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1. Introduction

Let g = g(A) be the symmetrizable Generalized Kac-Moody (GKM) algebra associ-
ated to a ¢ x ¢ matrix A (cf. Section 2). Let

goy := {z € g: adz acts locally nilpotently on g},

and let gni C g be the Lie subalgebra generated by g2,,. Then, we prove the following
theorem (cf. Theorem 3.1):
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Theorem. Let g = g(A) be as above, where £ > 2 and A is indecomposable, i.e., the
corresponding Dynkin diagram is connected. Then,

g (B) Cgmi Cg'(B)+h,

where B C A is the submatriz parameterized by those i such that a; ; = 2, b is the Cartan
subalgebra and g'(B) is the derived subalgebra of g(B).

As shown in Remark 3.2, the assumption £ > 2 in the above theorem is necessary in
general.

Acknowledgments. We thank V. Kac for providing some references on generalized Kac-
Moody Lie algebras. We also acknowledge partial support from the NSF grant number
DMS-1802328.

2. Basic definition

In this section, we recall the definition of Borcherds Generalized Kac-Moody Lie alge-
bras g (for short GKM algebras). For a more extensive treatment of g and its properties,
see Chapters 1, 11 of [3] and the papers [1] and [2].

Definition 2.1. Let A = (a; ;) be a ¢ x £ matrix (for £ > 1) with real entries, satisfying
the following properties:

(Pl) either ai,i — 2 or ai,i S O7
(P2) a;; <0ifi#j,and a;; € Z if a;; =2,
(P3) a;; =0 if and only if a;; =0.

Fix a realization of A, which is a triple (h,II,IIV) consisting of a complex vector
space b, II = {ai,...,ar} C b* and IIV = {of,...,a)} C b are indexed subsets,
satisfying the following three conditions:

(Q1) both sets II and IIV are linearly independent,
(Q2) aj(e)) =ay,, for all 4,7,
(Q3) ¢ —rank A = dimb — ¢.

By [3], Proposition 1.1, such a realization is unique up to an isomorphism of the triple.

Now, the Borcherds Generalized Kac-Moody Lie algebra (for short GKM algebra)
g(A) is defined as the Lie algebra generated by {e;, fi, h}1<i<e subject to the following
relations:

(R1) les, f;] = dijery, for all 4,
(R2) [h,h'] =0, for all h,h’ € b,
(R3) [h,ei] = a;(h)es; [h, fi] = —ai(h)fi, for all 1 <4 < ¢ and h € b,
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(R4) (ade;)!™%ie; = (ad fi)' 7% f; =0, if a;; = 2 and i # j,
(R5) [61',6]'] = [fl,fj] = O, if Qi3 = 0.

The matrix A (or the Lie algebra g(A)) is called symmetrizable if there exists an
invertible diagonal matrix D = diag(eq, ..., €¢) such that the matrix DA is symmetric.

3. Main theorem and its proof

Theorem 3.1. Let g = g(A) be the symmetrizable GKM algebra associated to a ¢ x ¢
matrixz A as in the last section. Assume further that £ > 2 and A is indecomposable, i.e.,
the corresponding Dynkin diagram is connected. Let

g0 :={z € g: adz acts locally nilpotently on g},

and let gnii C g be the Lie subalgebra generated by g2,. Then,

g'(B) C g Cg'(B)+h,

where B C A is the submatriz parameterized by those i such that a; = 2, i.e., a; s a
real root and g'(B) is the derived subalgebra of g(B).

Proof. Consider the Z-gradation of g induced from a homomorphism 6 : Q := ®; Za; —
Z. Then, for any = € g%, x4+(0) € g%, where x () is the top degree component of z in
the Z-gradation of g induced by 6. To prove this, observe that for any y € g, (where g,
is the root space corresponding to the root « or 0),

(adz)"(y) = (ad 24+ (0))"(y) + lower degree terms.

Similarly, for x € g%, z_(6) € g2;, where z_(0) is the lowest degree component of x.

Further, given any nonzero x € g, we can get a gradation 0, : Q — Z as above
(depending upon z) such that all the homogeneous degree components of x (under 6,,)
belong to root spaces gg. To prove this, write z = Zj xp;, where 3; are distinct roots or
zero, 2, € gp, and each 23, # 0. Consider the finite collection of weights: {; — Bk }j.x C
h*. Now, we can find a vector v = v, € QY = Q ®z Q such that for the standard dot
product (-,-) in Qf,

0.(8; — Br) == (Bj — Br,7) # 0, for any j # k. (1)

To prove the above equation, consider the (¢ — 1)-dimensional subspace V;  C Q* (for
any j # k) perpendicular to 5; — Bi. Since the collection {8; — Bx} ;= is finite, we can
find a vector v such that the equation (1) is satisfied. We can further take v € Q ~ Z*
by clearing the denominators.
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So, if x € g9, then either x belongs to the center Z(g) of g or the root component
xg € g2, for some root 8 (8 # 0). (To prove this: if x belongs to the Cartan subalgebra
b, then it will have to lie in Z(g) of g by [3], Proposition 1.6. But, if it does not lie in
b, then, as observed in the beginning of the proof by making a choice of 6, as above,
x4(05) € g2 for the top degree component x4 (6,) of z in Z-gradation 8, of g.) Moreover,
if some nonzero root component of x belongs to the root space gs such that § contains
an imaginary simple root d, (i.e., with a, , < 0) with nonzero coefficient, we can assume
that x5 € g%, (possibly with a different nonzero root component of z corresponding to a
root containing an imaginary simple root with nonzero coefficient). This is achieved by
taking 7 as above but requiring 6,(c,) to be much larger for all the imaginary simple
roots «, as compared to the values 6;(cy) for all the real simple roots oy (i.e., those
with a4, = 2).

By using the Cartan involution w of g (i.e., w(e;) = —fi,w(fi) = —e;,w(h) = —hVh €
h), if needed, we can further assume that § is a positive root. Write

0= Z(mpap) + Z(nqaq), for my,ng > 0,

p q

where «, (resp. ay) run over all the imaginary (resp. real) simple roots. In particular,
some m,, > 0. By [3], Exercise 11.21, the support supp(d) is connected. Assume first that
 is not an imaginary simple root. Further, taking some W-translate (where W is the
Weyl group of g, cf. [3], §11.13), we can assume that §(ay) < 0 for all the real simple

coroots a, (cf. [3], Identity 11.13.3). Now, with respect to the W-invariant symmetric

bilinear form (-, -) on h* (cf. [3], §2.1),
(6,6) = Z mp<67 ap> + Z nQ<6’ QQ>

= Z nq(0, orq) + Z mpng oy, op) + Z MMy (Qpr, Q) (2)

g p,p’

where «a; also runs over imaginary simple roots. Now, by assumption,
(0, ) <0, for all the real simple roots. (3)
For any imaginary simple root o, and any real simple root a,, we have
(ag, ap) <0, since apq < 0. (4)
Further, for imaginary simple roots a,, oy,
(g, ap) <0, by [3], Identity 2.1.6. (5)

Observe that we can take the normalizing factor €; > 0 for each 1 <4 < £ as can be seen
from the identity:
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€aij = €5a;4, forall 1 <4,7 < ¢,

where the diagonal matrix D = diag(eq, -, €¢) is such that DA is a symmetric matrix.
Moreover, since there exists p with m, # 0 and since supp ¢ is connected and ¢ is not a
simple root, by [3], Identity 2.1.6,

{apr, ap) < 0, for some p’ # p with my # 0 and o, an imaginary simple root

or {ag,a,) < 0 for some g with ny # 0 and a4 a real simple root. (6)
Thus, combining the equations (2) - (6), we get:
(6,0) < 0.

By [3], Corollary 9.12, @0 gks is a free Lie algebra on a basis of the form @~ g%s,
where

975 = {2 € grs : (x,y) = OVy in the Lie subalgebra generated by
9-6,9-26,--- agf(krfl)5}'

Observe next that ggs # 0 for any k& > 0 by [3], Identity 11.13.3. If g5 is one dimensional,
then so is g_s and hence g35; # 0. (To prove dimg_s = 1, observe that, due to the
existence of the Cartan involution, dimgg = dimg_g for any root 8, cf. [3], Identity
1.3.5 and Theorem 11.13.1. Moreover, g_s being one dimensional, the Lie subalgebra of
g generated by g_s is g_; itself. Thus, g3; # 0 by the definition.) Thus, ®r>o grs is a
free Lie algebra on at least 2 generators. If dimgs > 2, then @®p~ogrs is again a free
Lie algebra on at least two generators (since g§ = g5). Thus, ad(zs) can not act locally
nilpotently on @y~ grs and hence on g (since the enveloping algebra of a free Lie algebra
is the tensor algebra on the same generators and now use [4], Identity (3) of Definition
1.3.2).

Now, let 0 = oy, be an imaginary simple root. Then, again x5 = e, can not act nilpo-
tently on any e;, ¢ # p such that a;, # 0. (This is where we have used the assumption
that A is indecomposable and ¢ > 2.) To prove this, use [3], Identity 11.13.3 by observing
that (noy, + ;) € K for all n > 2 in the notation of [3].

Thus, we conclude that any = € g2,, must be of the form x € g(B) + h. Hence,

Onil C g/(B) + h

Further, by [4], Lemma 1.3.3(a) and the defining relations of g(A4), e;, f; € g2, for any
real simple root a;. Thus,

g/<B) C Gnil-

This proves the theorem. O
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Remark 3.2. (a) Define

g0 = {z €¢ : adz acts locally nilpotently on g’}
and let g’,;) C g’ be the Lie subalgebra generated by g’v:. Then, by the same proof as
above,

g'(B) Cgpy C (¢'(B)+h)Nyg'.

(b) It is easy to see that the above theorem remains true in the case A is parameterized
by N x N.

(c) For the 1 x l-matrix A = (0), following [3], §2.9, g(A) = h & Cey @ C f1, where
h=CaY®Cdand [e1, f1] = o, [a),g] =0, [d,e1] = e1,[d, f1] = —f1. Thus, in this case,
gni1 = ¢'. Hence, the assumption ¢ > 2 in the above theorem is necessary in general.

(d) One interesting consequence of the above theorem is that the only connected
‘reasonable’ group attached to a GKM algebra g(A) is the one coming from its subalgebra
g(B) (up to an h-factor).
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