

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Subalgebra generated by ad-locally nilpotent elements of Borcherds Generalized Kac-Moody Lie algebras

Shrawan Kumar

Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA

ARTICLE INFO

Article history: Received 29 June 2021 Available online 13 December 2021 Communicated by David Hernandez

Keywords: Borcherds generalized Kac-Moody algebra Ad-locally nilpotent elements Levi subalgebra Real simple roots

ABSTRACT

We determine the Lie subalgebra \mathfrak{g}_{nil} of a Borcherds symmetrizable generalized Kac-Moody Lie algebra \mathfrak{g} generated by ad-locally nilpotent elements and show that it is 'essentially' the same as the Levi subalgebra of \mathfrak{g} with its simple roots precisely the real simple roots of $\mathfrak{g}.$

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathfrak{g} = \mathfrak{g}(A)$ be the symmetrizable Generalized Kac-Moody (GKM) algebra associated to a $\ell \times \ell$ matrix A (cf. Section 2). Let

 $\mathfrak{g}_{\mathrm{nil}}^o := \{ x \in \mathfrak{g} : \text{ ad } x \text{ acts locally nilpotently on } \mathfrak{g} \},\$

and let $\mathfrak{g}_{nil} \subset \mathfrak{g}$ be the Lie subalgebra generated by \mathfrak{g}_{nil}^o . Then, we prove the following theorem (cf. Theorem 3.1):

E-mail address: shrawan@email.unc.edu.

 $[\]label{eq:https://doi.org/10.1016/j.jalgebra.2021.11.038} 0021-8693 @ 2021 Elsevier Inc. All rights reserved.$

Theorem. Let $\mathfrak{g} = \mathfrak{g}(A)$ be as above, where $\ell \geq 2$ and A is indecomposable, i.e., the corresponding Dynkin diagram is connected. Then,

$$\mathfrak{g}'(B) \subset \mathfrak{g}_{\operatorname{nil}} \subset \mathfrak{g}'(B) + \mathfrak{h},$$

where $B \subset A$ is the submatrix parameterized by those i such that $a_{i,i} = 2$, \mathfrak{h} is the Cartan subalgebra and $\mathfrak{g}'(B)$ is the derived subalgebra of $\mathfrak{g}(B)$.

As shown in Remark 3.2, the assumption $\ell \geq 2$ in the above theorem is necessary in general.

Acknowledgments. We thank V. Kac for providing some references on generalized Kac-Moody Lie algebras. We also acknowledge partial support from the NSF grant number DMS-1802328.

2. Basic definition

In this section, we recall the definition of Borcherds Generalized Kac-Moody Lie algebras \mathfrak{g} (for short GKM algebras). For a more extensive treatment of \mathfrak{g} and its properties, see Chapters 1, 11 of [3] and the papers [1] and [2].

Definition 2.1. Let $A = (a_{i,j})$ be a $\ell \times \ell$ matrix (for $\ell \ge 1$) with real entries, satisfying the following properties:

(P1) either $a_{i,i} = 2$ or $a_{i,i} \le 0$, (P2) $a_{i,j} \le 0$ if $i \ne j$, and $a_{i,j} \in \mathbb{Z}$ if $a_{i,i} = 2$, (P3) $a_{i,j} = 0$ if and only if $a_{j,i} = 0$.

Fix a *realization* of A, which is a triple $(\mathfrak{h}, \Pi, \Pi^{\vee})$ consisting of a complex vector space $\mathfrak{h}, \Pi = \{\alpha_1, \ldots, \alpha_\ell\} \subset \mathfrak{h}^*$ and $\Pi^{\vee} = \{\alpha_1^{\vee}, \ldots, \alpha_\ell^{\vee}\} \subset \mathfrak{h}$ are indexed subsets, satisfying the following three conditions:

(Q1) both sets Π and Π^{\vee} are linearly independent,

- (Q2) $\alpha_j(\alpha_i^{\vee}) = a_{i,j}$, for all i, j,
- (Q3) $\ell \operatorname{rank} A = \dim \mathfrak{h} \ell.$

By [3], Proposition 1.1, such a realization is unique up to an isomorphism of the triple.

Now, the Borcherds Generalized Kac-Moody Lie algebra (for short GKM algebra) $\mathfrak{g}(A)$ is defined as the Lie algebra generated by $\{e_i, f_i, \mathfrak{h}\}_{1 \leq i \leq \ell}$ subject to the following relations:

 $\begin{array}{ll} (\mathrm{R1}) & [e_i, f_j] = \delta i j \alpha_i^{\vee}, \, \text{for all } i, \\ (\mathrm{R2}) & [h, h'] = 0, \, \text{for all } h, h' \in \mathfrak{h}, \\ (\mathrm{R3}) & [h, e_i] = \alpha_i(h) e_i; \, [h, f_i] = -\alpha_i(h) f_i, \, \text{for all } 1 \leq i \leq \ell \, \text{and } h \in \mathfrak{h}, \end{array}$

(R4) $(ad e_i)^{1-a_{i,j}} e_j = (ad f_i)^{1-a_{i,j}} f_j = 0$, if $a_{i,i} = 2$ and $i \neq j$, (R5) $[e_i, e_j] = [f_i, f_j] = 0$, if $a_{i,j} = 0$.

The matrix A (or the Lie algebra $\mathfrak{g}(A)$) is called *symmetrizable* if there exists an invertible diagonal matrix $D = \operatorname{diag}(\epsilon_1, \ldots, \epsilon_\ell)$ such that the matrix DA is symmetric.

3. Main theorem and its proof

Theorem 3.1. Let $\mathfrak{g} = \mathfrak{g}(A)$ be the symmetrizable GKM algebra associated to a $\ell \times \ell$ matrix A as in the last section. Assume further that $\ell \geq 2$ and A is indecomposable, i.e., the corresponding Dynkin diagram is connected. Let

 $\mathfrak{g}_{\mathrm{nil}}^o := \{ x \in \mathfrak{g} : \text{ ad } x \text{ acts locally nilpotently on } \mathfrak{g} \},\$

and let $\mathfrak{g}_{nil} \subset \mathfrak{g}$ be the Lie subalgebra generated by \mathfrak{g}_{nil}^o . Then,

$$\mathfrak{g}'(B) \subset \mathfrak{g}_{\operatorname{nil}} \subset \mathfrak{g}'(B) + \mathfrak{h},$$

where $B \subset A$ is the submatrix parameterized by those i such that $a_{ii} = 2$, i.e., α_i is a real root and $\mathfrak{g}'(B)$ is the derived subalgebra of $\mathfrak{g}(B)$.

Proof. Consider the \mathbb{Z} -gradation of \mathfrak{g} induced from a homomorphism $\theta : Q := \bigoplus_i \mathbb{Z}\alpha_i \to \mathbb{Z}$. Then, for any $x \in \mathfrak{g}_{nil}^o, x_+(\theta) \in \mathfrak{g}_{nil}^o$, where $x_+(\theta)$ is the top degree component of x in the \mathbb{Z} -gradation of \mathfrak{g} induced by θ . To prove this, observe that for any $y \in \mathfrak{g}_\alpha$ (where \mathfrak{g}_α is the root space corresponding to the root α or 0),

$$(\operatorname{ad} x)^n(y) = (\operatorname{ad} x_+(\theta))^n(y) + \text{lower degree terms.}$$

Similarly, for $x \in \mathfrak{g}_{nil}^o, x_-(\theta) \in \mathfrak{g}_{nil}^o$, where $x_-(\theta)$ is the lowest degree component of x.

Further, given any nonzero $x \in \mathfrak{g}$, we can get a gradation $\theta_x : Q \to \mathbb{Z}$ as above (depending upon x) such that all the homogeneous degree components of x (under θ_x) belong to root spaces \mathfrak{g}_{β} . To prove this, write $x = \sum_j x_{\beta_j}$, where β_j are distinct roots or zero, $x_{\beta_j} \in \mathfrak{g}_{\beta_j}$ and each $x_{\beta_j} \neq 0$. Consider the finite collection of weights: $\{\beta_j - \beta_k\}_{j \neq k} \subset$ \mathfrak{h}^* . Now, we can find a vector $\gamma = \gamma_x \in \mathbb{Q}^\ell = Q \otimes_{\mathbb{Z}} \mathbb{Q}$ such that for the standard dot product (\cdot, \cdot) in \mathbb{Q}^ℓ ,

$$\theta_x(\beta_j - \beta_k) := (\beta_j - \beta_k, \gamma) \neq 0, \text{ for any } j \neq k.$$
(1)

To prove the above equation, consider the $(\ell - 1)$ -dimensional subspace $V_{j,k} \subset \mathbb{Q}^{\ell}$ (for any $j \neq k$) perpendicular to $\beta_j - \beta_k$. Since the collection $\{\beta_j - \beta_k\}_{j \neq k}$ is finite, we can find a vector γ such that the equation (1) is satisfied. We can further take $\gamma \in Q \simeq \mathbb{Z}^{\ell}$ by clearing the denominators. So, if $x \in \mathfrak{g}_{nil}^o$, then either x belongs to the center $Z(\mathfrak{g})$ of \mathfrak{g} or the root component $x_{\beta} \in \mathfrak{g}_{nil}^o$ for some root β ($\beta \neq 0$). (To prove this: if x belongs to the Cartan subalgebra \mathfrak{h} , then it will have to lie in $Z(\mathfrak{g})$ of \mathfrak{g} by [3], Proposition 1.6. But, if it does not lie in \mathfrak{h} , then, as observed in the beginning of the proof by making a choice of θ_x as above, $x_+(\theta_x) \in \mathfrak{g}_{nil}^o$ for the top degree component $x_+(\theta_x)$ of x in \mathbb{Z} -gradation θ_x of \mathfrak{g} .) Moreover, if some nonzero root component of x belongs to the root space \mathfrak{g}_{δ} such that δ contains an imaginary simple root δ_p (i.e., with $a_{p,p} \leq 0$) with nonzero coefficient, we can assume that $x_{\delta} \in \mathfrak{g}_{nil}^o$ (possibly with a different nonzero root component of x corresponding to a root containing an imaginary simple root with nonzero coefficient). This is achieved by taking γ as above but requiring $\theta_x(\alpha_p)$ to be much larger for all the imaginary simple roots α_q (i.e., those with $a_{q,q} = 2$).

By using the Cartan involution ω of \mathfrak{g} (i.e., $\omega(e_i) = -f_i, \omega(f_i) = -e_i, \omega(h) = -h \forall h \in \mathfrak{h}$), if needed, we can further assume that δ is a positive root. Write

$$\delta = \sum_{p} (m_p \alpha_p) + \sum_{q} (n_q \alpha_q), \text{ for } m_p, n_q \ge 0,$$

where α_p (resp. α_q) run over all the imaginary (resp. real) simple roots. In particular, some $m_p > 0$. By [3], Exercise 11.21, the support $\operatorname{supp}(\delta)$ is connected. Assume first that δ is not an imaginary simple root. Further, taking some W-translate (where W is the Weyl group of \mathfrak{g} , cf. [3], §11.13), we can assume that $\delta(\alpha_q^{\vee}) \leq 0$ for all the real simple coroots α_q^{\vee} (cf. [3], Identity 11.13.3). Now, with respect to the W-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ on \mathfrak{h}^* (cf. [3], §2.1),

$$\begin{aligned} \langle \delta, \delta \rangle &= \sum_{p} m_{p} \langle \delta, \alpha_{p} \rangle + \sum_{q} n_{q} \langle \delta, \alpha_{q} \rangle \\ &= \sum_{q} n_{q} \langle \delta, \alpha_{q} \rangle + \sum_{p,q} m_{p} n_{q} \langle \alpha_{q}, \alpha_{p} \rangle + \sum_{p,p'} m_{p} m_{p'} \langle \alpha_{p'}, \alpha_{p} \rangle, \end{aligned}$$
(2)

where $\alpha_{p'}$ also runs over imaginary simple roots. Now, by assumption,

 $\langle \delta, \alpha_q \rangle \le 0$, for all the real simple roots. (3)

For any imaginary simple root α_p and any real simple root α_q , we have

$$\langle \alpha_q, \alpha_p \rangle \le 0$$
, since $a_{p,q} \le 0$. (4)

Further, for imaginary simple roots $\alpha_p, \alpha_{p'}$,

$$\langle \alpha_{p'}, \alpha_p \rangle \le 0$$
, by [3], Identity 2.1.6. (5)

Observe that we can take the normalizing factor $\epsilon_i > 0$ for each $1 \le i \le \ell$ as can be seen from the identity:

$$\epsilon_i a_{i,j} = \epsilon_j a_{j,i}, \text{ for all } 1 \le i, j \le \ell,$$

where the diagonal matrix $D = \text{diag}(\epsilon_1, \dots, \epsilon_\ell)$ is such that DA is a symmetric matrix. Moreover, since there exists p with $m_p \neq 0$ and since $\text{supp } \delta$ is connected and δ is not a simple root, by [3], Identity 2.1.6,

 $\langle \alpha_{p'}, \alpha_p \rangle < 0$, for some $p' \neq p$ with $m_{p'} \neq 0$ and $\alpha_{p'}$ an imaginary simple root or $\langle \alpha_q, \alpha_p \rangle < 0$ for some q with $n_q \neq 0$ and α_q a real simple root. (6)

Thus, combining the equations (2) - (6), we get:

$$\langle \delta, \delta \rangle < 0.$$

By [3], Corollary 9.12, $\bigoplus_{k>0} \mathfrak{g}_{k\delta}$ is a free Lie algebra on a basis of the form $\bigoplus_{k>0} \mathfrak{g}_{k\delta}^o$, where

$$\mathfrak{g}_{k\delta}^{o} := \{x \in \mathfrak{g}_{k\delta} : \langle x, y \rangle = 0 \forall y \text{ in the Lie subalgebra generated by}$$

 $\mathfrak{g}_{-\delta}, \mathfrak{g}_{-2\delta}, \dots, \mathfrak{g}_{-(k-1)\delta}\}.$

Observe next that $\mathfrak{g}_{k\delta} \neq 0$ for any k > 0 by [3], Identity 11.13.3. If \mathfrak{g}_{δ} is one dimensional, then so is $\mathfrak{g}_{-\delta}$ and hence $\mathfrak{g}_{2\delta}^{o} \neq 0$. (To prove dim $\mathfrak{g}_{-\delta} = 1$, observe that, due to the existence of the Cartan involution, dim $\mathfrak{g}_{\beta} = \dim \mathfrak{g}_{-\beta}$ for any root β , cf. [3], Identity 1.3.5 and Theorem 11.13.1. Moreover, $\mathfrak{g}_{-\delta}$ being one dimensional, the Lie subalgebra of \mathfrak{g} generated by $\mathfrak{g}_{-\delta}$ is $\mathfrak{g}_{-\delta}$ itself. Thus, $\mathfrak{g}_{2\delta}^{o} \neq 0$ by the definition.) Thus, $\bigoplus_{k>0} \mathfrak{g}_{k\delta}$ is a free Lie algebra on at least 2 generators. If dim $\mathfrak{g}_{\delta} \geq 2$, then $\bigoplus_{k>0} \mathfrak{g}_{k\delta}$ is again a free Lie algebra on at least two generators (since $\mathfrak{g}_{\delta}^{o} = \mathfrak{g}_{\delta}$). Thus, $\mathfrak{al}(x_{\delta})$ can not act locally nilpotently on $\bigoplus_{k>0} \mathfrak{g}_{k\delta}$ and hence on \mathfrak{g} (since the enveloping algebra of a free Lie algebra is the tensor algebra on the same generators and now use [4], Identity (3) of Definition 1.3.2).

Now, let $\delta = \alpha_p$ be an imaginary simple root. Then, again $x_{\delta} = e_p$ can not act nilpotently on any e_i , $i \neq p$ such that $a_{i,p} \neq 0$. (This is where we have used the assumption that A is indecomposable and $\ell \geq 2$.) To prove this, use [3], Identity 11.13.3 by observing that $(n\alpha_p + \alpha_i) \in K$ for all $n \geq 2$ in the notation of [3].

Thus, we conclude that any $x \in \mathfrak{g}_{nil}^o$ must be of the form $x \in \mathfrak{g}(B) + \mathfrak{h}$. Hence,

$$\mathfrak{g}_{\operatorname{nil}} \subset \mathfrak{g}'(B) + \mathfrak{h}.$$

Further, by [4], Lemma 1.3.3(a) and the defining relations of $\mathfrak{g}(A)$, $e_i, f_i \in \mathfrak{g}_{nil}^o$ for any real simple root α_i . Thus,

$$\mathfrak{g}'(B) \subset \mathfrak{g}_{\operatorname{nil}}$$

This proves the theorem. $\hfill\square$

Remark 3.2. (a) Define

 $\mathfrak{g'}_{\mathrm{nil}}^{o} := \{x \in \mathfrak{g'} : \text{ ad } x \text{ acts locally nilpotently on } \mathfrak{g'}\}$

and let $\mathfrak{g'}_{nil} \subset \mathfrak{g'}$ be the Lie subalgebra generated by $\mathfrak{g'}_{nil}^o$. Then, by the same proof as above,

$$\mathfrak{g}'(B) \subset \mathfrak{g}'_{\mathrm{nil}} \subset (\mathfrak{g}'(B) + \mathfrak{h}) \cap \mathfrak{g}'.$$

(b) It is easy to see that the above theorem remains true in the case A is parameterized by $\mathbb{N} \times \mathbb{N}$.

(c) For the 1 × 1-matrix A = (0), following [3], §2.9, $\mathfrak{g}(A) = \mathfrak{h} \oplus \mathbb{C}e_1 \oplus \mathbb{C}f_1$, where $\mathfrak{h} = \mathbb{C}\alpha_1^{\vee} \oplus \mathbb{C}d$ and $[e_1, f_1] = \alpha_1^{\vee}, [\alpha_1^{\vee}, \mathfrak{g}] = 0, [d, e_1] = e_1, [d, f_1] = -f_1$. Thus, in this case, $\mathfrak{g}_{nil} = \mathfrak{g}'$. Hence, the assumption $\ell \geq 2$ in the above theorem is necessary in general.

(d) One interesting consequence of the above theorem is that the only connected 'reasonable' group attached to a GKM algebra $\mathfrak{g}(A)$ is the one coming from its subalgebra $\mathfrak{g}(B)$ (up to an \mathfrak{h} -factor).

References

- [1] R. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988) 501-512.
- [2] R. Borcherds, Central extensions of generalized Kac-Moody algebras, J. Algebra 140 (1991) 330–335.
- [3] V. Kac, Infinite Dimensional Lie Algebras (Third Edition), Cambridge University Press, 1990.
- [4] S. Kumar, Kac–Moody Groups, Their Flag Varieties and Representation Theory, Birkhäuser, 2002.