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We determine the Lie subalgebra gnil of a Borcherds sym-
metrizable generalized Kac-Moody Lie algebra g generated 
by ad-locally nilpotent elements and show that it is ‘essential-
ly’ the same as the Levi subalgebra of g with its simple roots 
precisely the real simple roots of g.
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1. Introduction

Let g = g(A) be the symmetrizable Generalized Kac-Moody (GKM) algebra associ-
ated to a � × � matrix A (cf. Section 2). Let

gonil := {x ∈ g : adx acts locally nilpotently on g},

and let gnil ⊂ g be the Lie subalgebra generated by gonil. Then, we prove the following 
theorem (cf. Theorem 3.1):
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Theorem. Let g = g(A) be as above, where � ≥ 2 and A is indecomposable, i.e., the 
corresponding Dynkin diagram is connected. Then,

g′(B) ⊂ gnil ⊂ g′(B) + h,

where B ⊂ A is the submatrix parameterized by those i such that ai,i = 2, h is the Cartan 
subalgebra and g′(B) is the derived subalgebra of g(B).

As shown in Remark 3.2, the assumption � ≥ 2 in the above theorem is necessary in 
general.

Acknowledgments. We thank V. Kac for providing some references on generalized Kac-
Moody Lie algebras. We also acknowledge partial support from the NSF grant number 
DMS-1802328.

2. Basic definition

In this section, we recall the definition of Borcherds Generalized Kac-Moody Lie alge-
bras g (for short GKM algebras). For a more extensive treatment of g and its properties, 
see Chapters 1, 11 of [3] and the papers [1] and [2].

Definition 2.1. Let A = (ai,j) be a � × � matrix (for � ≥ 1) with real entries, satisfying 
the following properties:

(P1) either ai,i = 2 or ai,i ≤ 0,
(P2) ai,j ≤ 0 if i �= j, and ai,j ∈ Z if ai,i = 2,
(P3) ai,j = 0 if and only if aj,i = 0.

Fix a realization of A, which is a triple (h, Π, Π∨) consisting of a complex vector 
space h, Π = {α1, . . . , α�} ⊂ h∗ and Π∨ = {α∨

1 , . . . , α
∨
� } ⊂ h are indexed subsets, 

satisfying the following three conditions:

(Q1) both sets Π and Π∨ are linearly independent,
(Q2) αj(α∨

i ) = ai,j , for all i, j,
(Q3) � − rankA = dim h − �.

By [3], Proposition 1.1, such a realization is unique up to an isomorphism of the triple.
Now, the Borcherds Generalized Kac-Moody Lie algebra (for short GKM algebra) 

g(A) is defined as the Lie algebra generated by {ei, fi, h}1≤i≤� subject to the following 
relations:

(R1) [ei, fj ] = δijα∨
i , for all i,

(R2) [h, h′] = 0, for all h, h′ ∈ h,
(R3) [h, ei] = αi(h)ei; [h, fi] = −αi(h)fi, for all 1 ≤ i ≤ � and h ∈ h,
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(R4) (ad ei)1−ai,jej = (ad fi)1−ai,jfj = 0, if ai,i = 2 and i �= j,
(R5) [ei, ej ] = [fi, fj ] = 0, if ai,j = 0.

The matrix A (or the Lie algebra g(A)) is called symmetrizable if there exists an 
invertible diagonal matrix D = diag(ε1, . . . , ε�) such that the matrix DA is symmetric.

3. Main theorem and its proof

Theorem 3.1. Let g = g(A) be the symmetrizable GKM algebra associated to a � × �

matrix A as in the last section. Assume further that � ≥ 2 and A is indecomposable, i.e., 
the corresponding Dynkin diagram is connected. Let

gonil := {x ∈ g : adx acts locally nilpotently on g},

and let gnil ⊂ g be the Lie subalgebra generated by gonil. Then,

g′(B) ⊂ gnil ⊂ g′(B) + h,

where B ⊂ A is the submatrix parameterized by those i such that aii = 2, i.e., αi is a 
real root and g′(B) is the derived subalgebra of g(B).

Proof. Consider the Z-gradation of g induced from a homomorphism θ : Q := ⊕i Zαi →
Z. Then, for any x ∈ gonil, x+(θ) ∈ gonil, where x+(θ) is the top degree component of x in 
the Z-gradation of g induced by θ. To prove this, observe that for any y ∈ gα (where gα
is the root space corresponding to the root α or 0),

(adx)n(y) = (adx+(θ))n(y) + lower degree terms.

Similarly, for x ∈ gonil, x−(θ) ∈ gonil, where x−(θ) is the lowest degree component of x.
Further, given any nonzero x ∈ g, we can get a gradation θx : Q → Z as above 

(depending upon x) such that all the homogeneous degree components of x (under θx) 
belong to root spaces gβ. To prove this, write x =

∑
j xβj

, where βj are distinct roots or 
zero, xβj

∈ gβj
and each xβj

�= 0. Consider the finite collection of weights: {βj−βk}j �=k ⊂
h∗. Now, we can find a vector γ = γx ∈ Q� = Q ⊗Z Q such that for the standard dot 
product (·, ·) in Q�,

θx(βj − βk) := (βj − βk, γ) �= 0, for any j �= k. (1)

To prove the above equation, consider the (� − 1)-dimensional subspace Vj,k ⊂ Q� (for 
any j �= k) perpendicular to βj − βk. Since the collection {βj − βk}j �=k is finite, we can 
find a vector γ such that the equation (1) is satisfied. We can further take γ ∈ Q 
 Z�

by clearing the denominators.
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So, if x ∈ gonil, then either x belongs to the center Z(g) of g or the root component 
xβ ∈ gonil for some root β (β �= 0). (To prove this: if x belongs to the Cartan subalgebra 
h, then it will have to lie in Z(g) of g by [3], Proposition 1.6. But, if it does not lie in 
h, then, as observed in the beginning of the proof by making a choice of θx as above, 
x+(θx) ∈ gonil for the top degree component x+(θx) of x in Z-gradation θx of g.) Moreover, 
if some nonzero root component of x belongs to the root space gδ such that δ contains 
an imaginary simple root δp (i.e., with ap,p ≤ 0) with nonzero coefficient, we can assume 
that xδ ∈ gonil (possibly with a different nonzero root component of x corresponding to a 
root containing an imaginary simple root with nonzero coefficient). This is achieved by 
taking γ as above but requiring θx(αp) to be much larger for all the imaginary simple 
roots αp as compared to the values θx(αq) for all the real simple roots αq (i.e., those 
with aq,q = 2).

By using the Cartan involution ω of g (i.e., ω(ei) = −fi, ω(fi) = −ei, ω(h) = −h ∀h ∈
h), if needed, we can further assume that δ is a positive root. Write

δ =
∑

p

(mpαp) +
∑

q

(nqαq), for mp, nq ≥ 0,

where αp (resp. αq) run over all the imaginary (resp. real) simple roots. In particular, 
some mp > 0. By [3], Exercise 11.21, the support supp(δ) is connected. Assume first that 
δ is not an imaginary simple root. Further, taking some W -translate (where W is the 
Weyl group of g, cf. [3], §11.13), we can assume that δ(α∨

q ) ≤ 0 for all the real simple 
coroots α∨

q (cf. [3], Identity 11.13.3). Now, with respect to the W -invariant symmetric 
bilinear form 〈·, ·〉 on h∗ (cf. [3], §2.1),

〈δ, δ〉 =
∑

p

mp〈δ, αp〉 +
∑

q

nq〈δ, αq〉

=
∑

q

nq〈δ, αq〉 +
∑

p,q

mpnq〈αq, αp〉 +
∑

p,p′

mpmp′〈αp′ , αp〉, (2)

where αp′ also runs over imaginary simple roots. Now, by assumption,

〈δ, αq〉 ≤ 0, for all the real simple roots. (3)

For any imaginary simple root αp and any real simple root αq, we have

〈αq, αp〉 ≤ 0, since ap,q ≤ 0. (4)

Further, for imaginary simple roots αp, αp′ ,

〈αp′ , αp〉 ≤ 0, by [3], Identity 2.1.6. (5)

Observe that we can take the normalizing factor εi > 0 for each 1 ≤ i ≤ � as can be seen 
from the identity:
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εiai,j = εjaj,i, for all 1 ≤ i, j ≤ �,

where the diagonal matrix D = diag(ε1, · · · , ε�) is such that DA is a symmetric matrix. 
Moreover, since there exists p with mp �= 0 and since supp δ is connected and δ is not a 
simple root, by [3], Identity 2.1.6,

〈αp′ , αp〉 < 0, for some p′ �= p with mp′ �= 0 and αp′ an imaginary simple root

or 〈αq, αp〉 < 0 for some q with nq �= 0 and αq a real simple root. (6)

Thus, combining the equations (2) - (6), we get:

〈δ, δ〉 < 0.

By [3], Corollary 9.12, ⊕k>0 gkδ is a free Lie algebra on a basis of the form ⊕k>0 g
o
kδ, 

where

gokδ := {x ∈ gkδ : 〈x, y〉 = 0∀y in the Lie subalgebra generated by

g−δ, g−2δ, . . . , g−(k−1)δ}.

Observe next that gkδ �= 0 for any k > 0 by [3], Identity 11.13.3. If gδ is one dimensional, 
then so is g−δ and hence go2δ �= 0. (To prove dim g−δ = 1, observe that, due to the 
existence of the Cartan involution, dim gβ = dim g−β for any root β, cf. [3], Identity 
1.3.5 and Theorem 11.13.1. Moreover, g−δ being one dimensional, the Lie subalgebra of 
g generated by g−δ is g−δ itself. Thus, go2δ �= 0 by the definition.) Thus, ⊕k>0 gkδ is a 
free Lie algebra on at least 2 generators. If dim gδ ≥ 2, then ⊕k>0 gkδ is again a free 
Lie algebra on at least two generators (since goδ = gδ). Thus, ad(xδ) can not act locally 
nilpotently on ⊕k>0 gkδ and hence on g (since the enveloping algebra of a free Lie algebra 
is the tensor algebra on the same generators and now use [4], Identity (3) of Definition 
1.3.2).

Now, let δ = αp be an imaginary simple root. Then, again xδ = ep can not act nilpo-
tently on any ei, i �= p such that ai,p �= 0. (This is where we have used the assumption 
that A is indecomposable and � ≥ 2.) To prove this, use [3], Identity 11.13.3 by observing 
that (nαp + αi) ∈ K for all n ≥ 2 in the notation of [3].

Thus, we conclude that any x ∈ gonil must be of the form x ∈ g(B) + h. Hence,

gnil ⊂ g′(B) + h.

Further, by [4], Lemma 1.3.3(a) and the defining relations of g(A), ei, fi ∈ gonil for any 
real simple root αi. Thus,

g′(B) ⊂ gnil.

This proves the theorem. �
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Remark 3.2. (a) Define

g′
o
nil := {x ∈ g′ : adx acts locally nilpotently on g′}

and let g′nil ⊂ g′ be the Lie subalgebra generated by g′onil. Then, by the same proof as 
above,

g′(B) ⊂ g′nil ⊂ (g′(B) + h) ∩ g′.

(b) It is easy to see that the above theorem remains true in the case A is parameterized 
by N ×N.

(c) For the 1 × 1-matrix A = (0), following [3], §2.9, g(A) = h ⊕ Ce1 ⊕ Cf1, where 
h = Cα∨

1 ⊕Cd and [e1, f1] = α∨
1 , [α∨

1 , g] = 0, [d, e1] = e1, [d, f1] = −f1. Thus, in this case, 
gnil = g′. Hence, the assumption � ≥ 2 in the above theorem is necessary in general.

(d) One interesting consequence of the above theorem is that the only connected 
‘reasonable’ group attached to a GKM algebra g(A) is the one coming from its subalgebra 
g(B) (up to an h-factor).
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