theorem 8.9]. When " is
cyclic, Wg,r‘,; is irreducible [ 13, Remark 8.11 (1)]. Thus, %, .r.4(¥. ) is locally free of
constant rank for cyclic T'. For general ', #°M r ; could be disconnected. Nevertheless,
we have the following theorem, which is an application of Theorem 3.3

Theorem 3.7 With the notation as in Sect. 3.2 and with same assumption as in Theorem 3.3,
suppose that the quotient group T of I' is cyclic and T stabilizes a Borel subalgebra in g.
Then, the sheaf ¥y r.(V, X) on 3 Mg 15 is locally free of constant rank. Observe that T is
cyclic for any g of type other than Dy,

Proof We freely follow the notation from Sect. 3.2. Given any s-pointed smooth I'-curve
(%, p) with ramification data ¥ = (y1.-... ¥s) at p, taking the quotient of by I'p we geta
sm(loth s-pointed "-curve with ramification data ¥ = ("1, ...,¥)at p. Let g be the genus
of . The Hurwitz stack of stable s-pointed I'-curves with marking data y is irreducible,
since by assumption I is cyclic. By [13, Theorem 8.9], the sheaf Y504, ()3, 1) of twisted

covacuoa on .%Mg F is locally free of constant rank, where ¢, is the group action of I on g

and A is the s-tuple of dominant weights attached to ;_3 as in Theorem 3.3, By Theorem 3.3,
when (%, p) is a smooth s-pointed I'-curve, we have

dim ﬁz‘r‘,p(]_)‘, 3\.‘) = dim ')"tll'-_é‘([_l), )_\.)

This in particular implies that dim Y& r ¢ (p. A) is constant along the smooth s-pointed T'-
curves (X, p)in Wg'r‘,;. By [ 13, Theorem 8.9] again, the sheaf ¥, r 4 (¥. ) is locally free.
To conclude the theorem, it suffices to show that every component of Wg_r_,; must contain
a smooth s-pointed I'-curve. Indeed this is true, as any stable s-pointed I'-curve with nodal
points admits a smoothing deformation (cf. [ 13, Lemma 8.3 and Proof of Theorem 8.9N. O
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4 Reduction via degenerations

In this section, we are in the same setup as in Sect. 3.3 and we further assume that " is cyclic
of order m.

Let g be the genus of T = X/T. By the Riemann—-Hurwitz formula when X is a
smooth irreducible I'-curve, the genus g satisfies the following equation (cf. [11, Corol-
lary 2.4, Chap. IV]):

¥ F
28—2=|r|(2§—2)+21|-1:,—_!|'(lrf|—’)- (11)
i=1 !

Lemmad.1 Ler (%, p) be a stable s-pointed smooth [-curve. Then, the dimension of
Yer.e(p.A) only dependson g, g, U,y = {y1, ..., ¥}, A and the level c.

Proof By Riemann—-Hurwitz formula (11), g is determined by g.m and y. Observe that I"
being cyclic, I stabilizes a Borel subalgebra in g. Thus, the lemma follows from Theorem 3.7.
]

Set (for fixed¢g and ¢ > ()
Nzr(7: %) = dim ¥ 1.4 (P, A). (12)

Lemma 4.2 Let (X, p) be an irreducible s-pointed smooth T'-curve with ramification data y
such that T - p contains all the ramified points in . Assume that the quotient T has genus
g > | (in particular, (Z, p) r'.'s"' stable T-curve). Then, (X, p) admits a degeneration to a
stable s-pointed U-curve (', p’) (in particular, £’ is connected) such that the nodal points
of &' form a single U-orbit T - y and the action of T on T -y is free. Moreover, I' - p' contains
all the ramified points of T'.

Ifg =2o0rifg = land{y,..., v} generate T, then ! can be taken 1o be irreducible.
Inany case, '/ T is irreducible and hence we can take p' to lie in an irreducible component
of &,

Proof Let ;3 be the image of /3 in £, Then, the fundamental group of )Z‘JJ has the following
presentation:

ey, Bio ..o Bgomi. ... s | Loy, Bil-- ez, Bglm -+ -y = 1},

where n; represents the loop around the marked point j;, and «;, B; represent loops around
each handle of £. The M-curve T being irreducible gives rise to a surjective group homo-
morphism f: Jr|(i\ﬁ) —» T, where #; is mapped to y; for each | < i < s. In particular,
wegel yiy2 -y = | (since I" is cyclic by assumption; in particular, abelian).

Let (C', 1;’) be a stable degeneration of (T, 13) with C’ irreducible and with one single
node ¥ (which is possible since g > 1). Let C’ be the normalization of C" with ¥*, ¥~ over
X. Then, €’ is smooth and irreducible with genus ¢ — 1. Let U be the complement

C\F, B pib = CNEL T i i),
Then, the fundamental group of U has the following presentation:
{Otl-ﬁl.---,Ofg—l,ﬁg—l,aJr,a_‘??l ----- ns | lay, Bil

gt Bg—il-ata gy = 1,
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where n; represents the loop around p!, @™ represent the loops around %, and o}, B;

represent loops around each handle of C'. We now construct a group homomorphism
f'rmU) — T suchthat f'(n;) = y;forany | <i =5, f'le™) = fl@”) =

and f'(a;) = v. f/(Bj)) = v l foreach | < j < g — 1, where y is a generator of
the cyclic group T, Since y1 -+ -y = 1, f' is indeed a group homomorphism. The group
homomorphism f gives rise to a I-bundle U — U with U a smooth (but not necessarily
connectcd) curve. By taking the unigue smooth pI’O_]CCthC closure 2y D U, we get a smooth
8- pomted [-cover w: g — C’ with marked points p’, such that the ramification data
at 1;’ is¥ = (¥1.....¥s) and the ramification data above X~ is trivial. Let y= be a point
above ¥¥, chosen so that y* and y~ are in the same component of the curve X ;. Thus,
alaGH = yr10<i<m—1yandn "(x)={y' -y 10 <i <m- 1}are free
[-orbits. By identifying y/ - y* and y'*! .y~ foreach0 < i < m — 1, we get a stable
(in particular, connected) s-pointed I"-curve &' from I » whose quotient by I is exactly C".
Then, (¥’, 1;-'} 1s the desired stable s-pointed I'-curve with nodal points - Eh). D

Lemma4.3 Ler (X, p) be a stable s-pointed (irreducible) smooth T'-cover of (P, ;3) (in
particular, s > 3} such that T - p contains all the ramified points in T and has ramification
datay = (y1, ..., ¥s). Suppose that yyya -+ vy = | for some t with botht,s —t = 2. Then,
the T'-cover T — £ = P! degeneratestoa srable -pointed T-curve (X', p’) whose quotient
is a union of two projective lines intersecting at a point x, such that above one projective
line the ramification data is (yi, . . ., v1), and above another projective line the ramification
data is (Y141, - . - » ¥s). Moreover, the fiber over x is a free T-orbit consisting of all the nodul
points of T'. Further, T - p' contains all the ramified points of %'.

If{n1,.... v} generate ', then the curve over the first projective line can be taken to be
irreducible.

Proof The fundamental group of P'\{/. jp2. ..., Py} has a presentation:

m.me oo | mnma---ns = 1},

where 7; are loops around p;.
The irreducible "-cover £ — P! gives rise to a surjective group homomorphism

f: Jn(]P"\;B) — T such that f(»;) = y;. Let U; be P'\{p1...., p:} and let U> be
P'"\{B:+1..... ps}. Foreach k = 1, 2, we construct a group homomorphism f; : m(Uy) —
I" such that

fitn) =y, forany 1 <i <t, fa(y;) =y, foranyr+1=j =s.

Observe that f| and f> are group homomorphisms, since by assumption y1y2 - - - y; = |. For
eachk = 1,2, let (X ,, px) be the unique smooth I'-cover of P! associated to f; (¥ i could
be disconnected), such that j; has the ramification data (y1, ..., ) and (yi41, ..., yy) for
k = 1,2 respectively. Fix any (unramified) [-orbits " - x; € Ty, and [ - x2 € E, over
points in U and U respectively. We glue E , and X , along any I"-equivariant map between
- x; and T - x2. Since f is surjective, we get a connected s-pointed ["-curve (Z'. By, p2)
whose quotient is a union of two projective lines intersecting at a point x, with marked points
(Pls.- Pt Prsds - - Py). This s-pointed I'-curve has the desired properties. O

LetD, ¢, Z, p=(pls.-s Ps) ¥ = (y|,...,y,)andi= (A, ..., As) beasinSect. 2.2,

Assume further that T is smooth and it has an irreducible component Z? such that each p;
belongs to £”. Moreover, & = /T is irreducible. Let I'” be the subgroup of I" stabilizing
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Z? Then, I'’, ¢” := ¢jr». Z°, p, y and X also satisfy the assumptions of Sect. 2.2 {observe
that "y, = T°3.).
We have the following reduction lemma.

Lemma 4.4 With the assumption as above, we have:
1. There exists an isomorphism 8 : T xpe L® = X of T-curves given by [y, x] — y - x.
2. There exists an isomorphism of vector spaces Vs r.¢ (P, A} = Vso ro go{p, ). In par-
ticular,

dim % r.¢(p, &) = dim Fo ro go (B, 1.

Proof For part (1), clearly the map f is surjective (since T is irreducible) and "-equivariant.
The injectivity follows from the definition of I'” since, forany y € [', y 2’ N £¢ # @ if and
only if y € I'? (this uses the smoothness of ).

For part (2), it suffices to check that the restriction map

Res: g[Z\I"- ]" — glzo\M* - 5]~

is an isomorphism: For any I"-equivariant map X: X\I' - p — g, if X vanishes on the
component Z°\I"”. p, then, by I'-equivaniance, X vanishes everywhere. Thus, the restriction
map Res is injective.

For any I"-equivariant map ¥ : Z°\I'° - p —» g, construct an extension V:E\T-5 g
given by Y(g) = ¢,-1 (Y (y - g)) for any y such that y - ¢ € E°\I'? . p, where ¢, is
the automorphism of g associated to y~'. One can check easily that Y is a well-defined
I'-equivariant regular map. Thus, the restriction map Res is an isomorphism. m]

Notation4.5 1. Let Ng(i) denote the dimension of the space of (untwisted) confor-
mal blocks attached to an irreducible smooth projective curve C of genus g and
A= (Al ..., As) at s-points in C with &; € De. _

2. Foranintegerm > |, let ["), = {y} (cyclic group of order m) act on Plbyy . z= e%z
forze P andg¢ : [, — Aut g. Let (A, i, v) be a set of dominant weights, such that
A€ Dey.pt € D, y-randv € D, attached to the points (0, 0o, 1) respectively. We
denote by Ng(y: A, u, v) the dimension of the twisted conformal blocks attached to this
data.

Itis well-known that N, (X) can be computed by the usual Verlinde formula (cf. {22, The-
orem 4.2.19]). By the reduction theorem in Theorem 3.3, the computation of Ng(y; A, &, v)
can be reduced to the case when y acts via a diagram automorphism of g. In fact, by the
same reason it suffices to assume that y acts on g via a standard automorphism in the sense
of Sect. 5.1. In Sect. 6, we will prove a Verlinde type formula for Ng(y; A, ., v) when y
acts on g via a standard automorphism.
Lemma 4.6 Let I be a cyclic group of order m > 2. Then, any irreducible smooth I"-cover
T of P! with two branched points in B is isomorphic to m : P! — P! given by z +» 7" and 3__,3_,'
the action of T on P! is generated by 7 +— e%i. em£&E
Proof Let g be the genus of . Let p), pa be the branched points in IP' with ramification
indices ¢) and ¢;. By Riemann-Hurwitz formula (cf. the identity (11)),

mom

m m ‘
20 -2==2m+ —(e) — N+ —(er— )= -0 = — < 2,
€1 (4] (4] i3]

Thus, g = 0, and ¢; = ez = m. Itis easy 1o see that such a ["-cover X over P! is isomorphic
tor : P! = P! givenby z > 2", m]
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The following theorem reduces the problem of calculating the dimension of twisted con-
formal blocks to that of the classical Verlinde numbers together with Ny as in Notation 4.5

Theorem 4.7 Let (T, p) be an irreducible smooth s-pointed T-curve, where s > 1 if g > 1
and s = 3 if § = 0 (so that (¥, p) is a stable s-pointed T -curve) and T is any finite
cyclic group. Assume that T - p contains all the ramified points, and that we can write

p=(pi,..., Ps)sothat p1, ... pag are ramified (for some a = 0) and prgsr, ..., ps are
unramified. Assume that ya— 1y = | foreachl <k < a.Leth = (M, ..., Aag) beattached
10 (p1, ..., pra) witheach hj € Dy, and i = (1, ..., up) attached to (pra41. - - ., Ps)

with each pj € D¢, where s = 2a + b. Then, we have the following formula:

o
Ng.l"(}_’.; A'! ij') - dlm yx.r.¢(ﬁa A'! ﬁ) = Z (l_[ N¢(V2k—]§ )“.H’—h A'2ka U.{)) ’ Ni()ul" ]_")*)!

¥ k=l
where the summation is over v = (vy, ..., Vp) withv; € D.. Here, Ng(vak—1; A2k—1, Aok, Vi)
and Nz(f, v*) are defined in Notation 4.5.
Proof We prove the theorem by reducing the problem for g to that of g — 1. So, assume that
g=1

By Lemma 4.2, there exists a stable s-pointed '-curve (X', Py in HM g 1 ; (in particular,
¥’ is connected) and £’ has a I"-free single ['-orbit of nodal points. Moreover, I - p' contains
all the ramified points of X’. Further, by part (1) of Lemma 4.4, the normalization of T’
at nodal points is isomorphic to T' xp1 !, where x! is an irreducible smooth projective
I"!-curve for some subgroup I'' of . Applying the Factorization Theorem [ |3, Theorem 5.4}
and part (2) of Lemma 4.4, we get:

Npr@iX, @)= Y Neyr@, LA G, ). (13)
€D

Thus, inducting on g and keep using the Factorization Theorem, Lemmas 4.2 and 4.4, we
get

Ner(Fih i) = Nor(7, logi & i, 7, %), (14)
ijel D yF
for some subgroup I'" of T, where 7§ = (1,...,1;) € (D)f and 7* = 1A "3) €

(D.)%. We emphasize here that Ny 1~(-) denotes the dimension of the space of twisted con-
formal blocks attached to an irreducible smooth projective I''-cover of P!,

Similarly, keep using the Factorization Theorem, Lemmas 4.3 and 4.4 for the pair
(pag—1. pai) of points with 1 < k < a, we get [using the Eq. (14)]:

Ngr(7: L, i)

[
=2, (l_[ No,r (Vzk—1. vaio 1s Aak—10 A2, Uk)) - No.or(logabas i 1,777, 97),
v M=l

(15)

for some subgroups I'” and I'y of " for each 1 < k < a, where the summation is over
v={v,...,v)and = (n,....nz) withvi,n; € D.

Note that any étale I'”'-cover £” over P! is isomorphic to P! x I'”. Since T” is irreducible,
it follows that I'”” = 1. Then, by Notation 4.5, we have

N(J.F”(—l.; ,&, ﬁt ﬁ*’ ‘-)*) = N()(,Li, ﬁw ﬁ*n 1_5*)-

@ Springer



Twisted conformal blocks and their dimension Page150f29¢ 76

By Lemma 4.6, any irreducible smooth Tiy-cover over P! with ramification data
(Y26—1, y2r) 1s isomorphic to a standard T'y-action on P! as in Lemma 4.6.
Then, by Notation 4.5, for each X we have

No.r, (V2k—1. Yok, 1 Aag—1. Aok, Vi) = Np(Var—15 Aak—1. A2k, Vi)

Thus, from (15) we get

a
Ner(Fido )= (1_[ No(y2k-15 Azk—1, A2 vk)) - No(i, 1, 77, v%) (16)

by ©k=I

=5 (]'[ N (¥ak—1s Aak-1, Azk, w-)) Y No(, 7,759 (1)
v k=1l H
ZZ(H N¢(V2k—|:?~2k—|,lzk.va)) - Ng(p, v%), (18)

k=1

v

where the last equality follows from factorization of fusion rules for conformal blocks in
untwisted setting, cf. [22, Corollary 3.5.10 (a)]. This concludes the proof of the theorem. D

Remark 4.8 Assume that I" >~ Z/2Z. Let (X, p) be a stable smooth s-pointed ["-curve such
that I" - p contains all the ramified points in £. By Riemann—Hurwitz formula (11), there are
even number of ramified points in Z. Thus, up to ordering we can always write

I-j = (PI- coos P2y P2a+ly -0y p.\’)v

sothat py, ..., py, are ramified and (pg+1, . . ., ps) are unramified. Then, by Theorem 4.7,
the dimension of the space of twisted conformal blocks attached to any ramification data can
be reduced to compute Ny(y: A, i, v) and Ng(A).

Remark 4.9 Assume that T' =~ 7,/37.. We have an elliptic curve E over P! as a ['-cover. The
ramification type of £ is (y. y. y), where y is a generator of ", In this case, Theorem 4.7 is
not applicable since yZ # 1.

5 Kac-Walton formula for twisted conformal blocks

5.1 Standard automorphisms

An automorphism o of g is called special if o is a diagram automorphism (which includes
the identity automorphism), or an order 4 automorphism of g when g is of type A»,, which
is defined as follows. Let ¢;, f;, h;i,i = 1,....2n, be the set of Chevalley generators. The
automorphism o of g is defined such that

oe) = erpy. ifi #n,n+ 1.
o(ei) =~/ =lewiy, ifi e{n,n+1};, (19)
a(fe) = fo.

where @ is the highest root of g and 7t is the nontrivial diagram automorphism. in fact, we
can write

o T \,.-"j‘"d'l" ‘ (20)
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where it € b is such that o (h) = Qif i #n,n+ 1 ande;(h) = 1ifi =n,n+ 1.

We call ¢ to be a standard special automorphism (or simply a standard automorphism)
if o is the identity automorphism or a nontrivial diagram automorphism when g is not of
type Az, or o is the order 4 special automorphism as above. (Observe that for a standard
automorphism, g is the same as § as defined in [19].) So, the only difference between special
and standard automorphism is that we exclude the nontrivial diagram automorphism of A3,.

The following table describes the fixed point Lie algebra for all the nontrivial special
automorphisms, cf. [3, Sect. 2.1]:

(g, m)|(A2n—1, 2)| (A2, 4)|(A2n, 2)|(Dy41, 2)|( D4, 3)|(Eg, 2)
g° Chn Cy B, By G Fq |

where by convention Cy and By are Ay and n > 3 for Dy4.

@1)

temmabs.1 Ler g be of type Az, and let o be the s!andard nontrivial automorphism of g
Then, the bijection D. o =~ Dy ; in(4)isgivenby ) |_, a,Af: >y |' airB +Qay + AL,
where {Af: [i=1,...,n}is the set of fundamental weights of g°, and {JLF [i=1,...,n)is
the set of fundamental weights of g°. (We follow the labelings in [19, Table Fin, p. 53].)

Proof Let «, ....ao, be the set of simple roots of g, and let &, ..., a2, be the set of
simple coroots of g. Then, @jlye, ..., an—1lye, 20, |pc form a set of simple roots for ¢°,
cf. [3, Sect. 2.1], and {&; + &ane1—i | = 1,...,n} is the set of simple coroots of g7. On
the other hand, {a1lge. ..., @n—1lge, @ulpe} form a set of simple roots for g7, and {e; +
F2ps - oo 0 O] + g2, 208, + &y4()} form the set of simple coroots of g*. The lemma now
easily follows from [ 13, Formula (6)]. o

5.2 Affine Weyl group of twisted affine Lie algebras

Let & be a standard nontrivial automorphism of g and let L{g, o ) be the Lie algebra Lig.o)&®
Cd, where

[d, x[t*]) = kx{t*]. [d,C]1=0, foranyx[r*]e L(g.o).

Then, L(g, o) is a Kac—Moody Lie algebra of twisted type with canonical center C and the
scaling element d, and the fixed subalgebra g” is the “‘standard” finite part of L(g.o)inthe
sense of [19, Sect. 6.3]. This is obvious when g is not of type Az,. When g is of type Az,
using the formula (20} this can be seen from [19, Theorem 8.7] or [13, Sect. 2].

Set b = h” @ CC @ Cd. Then, the dual h* = (h7)* @ C5 @ CAg, where § and Ag are
defined as follows

8lge =0, (5, C) =0, (8,d) =ap, Aplpe =0, (A, C) =1, (Ap,d) =0,
where

anid 1 if(g*’")?é‘(AZJ:-"')
°T 12 if(gm) = (A, ).

Note that Ag is a fundamental d01nine1nt weight of i(g, o) of level one,
Let Wy (g.7) denote the Weyl group of L(g, o). Let Q, (resp. P, ) be the root {resp. weight)
lattice of g“. Set

o {Qa if (9, m) # (A2a. 4) o)

Y001 if(g.m) = (A2, ),
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where Q, is the lattice spanned by the long roots. Let W be the Weyl group of g. Then, the
fixed subgroup W can be identified with the Wey! group of g”. Let W,; .. denote the affine
Weyl group W7 x cM.

Set

big:=Ps ®zR, b} :=P, @z R+RAg+RS.

Note that Wl:{gm

¢ € H, where

keeps & invariant (cf. [19, Sect. 6.5]). Hence, Wi(g.a) acts on Bf,h for any

Dl = x € BE | (. C) = ¢} /RS,

With respect 10 the isomorphism §)] o =~ ﬁfh, given by A — ¢Agp + A. we have the
following lemma (cf. |19, Proposition 6.5, Sect. 6.5] or [ 15, Lemma 3.1]).

Lemma 5.2 There exists an isomorphism af © Wy

igo) = Wa.o of groups such that for any
A=cAot+ A€y, withh el ,andw e Wj

(9.0) the following formula holds,

w: A =cAg+af(w) Ain B?ﬁc

Let 4 be the sum of all the fundamental weights of f,(g, o). By [19, Identity 6.2.8],
p = po + kAo, (23)

where p, is the sum of all the fundamental weights of g7, and # is the dual Coxeter number
of L(g. o), cf. [1Y, Sect. 6.1]. Observe that /1 is the same as the dual Coxeter number of g
(cf. [19. Remark 6.1]). .

We define = action of Wi(g_a) on b}, _as follows:

wrxA = w(A"—.a)_ﬁv we Wl:(g_o')‘A eb*{(
Similarly, we still denote by = the following action of Wy . on B -

Wk = w-(A+ p5) — Pa. WE War h D) 5. (24)

Lemma 5.3 Given A = cAg+ A € by andw € Wy ., we have

(g.o)
wxA = A +af;(wywk, where af; (w) is taken in W, ;.

Proof It follows from Lemma 5.2 and the formula p = p, + AAg as in (23). O
Set
highest short root of g%, (g.n) # (A2, 4)
g =1 "¢ ' (25)
5 highest root of g%,  (g.m) = (A2,.4)
and
« highest coroot of g%, (g, m} # (A, 4)
By = ) e (26)
2 - highest short coroot of g”, (g.m) = (A2, 4).

Let (|-} denote the normalized bilinear form on h” (which is the restriction of thevnormalized
invariant form on h). Let v: §7 = (§h7)* be the induced isomorphism. Then, v(f;} = (,'79”,
cf. [19, Sect. 6.4].
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When o is standard and nontrivial, using formula (20) (for the case (g, m) = (A2,, 4))
combined with [13, Sect. 2] for the diagram automorphisms, we get:

Deo ={he PFI(M6:) =), 27

where P} is the set of dominant integral weights of g7.
Let W' . denote the set of minimal representatives of the right cosets of W in W_ __ .
LS o.c+h
Then, for any w; € W and w; € W:c—ﬁ’ we have £(w ws) = £(w) + &(w3). For any
w € W:c+ﬁ and A € Do, one has wxd € P}, and weh # w’xA for any two distinct
w,w e WJC_H; (cf. [20, Remark 1.3]). Since (g, 8y) = k — 1, D, o can be identified with

the interior integral points in the fundamental alcove of W . ;- with respect to the  action.

5.3 Analogue of Kac-Walton formula

LetT" = {or}) of order m acton Pt byo(z) = e'zTJrrTI z(forz € P), and o acts on g via a standard
automorphism of order m. For any z € P!\ {0} and any finite dimensional representation V
of g'z, where T'. is the stabilizer subgroup of I at z, we denote by V. the representation of
glt~')° via the evaluation map ev. : glt='1” — g": by letting t = z. Recall that for any
A € Do, we have an integrable highest weight representation 2.(1) of f,(g, o) of level ¢
and highest weight A. Let H,-((r"g[t"])“, JEA(A) ® V(u)p) denote the i-th homology of
(r='glt~"1)° with coefficients in .7 (L) @ V{(1)1.

Proposition 5.4 For any ). € Do and u € Pt (where Pt is the set of dominant integral
weights of g), the homology groups H.((t™ balt~ N7, 72.(0) ® V(1)) can be computed as
the homology groups of a complex of g° -representations,
by s &
s Fp B Fy = Ry 50,
where as representations of g°,

Fp=~ ) V(wad) @ (V(uw)lge ), (28)

i —
we Wn“ 4"G.f(ur.v)-p

V (wxA) is the irreducible representation of g° with highest weight wxA and V (j)| g0 denotes
the irreducible representation V (1) of g considered as a representation of % via restriction.

Proof Recall the generalized BGG resolution for Kac-Moody algebras from [21, Defini-
tion 9.2.17]. By Lemmas 5.2 and 5.3, we can express the generalized BGG resolution of

A (1) as follows:

8p é é
Lo My D Mo S A0,

where

M, = & M (w=h), (29)
UE W-:_N.i‘f{w)_”

and A?I(w*k) is the generalized Verma module U(i(g, a)) Quglirecc) V(wxd), with C
acting on V (w#A) by the scalar ¢ and g[7]” acting via the evaluation at 7 = 0.
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By tensoring with V(u)|, we get a resolution of J.(A) ® V(). As g°-modules, we
have the coinvariant

(M (k) @ V() -1 g-1pe = (U9l D7) @ Vwsh) @ V1) 1 gqy1)p0
= ((V(wsd) ® V()1 ®c U gl ™' D)) - gpyo1ppe »

by the Hopf Principle [21, Proposition 3.1.10]
2 Viwsd) @ V().

Hence, the complex (M, ® V (1)1, Tale- e is isomorphic to

S!’ E
= Fp — F| Fo — 0,

where F), is given in (28). Thus, the proposition follows. 0

Consider the automorphism o of P! givenby o (z) = £z forz € P!, where & = e With
respect to the Galois cover 7 : P! — P! given by z = z, the ramification type at 0 € P!
is o and the ramification type at oo € P! is o ~!. For twisted conformal blocks associated to
the Galois cover o and an automorphism o of g of order m, we attach a dominant weight in
D, at0 € P!, and a dominant weightin D, - at oo € P!, We have the following lemma.

Lemma 5.5 For any standard nontrivial automorphism o of g, we have De o = D, ,-1.
Moreover, for any p € D, o, p = p* where p* is the dominant weight corresponding to the
dual representation V(u)* of g%.

Proof By [13,Lemma5.3(2)), i € Do ifandonlyif u* € D, ,-1.Since g7 is non simply-
laced or A;, A* = —w{ (A} = A for any weight A of g%, where w] is the longest element of
the Weyl group of g°. D

Thus, we can use D, , tfor the common set of dominant weights of g° to attach to 0 as
well as oo € P!

Similar to Teleman’s vanishing theorem 26, Theorem 0], we make the following conjec-
ture.

Conjecture 5.6 Ler o be a standard automorphism of g. Then, forany A, p € D, o, v € D,
and for any i > 1, the representation V(u)* does not occur in Hy((¢ 'glt '), 760 ®
V(u)) as a g7 -representation.

This conjecture has been confirmed in [ {4, Corollary 3.20] under strong constraints. In
particular, when the level ¢ is sufficiently large comparing to A, it and v, this conjecture
always holds.

We are now ready to deduce the following analogue of Kac-Walton formula for twisted
conformal blocks.

Theorem 5.7 Take any standard awtomorphism o of g of order m and the Galois cover
7P = Pz 2" Let p = (0,00, 1) in P!, and » = (o, u,v) with A, u € D, and
v € Do Suppose that Conjecture 5.0 holds, then

dim % g (1) = Y (—l}e(""dim((V(w*k)ﬁ@V(,U«)®V(v))"T). (30)

A
mweW'
a,ct-h

where T is the cyclic group of order m generated by o and ¢ : ' — Autg is the one
generated by ¢
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Proof By the Propagation Theorem for twisted conformal blocks (cf. [13, Theorem 4.3]),
we have the following isomorphism:

Vor g (B ) = (L) @ V(oo ® V()1 )gp-pr
= ((HEQ) @ VN -1gu-tpe ® V(Lf»))an .
since (+~'glr ") acts trivially on V (1) co
~ Homgo (V(u*), Ho(t gl ™', sy @ Vi) (3D
We have the following equalities:

dim (Homge (V (1*), Ho((r~'gl¢ ™' D7, () @ V(»1)))
=Y (= 1) dim (Homge (V (™), Hi (¢t glr ™' D7, A6 (1) ® V(o)1)

i=0

= Y (=D dim (Homge (V(12*). V(w#d) @ V(1))

u.'l.'W'r:.rlll.r

= Y D dim (V@ Vw8 V)T ), (32)
weW’

.o+ h

where the first equality follows from Conjecture 5.6, and the second equality follows from
Proposition 5.4, Combining the isomorphism (31) and the identity (32), we get the theorem.
]

6 Verlinde formula for twisted conformal blocks

6.1 Verlinde formula for basic cases

In this section, we assume that ¢ is a standard nontrivial automorphism of g. Recall the
lattice M introduced in (22). Then, M is the root lattice of g7, if g is not Az, and by [I5,
Lemma 2.3), M is the weight lattice of g” when g is of type Ap,. Let G be the connected and
simply-connected (simple) algebraic group with Lie algebra g. Let T be the maximal torus
with Cartan subalgebra h as its Lie algebra.

Lemma 6.1 The fixed group G” is connected and simply-connected.

Proof When G is not of type As,, o is a diagram automorphism. In this case, the lemma
is well-known. For the connectedness see |25, Theorem 8.1], and the simply-connectedness
follows from [24, Sect. 10.3]. We now assume that G is of type Az,. Let 7 be the diagram
automorphism part of . Then, T% = T7. It is known that T" is connected. Thus, G is
connected of type C,, see Table (21). Let {oy, . .., @2} be the set of simple roots of Az, with
the standard labelling and let {&;, .. . , &2, } be the set of corresponding simple coroots of G.
Then, oy |ge, . .., &y—1lyo . 205 form a set of simple roots for G” (cf. [3, Sect. 2.1]) and
(& + dapg1—i : 1| < i < n}form the set of simple coroots. Using simple coroots, we can
introduce a coordinate system of T, (G,,)*" ~ T. Then, it is easy to verify that G,, — T°
given by a v &;{(a)&an4+1—i(a) is a simple coroot of G, forevery i = I, ..., n. Thus,
Hom(G,,, T?) is the lattice of coroots. It follows that G7 is simply-connected. o
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With this lemma, we may regard the lattice M as a sub-lattice in the weight lattice X*(T7).
We now define

T? :=(teT? () =1, YA € (c + h)M). (33)

Let T.”"“® denote the set of regular elements in T2, i.e., those elements with trivial
W7 -stabilizer. Let R7 (g) denote the fusion ring associated to the twisted affine Lie alge-
bra I:(g,o), which is defined in [16]. For any regular function f on T7 or T, we will
denote by £ the restriction of f to 7o “®. In [ 16], the ring R? (g) is realized as the function
space C[T" 4 /W = CIT."*IW" (with the ring structure coming from the product of
functions), with a basis {}; | * € D). (We describe x; explicitly after Remark 6.3.) The
following theorem is proved in [ 13, 16].

Theorem 6.2 Forany A, it € D5, we have

- - — "J (=
Xr-Xp = Z Cr.uXns
n€Dc.o

. .F|' . .
where ¢, u 15 given by

J

1
“hu = (7o) Y. BROXOIr ) (). (34)
[ ’E.l.‘fr.rt’glwa

Here Ay is given by
Ay = [](e* =),

ach,

where O, is the set of all the roots of g°.

Remark 6.3 Given a simply-laced simple Lie algebra g with a diagram automorphism t of
order / = 1, a fusion ring R.(g, ) is defined in [15] for the purpose of deducing a formula
for the trace of 7 on the space of untwisted conformal blocks associated to g. In fact, there
is an isomorphism of rings R (g) = R.(g, t), with a correspondence between (g, mn) and
(9. ) as follows (cf. [16, Sect. 3.1]):

(g, m)[(A2n=1,2)|(A24, 4)| (D41, 2) [(D4, 3)|(Eg, 2)
(f;. I‘) (Du+]v 2) (AZNa 2) (Amr—lv 2) (D4s 3) (Eﬁa 2) I

Moreover, Theorem 6.2 is equivalent to the formula for the trace of T on the space of conformal
blocks associated to g.

(35)

As mentioned above, R (g) can be identified with the ring C[7.""“* /W?]. Thus, there
is a natural ring homomorphism 7 : R(g°) — RZ(g) given by [Va] — xi, where R(g%) is
the representation ring of g%, x is the character of V(1) as a function on 77 and %, is the
restriction of x; to 7" (which descends to a function on 7. " “* /W?). This allows us to
define x; forany A € P,

Lemma 6.4 Foranyh € D, , andw € w! L e have
a0

qu.)‘ = (_ [)f(m) XL

Moreover, by [15, Corollary 5.17], for any n € P} \(W;c ’;tD(-,a ) (V) = 0.

+
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Proof Write w = zt,, where z € W and 1, is the translation by n € (¢ + )M . By Weyl
character formula,

8o - Xwer = Z (_I)E(y)e_\'(wpra) — Z (_I)E(yley(z(k+pa+rriil' (36)
yews yeWwe

where 6, 1s the Weyl denominator of g7 given by:

8y 1= e™ I_[ (1—e™)

aedd

(@7 being the set of the positive roots of g°).

For any t € T,""*¥, we have

8o (1) Xumn () = Y (=) ERHN () = (—1)fD B T (— ) D (1)
yeW? yeWws
= (=" Y7 (1) = (1) 8, (1) - 00,
yeWw? '

where the first equality holds since n & (c-|-l;)M, and second to the last equality holds since
(1) is even, cf. [15, Lemma 2.8]. Thus, the lemma follows. O

Let p = (0,00, 1) in B!, and A = (A vy with A, u € D, and v € D,. Recall the
following notation from Notation 4.5 (we have dropped ¢ from Ng(o; A, &, v) since in this
section we are only dealing with ¢ generated by the nontrivial standard automorphisms of

g
N{(o; A, i, v) :=dim '%I‘r‘¢(];, ), 3N

where I" and ¢ are the same as in Theorem 5.7.
We now prove the following Verlinde formula for N(o; A, i, v), which uses Theorem 5.7.

Theorem 6.5 Wirh the notation as above, suppose that Conjecture 5.6 holds. Then, we have

N i, p,v) =

T L ROLOROAD. (38)

ek pwe

where X, Xu. Xv represent the characters of V(X), V(u), V(v) as representations of g°, o°
and g respectively.

Proof Forany it € D, andv € D,,consider the following decomposition as representations
of g%,

V(p)® (V(W)lge) = EB V () ®nic

nePs
where m}, , = dim (Homge (V (1), V() ® V(v))). Then,
V{w) @ (V(v)ge)

= @ @ V(U,J*)\')EDI'II;‘:_.Ul @ @ V(n)Ql"ﬁ.u

reD:. + ot ;
o0 e th w nekbs \(Wo.r+.'3*Dr'ﬂ }
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Thus, by Lemma 6.4, we have

AV (VW= Y. Y miwa= ». Y. =D"mitx.

AED(-.G we w't

reDea e w' .

a0 +_|:|

(39)

By the analogue of the Kac—Walton formula as in Theorem 5.7, we get using the equation
(39):

AV @ (Vg = Y N(@: A", i (40)
AED, o

(Observe that, by Lemma 5.5 A* = 1))
On the other hand, consider the following decomposition as g° -representations:

Vil = @ van®®

nePs
(41)
1P B v |P ) V()@
NeDeo we w:.c-ﬂi ne P;\(w:.wia*n""’)
Then, r being a ring homomorphism,
AV @V = > Y b %, o (42)

By Theorem 6.2 and equation (42), w{V (1) @ (V(v)l47})) is equal to

2 e ¥ (lTI"! > e X Ox (A0
“ e

NED o we wf i AED & T:r.r:',u W
1
= > Tl Yo XXX (D6 (1), (43)
AeDeo ¢ eI ywe

where the above equality follows from (41) and Lemma 6.4. Comparing formulae (40) and
(43), we conclude that

N A%, v) = Y e OxeD X (DA (1),

a
771 (e T8 pwa

Thus, the theorem follows. B

Following [ 16], we now describe the set TS /W explicitly. Let 8; be the highest root
of g7. Let P;\ denote the set of dominant coweights of g7, where the fundamental coweights
in h° are defined as the dual of simple roots. When (g, m) # (Az,,4), set

Deo = (A€ BJ1(h,6) <ch,
and

I

5, = feeth P o X e Dot TO,
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Here we identify T° = Hom(P,, C*), where P, is the weight lattice of g? and g, is the
sum of the fundamental coweights.
When (g, m) = (Azg, 4), set

2ni
%, = {eti PN c 1o 1y e D) C T

amg

where (-|-} is the invariant form on (h”)* such that (6;(6;) = 4, equivalently (|-} is induced
from the normalized invariant form on the twisted affine algebra L(g, o) (cf. [19, Iden-
tity 8.3.8)). The following lemma follows from [13, Sect. 5.4] and [16, Sect. 2].

Lemma 6.6 Any elementt € T, ' % can be translated to a unigue element in . by a unique
element of W7,

6.2 Verlinde formula for general I'-curves

Let o be a standard nontrivial automorphism of a simple and simply-connected algebraic
group G preserving a maximal torus T. Set

T, ={teT|)it)=1, forany A € (¢ +IV1)Q;R b

where Qy,, is the sublattice of the root lattice of G genel ated by the long roots (if all the root
lengths are equal, we call them long roots). Let T.“® be the set of regular elements in T,
i.e., those elements 7 € T, whose stabilizers in the Weyl group W is trivial. Recall that 7.7 is

defined in (33).

Lemma 6.7 T? is the set of o-invariants in T.
2. The set TU red /WO can be identified with the set of o-invariants in T, % [ W.

Proof For part (1), it suffices to check that the lattice M defined in (22) is exactly the set of
coinvariants of ¢ in Q. When g is not of type Aa,, this is obvious. When (g, m) = (A2,, 4),
this follows from the description of the simple roots of g in [3, Sect. 2.1]and [ 15, Lemma2.2].

We now prove part (2). Since G and G” are simply-connected (cf. Lemma 6.1), there
exist o -equivariant bijections

Plc+ 0 =T, M/(c+h)Q° ~T7, (44)
given by A — e«:;ll where P, Q are respectively the coweight and coroot lattices of G, Q"
is the coroot lattice of G (it can also be identified with the set of o -invariants in 0), and
MY < b7 is the dual lattice of M C (§°)*. In particular, MV is the coweight lattice of G°
when G is not of type Az,; MY is the coroot lattice of G¥ when G is of type Ay, as in this
case M is the weight lattice of G?. From the descnptlons of coroots and coweights of G7 in
[3, Sect. 2.1], we observe that in any case MY = = (P)°.
Then, 7, “® /W can be identified with the set of interior P-integral points in the fundamental
alcove of the affine Weyl group W x (¢ + h)Q (cf. [22, Lemma 4.2.6 (b}]). Similarly,
77" W can be identified with the set ¢ of | interior M -integral points in the fundamental
alcove of the affine Weyl group W¢ (c+h) 0°.B y the same proof asin [ 15, Proposition 2.7],
the natural map T, /W® — (T.*® /W)° is a bijection. 0

Given any two finite order automorphisms y, y' of g such that they have the same images
in Out(g), we can naturally identify D, , and D, ,s. More precisely, we first decompose

v = reM with respect to a y-stable pair (b, ), and decompose y’' = Tetdh with respect
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to a y'-stable pair (b, b), as in (2). By (4), there exists identifications D¢, >~ Dc; and
D, = D . Furthermore, by Lemma 3.2, there exists a canonical identification D, ; =
D, .+ (note that this identification does not depend on the choice of the inner automorphisms
in Lemma 3.2). Thus, we get an identification

Dy = Dy (45)

Consider a group homomorphism ¢ : I — Aut{g), a stable smooth {and hence irre-
ducible) s-pointed I'-curve (X, j5) with ramification type y attached to 5, and a s-tuple of
dominant weights A attached to p. We assume that

Assumption 6.8 1. I - j contains all the ramified points;

2. T ;= I'/ Tyis cyclic of order r, where I'g is the kernel of the map Po¢ : I — Qut(g); P
being the projection Aut(g) — Out(g); (¢
3. By reordering p, we can write p = (p1,..., P2, P2a+l, ... Ps) such that yx # 1,

Y- yY2r = | for any | £~k =a(@a=0),and y; = 1 forany 2a + | <i < s, where y
isthe imageof y e 'in T,

When I = (1) or Z/2Z, the condition (3) in the above assumption holds automatically.

Letg, : I — Aut(g) be the group homomorphism defined in Sect. 3.2, which preserves
a fixed pair (b, h). Forany | < <, y; acts on G by a diagram automorphism (possibly
trivial) via ¢¢, denoted by t;. Let o; be the standard automorphism associated to 7; (note
that o; = 7; if g # Aazg). Let AT be the s-tuple of dominant weights with A € Dy
associated to X; € D, via the bijection (45). (The bijection D, ; =~ D, g, between the
diagram automorphism 7; and the standard automorphism o; for g = As, is explicitly given
by Lemma 5.1.)

For convenience, we fix a standard automorphism o corresponding to a generator of r.

Theorem 6.9 Wirth the same notation and Assumption 6.8 as above for any finite group I', we
Sfurther assume that the vanishing Conjecture 5.6 holds. Then, the dimension of the twisted
conformal blocks

|T. |81+ Xi: (N Ag (1)

o |d g=l+a
TN b e O

Ner(:%) =

¥

where T is the maximal torus of G with its Lie algebra the Cartan subalgebra by, g is the
genus of the quotient curve & = T/ T, and x5:(1) = x,+{t} -+ x,+(1) with X,+ being the
| B i

character of the irreducible representation of the group G with highest weight A ,!. (For the
notation Do, see Theorem 6.2 and A = A jgenizy-)

Proof If " = (1), the theorem follows from the reduction Corollary 3.4 and the classical

Verlinde formula (cf 122, Theorem 4.2.19 and the identities (3) and (8) in its proof]). So, we
now assume that " # (1) in what follows.

Set Ac = T, “®/W and A? = T7"°8 /W7, By Lemma 6.7, A% can be regarded as the
subset ofa-mvarmnts in A,. Clearly, A = Al if (o) = {o7), and Al ¢ if o is trivial,

By Theorem 3.3, we are reduced to the following sitnation: I" is cyclic of order 2 or 3 (in
particular, every non-trivial element is a generator of I') and the elements of " act on G by
diagram automorphisms (possibly trivial), and the ramification type of I action on T is y
with each y; acting on G by a diagram automorphism 7; and t; 7 1 exactly when 1 <i < 2a
(a > 0). The s-tuple (A, A2, .... Aaas U1 -« -+ fp) of dominant weights is attached to p
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with ; € D, y, and u; € D¢, where s = 2a + b. (Observe that it j := Azq4.) They satisty
Tok-1Tox = | forany | < k < a as in Assumption 6.8. Then,

i
Ner(pih i)=Y (H N (tae—1; hak—1, Aok, Vk)) - Ng(u, v")

veDr \k=|

3 (H N(osko1 Ay AL w)) - Ng(i, v%)
v k=1

a

|T |8~
= ST 22 e @0x0, @)X Ao t0)

ald
ITC' v \k=1 \neAg

3 xahxe (AW E

€A,
a
= m,, Z > a0 an]]
Mg €AT k=1
reAr
(Xl?e I(rk)x,\;(rk)xuk(t;c)xl.;(t)Au (zk)) , (46)

where the first equality follows from Theorem 4.7, the second equality follows from The
orem 3.3, the third equality follows from Theorem 6.5 and the usual Verlinde formula (cf.
22, Theorem 4.2.19 and the identities (3) and (8) in its proof]).

Recall the following orthogonahty relation {(cf. [16, Theorem 2.1(2)]):

T Y X Oxvr (OAE) =8y,

reAr

ITel

where & denotes the Kronecker symbol. Similarly, for any t', ¢ € A, the following orthogo-
nality relation holds

3 XX (DAE) =8 (47)
”‘l veD,
Now,
Z Y a0 F 0 [ (ke @x: 0xu x4 1))
ey €AT ket .
e,
Y. AW EF GO (n X, |(fk)Xlék(fk)An([k)) (qu;(r)x-.-.(nm(r))
|'|....I'..EJ|.T' Ll - v
reAd,

(Z Hur (X0, (M)A(f))

i
= |T.|? Z A(;)I 8=y (1) l_[ (Xxi'l___,(’*)XJ\;‘('*)A“(”‘)H’-'*)’ by using equation (47)
kml

0ot AT
tEA,

= 3 AN TEFEO x5 (B ()TN (48)

1e AT
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Combining the Egs. (46) and (48), we get

[T v Xt (DX (D Ag (1)°
IT.«,? |a A(I)f—lﬁ:

Npr(7: A, fi) =

teA?
This conclude the proof of the theorem. (|

Remark 6.10 By [3, Proposition 9.6], the formulae for S-matrices described in [16, Sect. 5]
and Lemma 6.7, one observes that the dimension formula in Theorem 6.9 agrees with the
dimension formula in [8, Theorem 1.2].

6.3 Examples
We now consider g = sly, with an action of Z/2Z generated by a diagram automorphism o,
and Z/2Z acts on £ with 2a ramified points. Then, g° = sp,,,. From (44),

ITel = 2n(c + 2m)2" 20, |TZ| = 2(c + 2n)".

Letay, ag, . .., a2, be the simple roots of sip, with standard labelling. Set&; = a;[ge, | <
i < n. Then, &j,..., @&, from a set of simple roots of sp,,. Note that a,;; = @& for
I =i <n— 1. Letd; (resp. @y ;) be the fundamental coweight of sly, associated to o;
(resp.@;). By Lemma 6.6, " /W can be identified with £, ~ D, . The set D.. gan be
described as g

b:‘.a = {kld’a.l STRREL +knd3rr.n |2kl 2 ‘2kn 1 +kn <c, ki > OVI}
Following {3, p. 7}, we may embed the coweight lattice ﬁga into P via the identifications
Wgi =W +Opm_j, | SISn=1; Ogp =y

Thus, g, can be identified with 5. Each i€ lv)c_a associates to an element t; € 77 C T.
The set of positive roots of sl3, can be described as

Ot ={o; +- - +ojll <i<j<2n—1}
and the set of positive roots of sp,, can be identified as

O =@ +--+all<i<j<2n—1,i+j<2n}

Setkyyi = ki for 1 <i<n—1IfX=3"_, kidos, then
S ket j—i+1 \
Alrs =4n(2n—l) sin =i "t T
(A) ; l_[ ¢+ 2n
I<izj<in-1

] 2
3 I kg +j—i+1
Ag(ty) = 4" 1_[ sin (Z“—‘ o J 7| .

¢+ 2n
l<i<j<In—1.i+j<n +

Whenn=2,8=0,c=1,A=0, i =0, wehave D, = {0, dy.2}). Then,
6-2a
s By ca=3n—3at+ll oo (ENOTH . (2W _ na-—l
Ner(y,0)=5"""2 sm(s) sin 3 20

since sin(%)2 sin(%")2 = I% In particular, when a = 1, Nz r(y; 6) = | (this agrees with
the computation in |3, Lemma 3.12]).
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Whenn =2,g=1¢c=1,

e TN\ —2a 21 —2a
Ng.r(7:0) = 10%sin (E) sin (?) = 32¢,
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