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POSITIVITY IN T -EQUIVARIANT K-THEORY OF FLAG

VARIETIES ASSOCIATED TO KAC-MOODY GROUPS II

SETH BALDWIN AND SHRAWAN KUMAR

Abstract. We prove sign-alternation of the structure constants in the basis
of the structure sheaves of opposite Schubert varieties in the torus-equivariant
Grothendieck group of coherent sheaves on the flag varieties G/P associated
to an arbitrary symmetrizable Kac-Moody group G, where P is any parabolic
subgroup. This generalizes the work of Anderson-Griffeth-Miller from the finite
case to the general Kac-Moody case, and affirmatively answers a conjecture of
Lam-Schilling-Shimozono regarding the signs of the structure constants in the
case of the affine Grassmannian.

1. Introduction

Let G be any symmetrizable Kac-Moody group over C completed along the
negative roots and Gmin ⊂ G the minimal Kac-Moody group as in [Ku2, §7.4].
Let B be the standard (positive) Borel subgroup, B− the standard negative Borel
subgroup, H = B ∩B− the standard maximal torus, and W the Weyl group [Ku2,
Chapter 6]. Let X̄ = G/B be the ‘thick’ flag variety (introduced by Kashiwara)
which contains the standard flag variety X = Gmin/B. Let T be the adjoint torus,
i.e., T := H/Z(Gmin), where Z(Gmin) denotes the center of Gmin, and let R(T )
denote the representation ring of T . For any w ∈ W , we have the Schubert cell
Cw := BwB/B ⊂ X, the Schubert variety Xw := Cw ⊂ X, the opposite Schubert
cell Cw := B−wB/B ⊂ X̄, and the opposite Schubert variety Xw := Cw ⊂ X̄.
When G is a (finite dimensional) semisimple group, it is referred to as the finite
case.

Let K0
T (X̄) denote the Grothendieck group of T -equivariant coherent sheaves on

X̄. Then, {[OXw ]}w∈W forms an R(T )-‘basis’ of K0
T (X̄) (where infinite sums are

allowed), i.e., K0
T (X̄) =

∏
w∈W R(T )[OXw ]. We express the product in K0

T (X̄) by:

[OXu ] · [OXv ] =
∑
w∈W

dwu,v[OXw ], for unique dwu,v ∈ R(T ).

The following result is our main theorem (cf. Theorem 5.3). This was conjectured
first by Griffeth-Ram [GR] in the finite case (2004), proven in the finite case by
Anderson-Griffeth-Miller [AGM] (2011), and then conjectured in the general Kac-
Moody case by Kumar [Ku1] (2012).

Theorem 1.1. For any u, v, w ∈ W ,

(−1)�(w)+�(u)+�(v)dwu,v ∈ Z≥0[(e
−α1 − 1), . . . , (e−αr − 1)],

where {α1 . . . , αr} are the simple roots.
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Let P be any standard parabolic subgroup ofG of finite type (cf. [Ku2, Definition
6.1.18]). (Recall that a parabolic subgroup is said to be of finite type if its Levi
subgroup is finite dimensional.) We may express, in K0

T (G/P ),

[OXu
P
] · [OXv

P
] =

∑
w∈WP

dwu,v(P )[OXw
P
], for unique dwu,v(P ) ∈ R(T ),

where WP is the set of minimal length representatives of W/WP , WP is the Weyl

group of P , and Xw
P := B−wP/P ⊂ G/P is the opposite Schubert variety.

Let π : G/B → G/P be the standard (T -equivariant) projection. Then, π is a
locally trivial fibration (with fiber the smooth projective variety P/B) and hence
flat (cf. [Ku2, Chapter 7]). Thus, we have

π∗[OXw
P
] = [Oπ−1(Xw

P )] = [OXw ].

Since π∗ : K0
T (G/P ) → K0

T (G/B) is a ring homomorphism, we have dwu,v = dwu,v(P )

for any u, v, w ∈ WP and hence Theorem 1.1 immediately generalizes from the case
of G/B to the case of G/P , and we obtain:

Theorem 1.2. For any standard parabolic subgroup P of G of finite type, and any
u, v, w ∈ WP ,

(−1)�(w)+�(u)+�(v)dwu,v(P ) ∈ Z≥0[(e
−α1 − 1), . . . , (e−αr − 1)].

Theorems 1.1 and 1.2 also apply to ordinary (non-equivariant) K-theory. Let
K0(X̄) denote the Grothendieck group of coherent sheaves on X̄. Then, we have
K0(X̄) =

∏
w∈W Z[OXw ]. Further, the map

Z⊗R(T ) K
0
T (X̄) → K0(X̄), 1⊗ [OXw ] �→ [OXw ],

is an isomorphism, where we view Z as an R(T )-module via evaluation at 1. Similar
results apply to G/P .

Write, in K0(G/P ), for u, v ∈ WP ,

[OXu
P
] · [OXv

P
] =

∑
w∈WP

awu,v(P )[OXw
P
], for unique awu,v(P ) ∈ Z.

Then, by the above, along with Theorem 1.2 we have:

Theorem 1.3. For any standard parabolic subgroup P of G of finite type, and any
u, v, w ∈ WP ,

(−1)�(w)+�(u)+�(v)awu,v(P ) ∈ Z≥0.

The following conjecture of Lam-Schilling-Shimozono [LSS, Conjectures 7.20 (ii)
and 7.21 (iii)] is a special case of Theorem 1.3:

Let G = ŜLN be the affine Kac-Moody group associated to SLN , and let P
be its standard maximal parabolic subgroup. Let X̄ = G/P be the corresponding
infinite Grassmannian. Then, K0(X̄ ) has the structure sheaf ‘basis’ {[OXu ]}u∈WP

over Z, where W is the (affine) Weyl group of G and WP is the set of minimal coset
representatives in W/Wo (Wo being the finite Weyl group of SLN ). Write, for any
u, v ∈ WP ,

[OXu ] · [OXv ] =
∑

w∈WP

bwu,v[OXw ], for unique integers bwu,v.
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Then, the following is a special case of Theorem 1.3:

Corollary 1.4 (Conjectured by Lam-Schilling-Shimozono).

(−1)�(u)+�(v)+�(w)bwu,v ∈ Z≥0.

The proof of Theorem 1.1 follows closely the work of Anderson-Griffeth-Miller
[AGM] and Kumar [Ku1]; though several technical details had to be carefully ad-
dressed, e.g., Proposition 7.7 proving the rational singularities of Z. LettingKT

0 (X)
denote the Grothendieck group of finitely supported T -equivariant coherent sheaves
on X, there is a natural pairing

〈 , 〉 : K0
T (X̄)⊗KT

0 (X) → R(T ),

coming from the T -equivariant Euler-Poincaré characteristic (cf. (1)). Under this
pairing, the bases {[OXu ]} ofK0

T (X̄) and {[ξw]} ofKT
0 (X) are dual (cf. Proposition

3.10), where ξw := OXw
(−∂Xw) and ∂Xw := Xw\Cw. (By Lemma 3.5, ξw is indeed

a basis of KT
0 (X).)

Then, realizing the product structure constants inK0
T (X̄) as the coproduct struc-

ture constants of the dual basis in KT
0 (X) (cf. Lemma 4.2) allows the use of the

above pairing and duality to express the structure constants in terms of certain
cohomology groups. Following [AGM], we introduce the ‘mixing space’ XP, which
is a bundle over a product of projective spaces P with fiber X. This allows for
the reduction from T -equivariant K-theory to non-equivariant K-theory. Then, we
introduce the ‘mixing group’ Γ (cf. Definition 4.11) whose action is sufficient to
ensure a certain transverality needed to prove our main result.

Theorem 5.1 is our main technical result. Part a) allows the structure constants
to be realized as the Euler characteristic of a certain sheaf, while part b) shows that
this sheaf has cohomology which is zero in all but a single term of known degree,
immediately resulting in a determination of the sign of the Euler characteristic and
hence the structure constants.

Part a) of Theorem 5.1 is proved in Section 6. The proof relies on some local
T or vanishing results which were proven in [Ku1], as well as a reduction to finite
dimensional schemes, where a transversality result due to Sierra is crucially used
(cf. Theorem 6.1).

The proof of the more difficult part b) of Theorem 5.1 is the content of Sections
7 through 9. In Section 7 we introduce the crucial scheme Z which comes with a

projection to the mixing group Γ. We also introduce a desingularization Z̃ of Z and
prove that Z is irreducible, normal and has rational singularities (cf. Propositions
7.5 and 7.7). We further introduce the divisor ∂Z ⊂ Z which is shown to be Cohen-
Macaulay (cf. Proposition 7.8). It is on the fibers of the projection π : Z → Γ that
the computation of the cohomology of the previously mentioned sheaf occurs.

In Section 8 the rational singularities of Z are used to apply a relative ver-
sion of the Kawamata-Viehweg vanishing theorem (cf. Theorem 8.1) to show that
Riπ∗ωZ(∂Z) = 0 for all i > 0 (cf. Corollary 8.8). Finally, in Section 9, this van-
ishing of the higher direct images along with the semicontinuity theorem is used
to prove vanishing of the relevant cohomology along the fibers of π : Z → Γ (cf.
Theorem 9.2) and thus conclude the proof of part b) of Theorem 5.1.
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2. Notation

We work over the field C of complex numbers. By a variety we mean an algebraic
variety over C which is reduced, but not necessarily irreducible.

Let G be any symmetrizable Kac-Moody group over C completed along the
negative roots (as opposed to completed along the positive roots as in [Ku2, Chap-
ter 6]) and Gmin ⊂ G the minimal Kac-Moody group as in [Ku2, §7.4]. Let B be
the standard (positive) Borel subgroup, B− the standard negative Borel subgroup,
H = B∩B− the standard maximal torus, and W the Weyl group [Ku2, Chapter 6].
Let

X̄ = G/B

be the ‘thick’ flag variety which contains the standard flag variety X = Gmin/B.
If G is not of finite type, X̄ is an infinite dimensional non-quasi-compact scheme

[K, §4] and X is an ind-projective variety [Ku2, §7.1]. The group Gmin and, in
particular, the maximal torus H acts on X̄ and X.

Let T be the adjoint torus, i.e., T := H/Z(Gmin), where Z(Gmin) denotes the
center of Gmin. (Recall that by [Ku2, Lemma 6.2.9(c)], Z(Gmin) = {h ∈ H :
eαi(h) = 1 for all the simple roots αi}.) Then, the action of H on X̄ (and on X)
descends to an action of T .

For any w ∈ W , we have the Schubert cell

Cw := BwB/B ⊂ X,

the Schubert variety

Xw := Cw =
⊔

w′≤w

Cw′ ⊂ X,

the opposite Schubert cell

Cw := B−wB/B ⊂ X̄,

and the opposite Schubert variety

Xw := Cw =
⊔

w′≥w

Cw′ ⊂ X̄,

all endowed with the reduced subscheme structures. Then, Xw is a (finite di-
mensional) irreducible projective subvariety of X and Xw is a finite codimen-
sional irreducible subscheme of X̄ [Ku2, §7.1] and [K, §4]. We denote by Zw the
Bott-Samelson-Demazure-Hansen (BSDH) variety as in [Ku2, §7.1.3], which is a
B-equivariant desingularization of Xw [Ku2, Proposition 7.1.15]. Further, Xw is
normal, Cohen-Macaulay (CM for short) and has rational singularities [Ku2, The-
orem 8.2.2].

We also define the boundary of the Schubert variety by

∂Xw := Xw \ Cw

with the reduced subscheme structure. Then, ∂Xw is pure of codimension 1 in Xw

and is CM (See the proof of Proposition 7.8).
For any u ≤ w, we have the Richardson variety

Xu
w := Xu ∩Xw ⊂ X
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endowed with the reduced subvariety structure. By [Ku1, Proposition 6.6], Xu
w

is irreducible, normal and CM. We denote by Zu
w the T -equivariant desingulariza-

tion of Xu
w as in [Ku1, Theorem 6.8]. By [KuS, Theorem 3.1], Xu

w has rational
singularities (in fact it has Kawamata log terminal singularities).

We denote the representation ring of T by R(T ). Let {α1, . . . , αr} ⊂ h∗ be the
set of simple roots, {α∨

1 , . . . , α
∨
r } ⊂ h the set of simple coroots, and {s1, . . . , sr}

the corresponding set of simple reflections, where h := Lie(H). Let ρ ∈ h∗ be any
integral weight satisfying

ρ(α∨
i ) = 1, for all 1 ≤ i ≤ r.

When G is a finite dimensional semisimple group, ρ is unique, but for a general
Kac-Moody group G, it may not be unique.

For any integral weight λ let Cλ denote the one-dimensional representation of
H on C given by h · v = λ(h)v for h ∈ H, v ∈ C. By extending this action to B we
may define, for any integral weight λ, the G-equivariant line bundle L(λ) on X̄ by

L(λ) := G×B C−λ,

where, for any representation V of B, G×B V := (G× V )/B and B acts on G×V
via (g, v) · b = (gb, b−1v) for g ∈ G, v ∈ V, b ∈ B. Then, G×B V is the total space
of a G-equivariant vector bundle over X, with projection given by (g, v)B �→ gB.
We also define the bundle

eλ := X̄ × Cλ,

which while trivial when viewed as a non-equivariant line bundle, is equivariantly
non-trivial with the diagonal action of H.

3. The Grothendieck group

For a quasi-compact scheme Y , an OY -module is called coherent if it is finitely
presented as an OY -module and any OY -submodule of finite type admits a finite
presentation.

A subset S ⊂ W is called an ideal if for all x ∈ S and y ≤ x we have y ∈ S. We
say that an OX̄ -module S is coherent if S|V S is a coherent OV S -module for every
finite ideal S ⊂ W , where V S is the quasi-compact open subset of X̄ defined by

V S :=
⋃
w∈S

wU−B/B, where U− := [B−, B−].

LetK0
T (X̄) denote the Grothendieck group of T -equivariant coherentOX̄ -modules.

Since the coherence condition on S is imposed only for S|V S for finite ideals S ⊂ W ,
K0

T (X̄) can be thought of as the inverse limit of K0
T (V

S) as S varies over all finite
ideals of W (cf. [KS, §2]).

We define
KT

0 (X) := Limitn→∞KT
0 (Xn),

where {Xn}n≥1 is the filtration of X giving the ind-projective variety structure and
KT

0 (Xn) is the Grothendieck group of T -equivariant coherent sheaves on Xn.
For any u ∈ W , OXu is a coherent OX̄ -module by [KS, §2]. From [KS, comment

after Remark 2.4] we have:

Lemma 3.1. {[OXu ]} forms a basis of K0
T (X̄) as an R(T )-module (where we allow

arbitrary infinite sums).

Lemma 3.2. {[OXw
]} forms a basis of KT

0 (X) as an R(T )-module.
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Proof. This follows from [CG, §5.2.14 and Theorem 5.4.17]. �
The following lemma is due to Kashiwara-Shimozono [KS, Lemma 8.1].

Lemma 3.3. Any T -equivariant coherent sheaf S on V u admits a free resolution
in CohT (OV u):

0 → Sn ⊗OV u → · · · → S1 ⊗OV u → S0 ⊗OV u → S → 0,

where Sk are finite dimensional T -modules, V u := uU−B/B ⊂ X̄, and CohT (OV u)
denotes the abelian category of T -equivariant coherent OV u-modules.

We define a pairing

(1) 〈 , 〉 : K0
T (X̄)⊗KT

0 (X) → R(T ),

〈[S], [F ]〉 =
∑
i

(−1)iχT (Xn,T or
OX̄
i (S,F)),

where S is a T -equivariant coherent sheaf on X̄ and F is a T -equivariant coherent
sheaf on X supported on Xn for some n, where χT represents the T -equivariant
Euler-Poincaré characteristic. By [Ku1, Lemma 3.5] this is well defined.

Definition 3.4. We define ξw to be the ideal sheaf of ∂Xw in Xw, where ∂Xw is
given the reduced subscheme structure:

ξw := OXw
(−∂Xw).

Lemma 3.5. {[ξw]} forms a basis of KT
0 (X) as an R(T )-module.

Proof. This follows since [ξw] = [OXw
] +

∑
w′<w rw′ [OXw′ ], for some rw′ ∈ R(T )

and the fact that [OXw
] is a basis of KT

0 (X) (cf. Lemma 3.2). �
Proposition 3.6. ωXw

= e−ρL (−ρ)ξw, where ωXw
is the dualizing sheaf of Xw.

Proof. This follows from [GK, Proposition 2.2] since the same proof works for gen-
eral Kac-Moody groups. �

From [Ku1, Lemma 5.5] we have the following result:

Lemma 3.7. For any u,w ∈ W , we have

T or
OX̄

i (OXu ,OXw
) = 0, ∀i > 0.

We now prove:

Lemma 3.8. For any u ∈ W and any finite union of Schubert varieties Y =⋃�
i=1 Xwi

we have

T or
OX̄

i (OXu ,OY ) = 0, ∀i > 0.

In particular, for any u,w ∈ W we have

T or
OX̄

i (OXu ,O∂Xw
) = 0, ∀i > 0.

Proof. We proceed by double induction on the dimension of Y (i.e., the largest
dimension of the irreducible components of Y ) and the number of irreducible com-
ponents of Y . If dimY = 0, then Y = Xe, and so the result follows from Lemma
3.7. Now, suppose that dimY = d and Y has k irreducible components. If k = 1,
then the result follows from Lemma 3.7, so we may assume that k ≥ 2. Let Y1 = Xw

be an irreducible component of Y and let Y2 be the union of all the other irreducible
components.
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By [KuS, Proposition 5.3 and its proof] X is Frobenius split compatibly splitting
its Schubert varieties Xu and also Richardson varieties Xv

u.

(∗) Thus, any finite intersection

Xu1
∩ . . . ∩Xun

∩Xv1 ∩ . . . ∩Xvm is reduced for any n≥1.

(In the proof here we have only used Xu1
∩ . . . ∩Xun

to be reduced, but the more
general assertion here will be used later in the paper.)

The short exact sequence of sheaves

0 → OY → OY1
⊕OY2

→ OY1∩Y2
→ 0

yields the long exact sequence

. . . → T or
OX̄

i+1(OXu ,OY1∩Y2
) → T or

OX̄

i (OXu ,OY )

→ T or
OX̄

i (OXu ,OY1
⊕OY2

) → . . . .

Now, since Y2 has less than k irreducible components, induction on the number
of irreducible components gives

T or
OX̄

i (OXu ,OY1
⊕OY2

) = 0, ∀i > 0.

Since Y1 ∩ Y2 is reduced and of dimension less than d, induction on the dimension
gives

T or
OX̄

i+1(OXu ,OY1∩Y2
) = 0, ∀i > 0.

Together, these imply the lemma. �

Lemma 3.9. For any u,w ∈ W , we have

T or
OX̄
i (OXu , ξw) = 0, ∀i > 0.

Proof. Applying Lemmas 3.7 and 3.8, the desired result follows from the long exact
sequence for T or. �

Proposition 3.10. For any u,w ∈ W we have

〈[OXu ], [ξw]〉 = δu,w.

Proof. By definition

〈[OXu ], [ξw]〉 =
∑
i

(−1)iχT (Xn,T or
OX̄

i (OXu , ξw)),

where n is taken such that n ≥ �(w). Thus, by Lemma 3.9, we have

〈[OXu ], [ξw]〉 = χT (Xn,OXu ⊗OX̄
ξw).

By Lemma 3.8 we have the sheaf exact sequence

0 → OXu ⊗OX̄
ξw → OXu ⊗OX̄

OXw
→ OXu ⊗OX̄

O∂Xw
→ 0.

Observe that by (∗)
OXu ⊗OX̄

OXw
= OXu∩Xw

,

and similarly for OXu ⊗OX̄
O∂Xw

. Thus,

χT (Xn,OXu ⊗OX̄
ξw) = χT (Xn,OXu∩Xw

)− χT (Xn,OXu∩∂Xw
).
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When non-empty, Xu ∩ Xw is irreducible by [Ku1, Proposition 6.6], and thus
Xu∩∂Xw =

⋃
u≤w′<w Xu∩Xw′ is a connected projective variety when non-empty,

since u ∈ Xu ∩Xw′ for all u ≤ w′ < w.
If u � w we have Xu ∩Xw = ∅, so assume u ≤ w. In this case Xu ∩ Xw �= ∅.

Now, if u = w, then Xu ∩ ∂Xw = ∅, while if u < w, then Xu ∩ ∂Xw �= ∅. By
[KuS, Corollary 3.2],

Hi(Xn,OXu∩Xw
) = 0, ∀i > 0.

Using an inductive argument similar to Lemma 3.8 we obtain

Hi(Xn,OXu∩Y ) = 0, ∀i > 0,

where Y is any finite union of Schubert varieties. Taking Y = Xu ∩ ∂Xw and
combining the above implies the proposition (here we use that, when non-empty,
Xu ∩ Y is connected). �

4. The mixing space and mixing group

In this section we realize the product structure constants of {[OXu ]} in K0
T (X̄)

as the coproduct structure constants of the dual basis {[ξu]} in KT
0 (X) (Lemma

4.2). We then introduce the mixing space XP, which is a bundle over a product of
projective spaces P, with fiber X. This allows for the reduction from T -equivariant
K-theory to non-equivariant K-theory. Using the pairing and duality introduced
in the previous section, we realize the structure constants in terms of certain coho-
mology groups (cf. Lemma 4.10). Finally, we introduce the mixing group Γ whose
action is sufficient to allow for a transverality result necessary to prove part a) of
our main technical result (Theorem 5.1).

Definition 4.1 (Structure constants dwu,v). By Lemma 3.1, in K0
T (X̄) we have:

(2) [OXu ] · [OXv ] =
∑
w∈W

dwu,v[OXw ], for unique dwu,v ∈ R(T ),

where infinitely many of dwu,v may be non-zero.

Lemma 4.2. Write, in KT
0 (X ×X) under the diagonal action of T on X ×X,

(3) Δ∗[ξw] =
∑
u,v

ewu,v[ξu � ξv], for ewu,v ∈ R(T ),

where Δ : X → X ×X is the diagonal map. Then, ewu,v = dwu,v.
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Proof. Let Δ̄ : X̄ → X̄ × X̄ be the diagonal map, and note that Δ̄∗[OXu �OXv ] =
[OXu ] · [OXv ]. Hence, we have:

dwu,v = 〈
∑

w′∈W

dw
′

u,v[OXw′ ], [ξw]〉, by Proposition 3.10

= 〈[OXu ] · [OXv ], [ξw]〉, by (2)

= 〈Δ̄∗[OXu � OXv ], [ξw]〉

= 〈[OXu � OXv ],Δ∗[ξw]〉

= 〈[OXu � OXv ],
∑
u′,v′

ewu′,v′ [ξu′ � ξv′ ]〉, by (3)

= ewu,v, by Proposition 3.10.

�

We now prepare to define the mixing space. Let P := (PN )r where r = dimT and
N is some large fixed integer. Let [N ] = {0, 1, . . . , N} and let j = (j1, j2, . . . , jr) ∈
[N ]r. We define

Pj := PN−j1 × · · · × PN−jr

and similarly define
Pj := Pj1 × · · · × Pjr .

We also define the boundary of Pj by

∂Pj :=
(
Pj1−1 × Pj2 × · · · × Pjr

)
∪ · · · ∪

(
Pj1 × · · · × Pjr−1 × Pjr−1

)
,

where we interpret P−1 := ∅ to be the empty set. Throughout this paper we will
identify T � (C∗)r via t �→ (e−α1(t), . . . , e−αr (t)).

Definition 4.3 (Mixing space XP). Let E(T )P := (CN+1 \{0})r be the total space
of the standard principal T -bundle E(T )P → P. We can view E(T )P → P as a
finite dimensional approximation of the classifying bundle for T . Define XP :=
E(T )P ×T X and let p : XP → P be the Zariski-locally trivial fibration with fiber
X = Gmin/B.

For any T -scheme V we define VP := E(T )P ×T V .

For the rest of this paper we use the notation Y := X × X and Ȳ := X̄ × X̄.
Further, we let YP := E(T )P ×T Y � XP ×P XP, where T acts diagonally on Y .

Note that for any u, v ∈ W , (Xu)P and (Xu × Xv)P are CM, as they are fiber
bundles over P, and hence locally a product of CM schemes. Thus, they have
dualizing sheaves.

Definition 4.4. We define the sheaf (ξu)P on XP by

(ξu)P := (eρL (ρ))P ⊗ ω(Xu)P ,

where (eρL (ρ))P is defined by

E(T )P ×T eρL (ρ) → XP.
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Proposition 4.5. K0(XP) := Limitn→∞K0((Xn)P) is a free module over the ring
K0(P) = K0(P) with basis {[(ξw)P]}.

Thus, K0(XP) has Z-basis

{p∗([OPj ]) · [(ξw)P]}j∈[N ]r,w∈W ,

where, as above, p : XP → P is the projection.

Proof. This follows from [CG, §5.2.14 and Theorem 5.4.17] as well as the fact that
the transition matrix between the basis {[OXw

]} and {[ξw]} is upper triangular with
invertible diagonal entries. �

Definition 4.6. We define the sheaf ˜ξu � ξv on YP by

˜ξu � ξv := (e2ρL (ρ) � L (ρ))P ⊗ ω(Xu×Xv)P ,

where (e2ρL (ρ) � L (ρ))P is defined by

E(T )P ×T
(
e2ρL (ρ) � L (ρ)

)
→ YP.

The diagonal map Δ : X → Y gives rise to the embedding Δ̃ : XP → YP. Thus,
by the previous proposition, we may write

(4)

Δ̃∗[(ξw)P] =
∑

u,v∈W,j∈[N ]r

cwu,v(j)p̂
∗[OPj ]·[ ˜ξu � ξv] ∈ K0(YP), for unique cwu,v(j) ∈ Z,

where p̂ : YP → P is the projection.
The following lemma makes precise the reduction from T -equivariant K-theory

of X̄ to the ordinary K-theory of the mixing space.

Lemma 4.7. For any u, v, w ∈ W we can choose N large enough and express

dwu,v =
∑

j∈[N ]r

dwu,v(j)(e
−α1 − 1)j1 . . . (e−αr − 1)jr ,

where dwu,v(j) ∈ Z.
Then,

dwu,v(j) = (−1)|j|cwu,v(j), where |j| :=
r∑

i=1

ji.

Proof. This follows from Lemma 4.2 and [GK, Lemma 6.2] (see also [AGM, §3]). �

Lemma 4.8. For any coherent sheaf S on P and any u, v ∈ W we have:

a) T or
OȲ

P

i (p̄∗(S), ˜ξu � ξv) = 0, ∀i > 0,

b) T or
OȲ

P

i (p̄∗(S),O(Xu×Xv)P) = 0, ∀i > 0,

where p̄ : ȲP → P is the projection.

Proof. As the statements are local in P, we may replace ȲP by U × Ȳ , for some
open set U ⊂ P. Then,

p̄∗S � S � OȲ ,

˜ξu � ξv � OU � (ξu � ξv),

O(Xu×Xv)P � OU � (OXu � OXv).
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Applying the above, followed by the Kunneth formula, gives for part a),

T or
OU×Ȳ

i (p̄∗(S), ˜ξu � ξv) = T or
OU�OȲ
i (S � OȲ ,OU � (ξu � ξv))

=
⊕

j+k=i

T orOU
j (S,OU )⊗ T or

OȲ

k (OȲ , ξu � ξv)

= 0, for i > 0.

A similar computation gives part b). �
Lemma 4.9. For any coherent sheaf S on P and any u ∈ W we have:

T or
OY

P

i (p̂∗(S), Δ̃∗((ξu)P)) = 0, ∀i > 0,

where, as earlier, p̂ : YP → P is the projection.

Proof. As before, since the statement is local in P, we may replace YP by U × Y ,
for some open set U ⊂ P. Then,

p̂∗S � S � OY ,

Δ̃∗((ξu)P) = OU � Δ∗(ξu).

Now, proceed as in the proof of Lemma 4.8. �
Lemma 4.10. With notation as in (4) we have

cwu,v(j) = 〈[O(Xu×Xv)P ], p̂
∗[OPj

(−∂Pj)] · Δ̃∗((ξw)P)〉,
where the pairing

〈 , 〉 : K0(ȲP)⊗K0(YP) → Z
is defined (similar to (1)) by

〈[S], [F ]〉=
∑
i

(−1)iχ(ȲP,T or
OȲ

P

i (S,F)),

where χ denotes the Euler-Poincaré characteristic, and (as earlier) the map p̂ :
YP → P denotes the projection.

Proof. First, we have

〈[O(Xu×Xv)P ], p̂
∗[OPj

(−∂Pj)]·Δ̃∗((ξw)P)〉 = 〈p̄∗[OPj
(−∂Pj)]·[O(Xu×Xv)P ], Δ̃∗((ξw)P)〉,

where p̄ : ȲP → P denotes the projection. To see this, first take a locally free finite
resolution of O(Xu×Xv)P on a quasi-compact open subset of ȲP and a locally free
finite resolution of OPj

(−∂Pj) on P. Then, use the fact that for a locally free sheaf

F on a quasi-compact open subset of ȲP and a locally free sheaf G on P, we have

〈F , p̂∗(G) · Δ̃∗((ξw)P)〉 = 〈p̄∗(G) · F , Δ̃∗((ξw)P)〉.
Now, the lemma follows from (4), Lemma 4.8, Proposition 3.10 and [Ku1, Iden-

tity 20]. �
We now introduce the mixing group Γ which acts on ȲP.

Definition 4.11 (Mixing group Γ). Let T act on B via

t · b = tbt−1

for t ∈ T, b ∈ B. This action induces a natural action of ΔT on B × B. Consider
the ind-group scheme over P:

(B2)P = E(T )P ×T B2 → P.
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Let Γ0 denote the group of global sections of (B2)P under pointwise multiplication.
Since GL(N +1)r acts canonically on (B2)P in a way compatible with its action on
P, it also acts on Γ0 via inverse pullback. We define the mixing group Γ to be the
semidirect product Γ := Γ0 �GL(N + 1)r:

1 → Γ0 → Γ → GL(N + 1)r → 1.

By [Ku1, Lemmas 4.7 and 4.8 (more precisely, the paragraph following these
lemmas)], we have the following two lemmas:

Lemma 4.12. Γ is connected.

Lemma 4.13. For any ē ∈ P and any (b, b′) in the fiber of (B2)P over ē there exists
a section γ ∈ Γ0 such that γ(ē) = (b, b′).

We define the action of Γ on ȲP via

(γ, g) · [e, (x, y)] = [ge, γ(ge) · (x, y)]

for γ ∈ Γ0, g ∈ GL(N + 1)r, e ∈ E(T )P, and (x, y) ∈ Ȳ , where the action of Γ0 is
via the standard action of B×B on Ȳ = X̄2. It follows from Lemma 4.13 that the
orbits of the Γ-action on ȲP are precisely equal to {(Cw × Cw′)P}.

5. Statement of main results

We now come to our main technical result.

Theorem 5.1. For general γ ∈ Γ and any u, v, w ∈ W, j ∈ [N ]r we have:

a) For all i > 0,

T or
OȲ

P

i

(
γ∗O(Xu×Xv)P , p̂

∗(OPj
(−∂Pj))⊗OY

P
Δ̃∗((ξw)P)

)
= 0.

b) Assume cwu,v(j) �= 0. For all p �= |j|+ �(w)− �(u)− �(v),

Hp
(
ȲP, γ∗O(Xu×Xv)P ⊗OȲ

P

(
p̂∗(OPj

(−∂Pj))⊗OY
P
Δ̃∗((ξw)P)

))
= 0,

where |j| :=
∑r

i=1 ji.

Proof. Deferred to the later sections. Part a) is proved in Section 6, while part b)
is proved in Section 9. �

Since Γ is connected, Lemmas 4.10, 4.9, and Theorem 5.1 together give:

Corollary 5.2. (−1)�(w)−�(u)−�(v)+|j|cwu,v(j) ∈ Z≥0.

As an immediate consequence of Corollary 5.2 and Lemma 4.7 we get:

Theorem 5.3. For any symmetrizable Kac-Moody group G and any u, v, w ∈ W ,
the structure constants of the product in the basis {[OXw ]} in K0

T (X̄) satisfy

(−1)�(w)+�(u)+�(v)dwu,v ∈ Z≥0[(e
−α1 − 1), . . . , (e−αr − 1)].
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6. Proof of part a) of Theorem 5.1

The key tool used to prove part a) of Theorem 5.1 is the following transversality
result, taken from [AGM, Theorem 2.3] (originally due to Sierra).

Theorem 6.1. Let X be a variety with a left action of an algebraic group G and
let F be a coherent sheaf on X. Suppose that F is homologically transverse to the
closures of the G-orbits on X. Then, for each coherent sheaf E on X, there is a
Zariski-dense open set U ⊆ G such that T orOX

j (F , g∗E) = 0 for all j ≥ 1 and all
g ∈ U .

Theorem 5.1 part a) is a particular case of the following slightly more general

result by taking E = p̂∗(OPj
(−∂Pj))⊗OY

P
Δ̃∗((ξw)P).

Theorem 6.2. Let w ∈ W and let E be a coherent sheaf on (Yw)P := (Xw ×Xw)P.
Then, for general γ ∈ Γ and any u, v ∈ W we have:

T or
OȲ

P

i

(
γ∗O(Xu×Xv)P , E

)
= 0, ∀i > 0.

Proof. We first show that for any γ ∈ Γ,

(5) T or
OȲ

P

i

(
O(Xu×Xv)P , γ∗E

)
= T or

O(Yw)
P

i

(
O(Yw)P ⊗OȲ

P

O(Xu×Xv)P , γ∗E
)
.

Since γ∗E is a coherent sheaf on (Yw)P, we can replace γ∗E by E itself.
As the assertion is local on P we may assume ȲP � P× Ȳ and that

O(Xu×Xv)P � OP � (OXu � OXv),

O(Yw)P � OP � (OXw
� OXw

).

To simplify notation let A = OȲP
, B = O(Yw)P , M = O(Xu×Xv)P and N = E .

Take an A-free resolution F• → M on an open subset of ȲP of the form (V u′×V v′
)P,

where V u is defined as in Lemma 3.3. Then, the homology of the chain complex
B ⊗A F• is by definition T orA• (M,B). Moreover,

T orAi (M,B) = 0, ∀i > 0.

Indeed, locally on P,

T orAi (M,B) = T or
OP�OȲ

i

(
OP � O(Xu×Xv),OP � O(Xw×Xw)

)
=

⊕
j+k=i

T orOP

j (OP,OP)⊗ T or
OȲ

k (OXu×Xv ,OXw×Xw
)

= 0, ∀i > 0

by Lemma 3.7 and the Kunneth formula. Hence, B ⊗A F• is a B-free resolution of
B ⊗A M .

Thus, the homology of the chain complex N⊗B (B⊗AF•) is equal to T orB• (B⊗A

M,N); but,

N ⊗B (B ⊗A F•) = (N ⊗B B)⊗A F• = N ⊗A F•,

so the homology is also equal to T orA• (M,N). Hence,

T orB• (B ⊗A M,N) = T orA• (M,N)

as desired. This proves (5).
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Now, by Lemma 4.13, the closures of the Γ-orbits of (Yw)P are precisely (Xx ×
Xy)P, where x, y ≤ w. Equation (5) implies that the sheaf F defined by

F := O(Yw)P ⊗OȲ
P

O(Xu×Xv)P

is homologically transverse to the Γ-orbit closures in (Yw)P. Indeed, sinceO(Xx×Xy)P

is a coherent O(Yw)P-module when x, y ≤ w, equation (5) gives

T or
O(Yw)

P

i

(
F ,O(Xx×Xy)P

)
= T or

OȲ
P

i

(
O(Xu×Xv)P ,O(Xx×Xy)P

)
= 0, ∀i > 0

by Lemma 3.7 and the Kunneth formula.
Thus, by Theorem 6.1 (with G = Γ, X = (Yw)P, and E and F as above), we

conclude that for general γ ∈ Γ,

(6) T or
O(Yw)

P

i

(
O(Yw)P ⊗OȲ

P

O(Xu×Xv)P , γ∗E
)
= 0, ∀i > 0.

Here we note that although Γ is infinite dimensional, the action of Γ on (Yw)P
factors through the action of a finite dimensional quotient group of Γ.

Now, (5) gives

T or
OȲ

P

i

(
O(Xu×Xv)P , γ∗E

)
= 0, ∀i > 0,

which is equivalent to the desired vanishing. �

7. The schemes Z and ∂Z
For u, v ≤ w we use the notation Xu,v

w := Xu
w × Xv

w. We also write X2
w :=

Xw ×Xw. For any j ∈ [N ]r, we let (Xw)j denote the inverse image of Pj through
the map E(T )P ×T Xw → P.

Similarly, for u, v ≤ w we write Zu,v
w := Zu

w ×Zv
w, where Zu

w is the T -equivariant
desingularization of Xu

w as in [Ku1, Theorem 6.8]. We also write Z2
w := Zw × Zw,

where Zw is a BSDH variety as in [Ku2, §7.1.3]. For any j ∈ [N ]r, we let (Zw)j
denote the inverse image of Pj through the map E(T )P ×T Zw → P.

The action of B on Zw factors through the action of a finite dimensional quotient
group B̄ containing the maximal torus H. Further, the action of Γ on (X2

w)P
descends to an action of the finite dimensional quotient group

Γ̄ := Γ̄0 �GL(N + 1)r,

where Γ̄0 is the group of global sections of the bundle E(T )P ×T (B̄2) → P.
From [Ku1, Lemmas 6.11 and 6.12] we have

Lemma 7.1. Let u, v ≤ w. The map

m : Γ̄× (Xu,v
w )P → (X2

w)P,m(γ, x) = γ · π2(x),

is flat, where π2 : (Xu
w ×Xv

w)P → (X2
w)P is induced from the canonical map Xu

w ×
Xv

w → X2
w.

Lemma 7.2. Let u, v ≤ w. The map

m̃ : Γ̄× (Zu,v
w )P → (Z2

w)P, m̃(γ, x) = γ · π̃2(x),

is smooth, where π̃2 : (Zu
w × Zv

w)P → (Z2
w)P is induced from the canonical map

Zu
w × Zv

w → Z2
w.
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Define Z to be the fiber product

Z :=
(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((Xw)j)

and Z̃ to be the fiber product

Z̃ :=
(
Γ̄× (Zu,v

w )P
)
×(Z2

w)P Δ̃((Zw)j)

as in the commutative diagram:

Z̃ Δ̃((Zw)j)

�

Γ̄× (Zu,v
w )P (Z2

w)P

Γ̄

Γ̄× (Xu,v
w )P (X2

w)P

�

Z Δ̃((Xw)j)

π̃

f

ι̃

(smooth)

μ̃

θ

(smooth)

m̃

β

(flat)

m

π

(flat)

μ

i

In the above diagram, � denotes a fiber square. Note that the maps θ and β

above are desingularizations. The maps π : Z → Γ̄ and π̃ : Z̃ → Γ̄ are induced by

the projections onto the first factor. The map f : Z̃ → Z is defined by f := θ ◦ ι̃.
It is clear that the image of f is indeed contained inside of Z using commutativity
of the diagram, along with the fact that β(Δ̃((Zw)j)) = Δ̃((Xw)j)).

We define the boundary of (Xw)j by

∂((Xw)j) := (∂Xw)j ∪ (Xw)∂Pj

and similarly define the boundary of (Zw)j by

∂((Zw)j) := (∂Zw)j ∪ (Zw)∂Pj
,

where ∂Zw := ϕ−1(∂Xw) and ϕ : Zw → Xw denotes the desingularization.
We define the boundary of Z by

∂Z :=
(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃(∂((Xw)j))

and similarly define the boundary of Z̃ by

∂Z̃ :=
(
Γ̄× (Zu,v

w )P
)
×(Z2

w)P Δ̃(∂((Zw)j)).

Observe that f−1(∂Z) = ∂Z̃ is the scheme-theoretic inverse image.
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We will need the following lemmas, which are restatements of [Ku1, Lemmas 7.2
and 7.3], respectively, ([Ku1, Lemma 7.3] is originally from [FP, Lemma on page
108]).

Lemma 7.3. Let f : W → X be a flat morphism from a pure-dimensional CM
scheme W of finite type over C to a CM irreducible variety X and let Y be a closed
CM subscheme of X of pure codimension d. Set Z := f−1(Y ). If codimW (Z) ≥ d,
then equality holds and Z is CM.

Lemma 7.4. Let f : W → X be a morphism from a pure-dimensional CM scheme
W of finite type over C to a smooth irreducible variety X and let Y be a closed CM
subscheme of X of pure codimension d. Set Z := f−1(Y ). If codimW (Z) ≥ d, then
equality holds and Z is CM.

Proposition 7.5. The scheme Z is normal, irreducible, and CM, of dimension

dimZ = |j|+ �(w)− �(u)− �(v) + dim Γ̄.

The scheme Z̃ is irreducible, and the map f : Z̃ → Z is a proper birational map.

Hence, Z̃ is a desingularization of Z.

Proof. By [H, Chapter III, Corollary 9.6], the fibers of m are pure of dimension

dim Γ̄ + dim(Xu,v
w )P − dim(X2

w)P.

Since the fibers of μ are the same as those of m, applying loc. cit. to μ gives that
Z is pure of dimension

dimZ = dim Γ̄ + dim(Xu,v
w )P − dim(X2

w)P + dim Δ̃((Xw)j)

= |j|+ �(w)− �(u)− �(v) + dim Γ̄.

The remainder of the proof of the proposition follows from the proof of [Ku1,
Proposition 7.4 and Lemma 7.5] (Note that there is a slight difference in the defini-

tion of Z and Z̃ between ours and that in [Ku1].) Further, Z̃ is non-singular since
μ̃ is a smooth morphism with non-singular base. �

Lemma 7.6. Let G be a group acting on a set X and let Y ⊂ X. Consider the
action map m : G× Y → X. For x ∈ X denote the orbit of x by O(x) and the sta-
bilizer by Stab(x). Then, Stab(x) acts on the fiber m−1(x) and Stab(x)\m−1(x) �
O(x) ∩ Y .

Proof. It is easy to check that

m−1(x) =
{
(g, h−1x) : h ∈ G, h−1x ∈ Y, g ∈ Stab(x) · h

}
.

Thus, Stab(x) acts on m−1(x) by left multiplication on the left component. Since
every element of O(x) ∩ Y is of the form h−1x for some h ∈ G, the second pro-
jection m−1(x) → O(x) ∩ Y is surjective. This map clearly factors through the
quotient to give a map Stab(x)\m−1(x) → O(x) ∩ Y . To show this induced map
is injective, note first that each class has a representative of the form (h, h−1x).
Now, if (h1, h

−1
1 x) and (h2, h

−1
2 x) satisfy h−1

1 x = h−1
2 x, then h2h

−1
1 x = x, i.e.,

h2h
−1
1 ∈ Stab(x), i.e., h2 ∈ Stab(x) · h1, i.e., (h1, h

−1
1 x) and (h2, h

−1
2 x) belong to

the same class. �
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Proposition 7.7. The scheme Z has rational singularities.

Proof. Since μ is flat and Δ̃((Xw)j) has rational singularities, by [El, Théorème 5]
it is sufficient to show that the fibers of μ are disjoint unions of irreducible varieties
with rational singularities (in fact, the fibers of μ are irreducible, but we do not
provide a proof here as we do not need this fact).

Let x ∈ Δ̃((Cw′)j), where w′ ≤ w. Then, by Lemmas 7.6 and 4.13, we have
Stab(x)\μ−1(x) � (Xu ∩ Cw′ × Xv ∩ Cw′)P, where Stab(x) is taken with respect
to the action of Γ̄ on (X2

w)P. By [Se, Proposition 3, §2.5], the quotient map Γ̄ →
Stab(x)\Γ̄ is locally trivial in the étale topology.

Consider the pullback diagram:

μ−1(x) ⊆ Γ̄× (Xu,v
w )P

Stab(x)\μ−1(x) ⊆
(
Stab(x)\Γ̄

)
× (Xu,v

w )P

Since the right vertical map is a locally trivial fibration in the étale topology, the
left vertical map is too. Now, Stab(x)\μ−1(x) � (Xu ∩ Cw′ × Xv ∩ Cw′)P has
rational singularities by [KuS, Theorem 3.1]. Further, Stab(x) being smooth and
μ−1(x) → Stab(x)\μ−1(x) being locally trivial in the étale topology, we get that
μ−1(x) is a disjoint union of irreducible varieties with rational singularities by
[KM, Corollary 5.11]. �

Proposition 7.8. The scheme ∂Z is pure of codimension 1 in Z and is CM.

Proof. Using the fact that Δ̃((Xw)∂Pj
) and Δ̃((∂Xw)j) are equidimensional, ap-

plying [H, Chapter III, Corollary 9.6] to their irreducible components gives that(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((Xw)∂Pj
) and

(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((∂Xw)j) are both
pure of dimension

dim Γ̄ + dim(Xu,v
w )P − dim(X2

w)P + dim Δ̃((Xw)j)− 1.

Hence, ∂Z is pure of codimension 1 in Z.
A similar argument also gives that

(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((∂Xw)∂Pj
) is pure of

dimension

dim Γ̄ + dim(Xu,v
w )P − dim(X2

w)P + dim Δ̃((Xw)j)− 2.

Next, we show that ∂Z is CM. Since (Xw)j is a locally trivial fibration over Pj ,
it is locally a product of CM schemes and hence is CM. Also, since ∂Pj is CM, we

similarly have that (Xw)∂Pj
and hence Δ̃((Xw)∂Pj

) is CM. Now, applying Lemma

7.3 to μ : Z → Δ̃((Xw)j) gives that
(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((Xw)∂Pj
) is CM, since

Δ̃((Xw)∂Pj
) and μ−1(Δ̃((Xw)∂Pj

)) =
(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((Xw)∂Pj
) are of pure

codimension 1 in Δ̃((Xw)j) and Z, respectively.
Observe that ∂Xw is CM. To prove this, use Proposition 3.6 and the argument as

in the proof of [Ku1, Corollary 10.5] by taking an embedding of Xw into a smooth
projective variety. Thus, (∂Xw)j is locally a product of CM schemes and hence is

CM, and hence so is Δ̃((∂Xw)j). Now, Lemma 7.3 applied to μ : Z → Δ̃((Xw)j)
gives that (

Γ̄× (Xu,v
w )P

)
×(X2

w)P Δ̃((∂Xw)j)
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is CM since Δ̃((∂Xw)j) and μ−1(Δ̃((∂Xw)j)) =
(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((∂Xw)j)

are of pure codimension 1 in Δ̃((Xw)j) and Z, respectively.
The intersection (

Γ̄× (Xu,v
w )P

)
×(X2

w)P Δ̃((∂Xw)∂Pj
)

=
((

Γ̄× (Xu,v
w )P

)
×(X2

w)P Δ̃((Xw)∂Pj
)
)
∩

((
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((∂Xw)j)
)

is of pure codimension 1 in both
(
Γ̄×(Xu,v

w )P
)
×(X2

w)P Δ̃((Xw)∂Pj
) and

(
Γ̄×(Xu,v

w )P
)

×(X2
w)PΔ̃((∂Xw)j). Now, [E, Exercise 18.13] gives that the union ∂Z is CM iff

the intersection
(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((∂Xw)∂Pj
) is. But Lemma 7.3 applied to

μ : Z → Δ̃((Xw)j) gives that
(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((∂Xw)∂Pj
) is CM, since

Δ̃((∂Xw)∂Pj
) and μ−1(Δ̃((∂Xw)∂Pj

)) =
(
Γ̄× (Xu,v

w )P
)
×(X2

w)P Δ̃((∂Xw)∂Pj
) are of

pure codimension 2 in Δ̃((Xw)j) and Z, respectively. �

Lemma 7.9. The morphism μ : Z → Δ̃((Xw)j) is affine.

Proof. Since Δ̃((Xw)j) is a closed subscheme of (X2
w)P it suffices to show that the

map m : Γ̄×(Xu,v
w )P → (X2

w)P is an affine morphism. Now, if f : X → Y is an affine
morphism and Z ⊂ X is a closed subscheme, then f |Z : Z → Y is clearly an affine
morphism. Thus, it suffices to show that Γ̄×(X2

w)P → (X2
w)P is an affine morphism.

Further, if X and Y are total spaces of principal T -bundles and f : X → Y is a
T -equivariant map, then f is affine iff f̄ : X/T → Y/T is affine. Thus, it suffices to
show that

μ̂ : Γ̄× (E(T )P ×X2
w) → E(T )P ×X2

w

is affine. Recall that Γ̄ = Γ̄0 � GL(N + 1)r and μ̂ is given by μ̂((σ, g), (e, x)) =
(ge, σ(ge) · x), where σ ∈ Γ̄0, g ∈ GL(N + 1)r, e ∈ E(T )P, x ∈ X2

w. Write μ̂ as a
composite μ̂ = μ3 ◦ μ2 ◦ μ1, where

μ1 : Γ̄0 ×GL(N +1)r ×E(T )P×X2
w → Γ̄0×E(T )P×X2

w, (σ, g, e, x) �→ (σ, g · e, x),
μ2 : Γ̄0 × E(T )P ×X2

w → B̄2 × E(T )P ×X2
w, (σ, e, x) �→ (σ(e), e, x),

μ3 : B̄2 × E(T )P ×X2
w → E(T )P ×X2

w, ((b1, b2), e, (x, y)) �→ (e, b1x, b2y).

As the composition of two affine morphisms is affine, it suffices to prove that
μ1, μ2, μ3 are affine. Moreover, if f : X → Y is affine, then f×IdZ : X×Z → Y ×Z
is affine for any scheme Z. Hence, it suffices to prove that the following maps μ̂1, μ̂2,
and μ̂3 are affine:

μ̂1 : GL(N + 1)r × E(T )P → E(T )P, (g, e) �→ g · e,
μ̂2 : Γ̄0 × E(T )P → B̄2 × E(T )P, (σ, e) �→ (σ(e), e),

μ̂3 : B̄2 ×X2
w → X2

w, ((b1, b2), (x, y)) �→ (b1x, b2y).

(1) μ̂1 is affine: Since E(T )P = (CN+1 \ {0})r, it suffices to prove that θ :
GL(N + 1) × (CN+1 \ {0}) → CN+1 \ {0}, (g, v) �→ g · v is affine. Now,
consider the map θ̄ : GL(N+1)×CN+1 → CN+1, (g, v) �→ g ·v. Since both
the domain and codomain are affine, θ̄ is an affine morphism. Moreover,
θ = θ̄|θ̄−1(CN+1\{0}). Thus, θ is affine.

(2) μ̂2 is affine: Take an affine open subset U ⊂ E(T )P. Then, B̄2 × U is an
affine open subset in B̄2 × E(T )P. Now, μ̂−1

2 (B̄2 × U) = Γ̄0 × U . Since Γ̄0

is affine, so is Γ̄0 × U . Thus, μ̂2 is affine.
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(3) μ̂3 is affine: It suffices to prove that δ : B̄×Xw → Xw, (b, x) �→ bx is affine.
Take an affine open subset V ⊂ Xw. Then, δ−1(V ) =

⋃
b∈B̄(b, b

−1V ).

Consider the scheme isomorphism i : B̄×Xw �→ B̄×Xw, (b, x) �→ (b, b · x).
Then, i(δ−1(V )) = B̄ × V . But, since B̄ × V is affine, so is δ−1(V ). Thus,
δ is an affine morphism and hence so is μ̂3. �

Let π : Z → Γ̄ denote the projection onto the first factor and π1 : ∂Z → Γ̄
denote the restriction of π to ∂Z. We define the fibers

(7) Nγ := π−1(γ) � γ((Xu,v
w )P) ∩ Δ̃((Xw)j)

and

(8) Mγ := π−1
1 (γ) � γ((Xu,v

w )P) ∩ Δ̃(∂((Xw)j)).

Corollary 7.10. Assume that cwu,v(j) �= 0, where cwu,v(j) are defined by (4). Then,

for general γ ∈ Γ̄, we have that Nγ (defined by (7)) is CM of pure dimension. In
fact, for γ ∈ Γ̄ such that

dimNγ = dimZ − dim Γ̄ = |j|+ �(w)− �(u)− �(v),

Nγ is CM, and this condition is satisfied for general γ.
Similarly, if |j| + �(w) − �(u) − �(v) > 0, for general γ ∈ Γ̄, we have that Mγ

(defined by 8) is CM of pure codimension 1 in Nγ . If |j|+ �(w)− �(u)− �(v) = 0,
for general γ ∈ Γ̄, we have that Mγ is empty.

Proof. First we show that π is surjective when cwu,v(j) �= 0. From the definition of
π we have that

Im π =
{
γ ∈ Γ̄ : γ((Xu,v

w )P) ∩ Δ̃((Xw)j) �= ∅
}
.

Since Γ̄ is connected, Lemma 4.10 along with the assumption cwu,v(j) �= 0 gives

that γ((Xu,v)P) ∩ Δ̃((Xw)j) �= ∅ for any γ ∈ Γ̄. Since γ((Xu,v)P) ∩ Δ̃((Xw)j) =

γ((Xu,v
w )P) ∩ Δ̃((Xw)j), we get that π is surjective.

Now, since Z is CM, applying Lemma 7.4 to π gives that if

(9) codimZ(Nγ) = dim Γ̄,

then Nγ is CM. By [S, Chapter I, §6.3, Theorem 1.25], this condition holds for γ in
a dense open subset of Γ̄. Thus, Nγ is CM for γ satisfying dimNγ = dimZ−dim Γ̄,
and this condition is satisfied for general γ.

Next, we show that if |j| + �(w) − �(u) − �(v) > 0, then π1 is surjective. First
note that since π1 is projective, if it is not surjective, its image is a proper closed
subset of Γ̄. Thus, for general γ ∈ Γ̄, Mγ = ∅, i.e., Nγ ⊂ Z \ ∂Z. As μ is an
affine morphism by Lemma 7.9, Z \ ∂Z is affine. But, Nγ is projective of positive
dimension (since |j|+ �(w)− �(u)− �(v) > 0) which gives a contradiction.

In particular, there is at least one irreducible component of ∂Z on which π1 is
surjective. The other irreducible components are mapped to closed subsets of Γ̄.
Let U be the complement of the union of the images of the irreducible components
on which π1 is not surjective. Then, U is open, since there are only finitely many
irreducible components. Applying [S, Chapter I, §6.3, Theorem 1.25] to π1 on each
irreducible component of ∂Z which surjects onto Γ̄ and then intersecting with U
gives that, for general γ ∈ Γ̄,

(10) codim∂Z(Mγ) = dim Γ̄.
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Thus, by Lemma 7.4, Mγ is CM. Moreover, (9) and (10) together imply that Mγ

is pure of codimension 1 in Nγ .
In the case where |j| + �(w) − �(u)− �(v) = 0, we have dimZ = dim Γ̄, so that

dim ∂Z < dim Γ̄. Thus, Im π1 is a proper closed subset of Γ̄, and hence Mγ is
empty for general γ. �
Corollary 7.11. Assume that cwu,v(j) �= 0. Then, for general γ ∈ Γ̄, we have

E xtiONγ
(ONγ

(−Mγ), ωNγ
) = 0, ∀i > 0.

Proof. By [I, Proposition 11.33 and Corollary 11.43] we have

E xtiONγ
(OMγ

, ωNγ
) = 0, unless i = 1,

and, of course,
E xtiONγ

(ONγ
, ωNγ

) = 0, ∀i > 0.

Hence, the desired result follows from the long exact E xt sequence associated to
the short exact sequence

0 → ONγ
(−Mγ) → ONγ

→ OMγ
→ 0. �

8. Application of Kawamata-Viehweg vanishing

In this section we assume that cwu,v(j) �= 0.
Let f : X → Y be a proper morphism between schemes, with X irreducible, and

let M be a line bundle on X. Then, M is said to be f -nef if it has non-negative
intersection with every curve contained in a fiber of f . The line bundle M is said
to be f -big if rank f∗(Mk) > c · kn for some c > 0 and k � 1, where n is the
dimension of a general fiber of f . A Weil divisor D ⊂ X has normal crossings if
all of its irreducible components intersect transversely. It is easy to see that ∂Zw

and hence ∂((Zw)j) are normal crossings divisors in Zw and (Zw)j , respectively.
We will need the following relative Kawamata-Viehweg vanishing theorem from

[AGM, Theorem 2.4], which was originally extracted from [EV, Corollary 6.11].

Theorem 8.1. Let f : Z̃ → Z be a proper surjective morphism of varieties, with Z̃

non-singular. Let M be a line bundle on Z̃ such that MN (−D) is f -nef and f -big
for a normal crossing divisor D =

∑r
j=1 ajDj, where 0 < aj < N for all j. Then,

Rif∗(M⊗ ω
˜Z) = 0, ∀i > 0.

Definition 8.2. We define the sheaf

ωZ(∂Z) := H omOZ (OZ(−∂Z), ωZ).

Theorem 8.3. We have f∗ω ˜Z(∂Z̃) = ωZ(∂Z), where Z̃,Z, ∂Z̃, ∂Z, and the mor-

phism f : Z̃ → Z are defined after Lemma 7.2. (Observe that since Z is CM, the
dualizing sheaf ωZ makes sense.)

Proof. First, we claim

(11) O
˜Z(∂Z̃) � H omO

˜Z
(f∗OZ(−∂Z),O

˜Z),

where O
˜Z(∂Z̃) := H omO

˜Z
(O

˜Z(−∂Z̃),O
˜Z). To see this, first note that since

f−1(∂Z) = ∂Z̃ is the scheme-theoretic inverse image (cf. §6), the natural morphism

f∗OZ(−∂Z) → O
˜Z(−∂Z̃) is surjective (cf., e.g., [Stacks, Tag 01HJ, Lemma 25.4.7]).

http://stacks.math.columbia.edu/tag/01HJ
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As f is a desingularization (cf. Proposition 7.5), the kernel of this morphism is sup-

ported on a proper closed subset of Z̃ and hence is a torsion sheaf. This implies that

the dual map O
˜Z(∂Z̃) → H omO

˜Z
(f∗OZ(−∂Z),O

˜Z) is an isomorphism, proving
(11).

To complete the proof of the theorem, we compute:

f∗(ω ˜Z ⊗O
˜Z(∂Z̃)) = f∗(ω ˜Z ⊗ H omO

˜Z
(f∗OZ(−∂Z),O

˜Z)), by (11)

= f∗H omO
˜Z
(f∗OZ(−∂Z), ω

˜Z)

= H omOZ (OZ(−∂Z), f∗ω ˜Z), by adjunction (cf. [H, Chapter II, §5])

= H omOZ (OZ(−∂Z), ωZ), by Proposition 7.7 and [KM, Theorem 5.10]

= ωZ(∂Z). �

Lemma 8.4. The homogeneous line bundle L(ρ)|Xw
(cf. §2) has a section with

zero set exactly equal to ∂Xw.

Proof. Consider the Borel-Weil homomorphism (cf. [Ku2, §8.1.21]) χw : L(ρ)∗ →
H0(Xw,L(ρ)) which is given by χw(f)(gB) = [g, f(geρ)], where eρ is the high-
est weight vector of the irreducible highest weight Gmin-module L(ρ) with highest
weight ρ.

Consider the section χw(e
∗
wρ), where ewρ is the weight vector of L(ρ) with weight

wρ and e∗wρ ∈ L(ρ)∗ is the linear form which takes the value 1 on ewρ and 0 on any
weight vector of L(ρ) of weight different from wρ. Let w′ ≤ w and b ∈ B. We have

χw(e
∗
wρ)(bw

′B) = [bw′, e∗wρ(bw
′eρ)].

Now, for w′ < w, we have w′ρ > wρ by [Ku2, Lemma 8.3.3]. Thus, e∗wρ(bw
′eρ) = 0

for any b ∈ B and w′ < w. For w′ = w, we have e∗wρ(bweρ) �= 0 for any b ∈ B.
Hence, χw(e

∗
wρ) has zero set precisely equal to ∂Xw. �

Lemma 8.5. There is an ample line bundle L on (Xw)j with a section with zero
set exactly equal to ∂((Xw)j).

Proof. By the previous lemma, the ample line bundle L(ρ)|Xw
has a section with

zero set exactly equal to ∂Xw. The T -equivariant line bundle (ewρL(ρ))|Xw
gives

rise to the line bundle

(ewρL(ρ)|Xw
)j := E(T )Pj

×T ((ewρL(ρ))|Xw
)

on (Xw)j . Then, the section θ defined by [e, x] �→ [e, 1wρ⊗χw(e
∗
wρ)x] for e ∈ E(T )Pj

and x ∈ Xw has zero set exactly equal to (∂Xw)j , where 1wρ is a non-zero element
of the line bundle ewρ (cf. §2).

Now, let H be an ample line bundle on Pj with a section σ with zero set exactly
∂Pj and consider the bundle

L := (ewρL(ρ)|Xw
)j ⊗ p∗(HN ),
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where p : (Xw)j → Pj is the projection. Let σ̂ represent the pullback of σ. Then,

the section θ ⊗ (σ̂)N has zero set exactly equal to ∂((Xw)j). Furthermore, by

[KM, Proposition 1.45], if N is large enough, L is ample. �

Lemma 8.6. Let f : Ã → A be a proper birational map between normal, irreducible
varieties and let π : A → B be a surjective proper morphism to a variety B. Let
L̃ be a π-big line bundle on A. Then, the pullback line bundle f∗L̃ is π̃-big, where

π̃ = π ◦ f : Ã → B.

Proof. It suffices to show that rank π̃∗(f
∗L̃k) > c · kn for some c > 0 and k � 1,

where n is the dimension of a general fiber of π̃.
By [S, Chapter 1, §6.3, Theorem 1.25], the dimension of a general fiber of π and

the dimension of a general fiber of π̃ are both equal to dimA− dimB.
Now, π̃∗(f

∗L̃k) = π∗f∗(f
∗L̃k) � π∗(L̃k) by the projection formula, since A is

normal. Hence, rank π̃∗(f
∗L̃k) > c · kn for some c > 0 and k � 1, where n is the

dimension of a general fiber of π, since L̃ is π-big. This proves the lemma. �

Theorem 8.7. Assume that cwu,v(j) �=0. Then, for all i>0, we have Riπ̃∗ω ˜Z(∂Z̃)=

0 and Rif∗ω ˜Z(∂Z̃) = 0, where π̃ : Z̃ → Γ̄ is the projection onto the first factor and

f : Z̃ → Z is defined after Lemma 7.2.

Proof. Since f is proper and birational by Proposition 7.5, it is surjective. By the
proof of Corollary 7.10, the projection π : Z → Γ̄ is also surjective. Thus, π̃ = π ◦f
is also surjective. Moreover, π̃ is proper since it is the restriction of the projection

Γ̄× (Zu,v
w )P → Γ̄ to the closed subset Z̃, where (Zu,v

w )P is projective. Let M denote

the line bundle M := O
˜Z(∂Z̃). (Observe that ∂Z̃ is a divisor in non-singular Z̃.)

By Theorem 8.1, it suffices to find a normal crossings divisor D ⊂ Z̃ such that the

line bundle MN (−D) is π̃-nef, f -nef, π̃-big, and f -big and D =
∑r

j=1 ajDj , with

0 < aj < N .

By Lemma 8.5 we may choose an ample line bundle L on Δ̃((Xw)j) with a

section with zero set exactly equal to Δ̃(∂((Xw)j)). Let ϕ : Δ̃((Zw)j) → Δ̃((Xw)j)
denote the desingularization. Since ∂((Zw)j) is a normal crossings divisor in (Zw)j ,

it follows that ∂Z̃ =
(
Γ̄× (Zu,v

w )P
)
×(Z2

w)P Δ̃(∂((Zw)j)) is a normal crossings divisor

in Z̃. Write

∂Z̃ = D1 + · · ·+D�,

where Di are the irreducible components. Since μ̃∗ϕ∗L has a section with zero set

precisely equal to ∂Z̃, it follows that

μ̃∗ϕ∗L = O
˜Z(b1D1 + · · ·+ b�D�)

for some positive integers b1, . . . , b�.
Let D be the divisor D := a1D1+ · · ·+a�D� where ai := N − bi for some integer

N greater than all the bi’s. Since ∂Z̃ has normal crossings, so does D. Then,

MN (−D) = O
˜Z(b1D1 + · · ·+ b�D�) = μ̃∗ϕ∗L.

Since the fibers of π̃ are projective schemes and L is an ample line bundle on
Δ̃((Xw)j), the pullback μ̃∗ϕ∗L restricted to the fibers of π̃ is nef, since the pullback
of any ample line bundle under a morphism between projective varieties is nef
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(cf. [D, Theorem 1.26, §1.9 and §1.29]). Thus, MN (−D) is π̃-nef. Since the fibers

of f are contained in the fibers of π̃, MN (−D) is also f -nef.

Now, MN (−D) is f -big since f is birational by Proposition 7.5. It remains to

show π̃-bigness. Clearly, μ : Z → Δ̃((Xw)j) is a closed embedding restricted to any

fiber of the morphism π : Z → Γ̄. Hence, the ample line bundle L on Δ̃((Xw)j) pulls

back to a π-big line bundle μ∗L on Z. Now, π̃-bigness of MN (−D) = μ̃∗ϕ∗L =
f∗μ∗L follows from Lemma 8.6 and Proposition 7.5. �

Theorems 8.3 and 8.7 together with the Grothendieck spectral sequence give

Corollary 8.8. For all i > 0 we have Riπ∗ωZ(∂Z) = 0.

9. Proof of part b) of Theorem 5.1

Recall the definitions of Nγ and Mγ from equations (7) and (8).
We also define

M1
γ := γ((Xu,v

w )P) ∩ Δ̃((Xw)∂Pj
)

and
M2

γ := γ((Xu,v
w )P) ∩ Δ̃((∂Xw)j),

so that
Mγ = M1

γ ∪M2
γ .

Lemma 9.1. For general γ ∈ Γ̄, the sheaf

γ∗O(Xu×Xv)P ⊗OȲ
P

(
p̂∗(OPj

(−∂Pj))⊗OY
P
Δ̃∗((ξw)P)

)
is supported on Nγ and is equal to the sheaf ONγ

(−Mγ), where p̂ : YP → P is the
projection.

Proof. Since p̂ : YP → P is flat, we have a short exact sequence

0 → p̂∗(OPj
(−∂Pj)) → p̂∗OPj

→ p̂∗O∂Pj
→ 0.

By Lemma 4.9 tensoring with Δ̃∗((ξw)P) over OYP
preserves exactness of the above

sequence, so we have an exact sequence

0 → p̂∗(OPj
(−∂Pj))⊗OY

P
Δ̃∗((ξw)P) → p̂∗OPj

⊗OY
P
Δ̃∗((ξw)P)

→ p̂∗O∂Pj
⊗OY

P
Δ̃∗((ξw)P) → 0.

By Theorem 6.2, for general γ ∈ Γ̄, tensoring the above sequence with γ∗O(Xu×Xv)P

over OȲP
preserves exactness, so we have, for general γ ∈ Γ̄, an exact sequence

0 → γ∗O(Xu×Xv)P ⊗OȲ
P

(
p̂∗(OPj

(−∂Pj))⊗OY
P
Δ̃∗((ξw)P)

)

→ γ∗O(Xu×Xv)P ⊗OȲ
P

(
p̂∗OPj

⊗OY
P
Δ̃∗((ξw)P)

)
(12)

→ γ∗O(Xu×Xv)P ⊗OȲ
P

(
p̂∗O∂Pj

⊗OY
P
Δ̃∗((ξw)P)

)
→ 0.

Next, consider the exact sequence

(13) 0 → ONγ
(−Mγ) → ONγ

(−M2
γ ) → OM1

γ
(−M1

γ ∩M2
γ ) → 0.

Comparing (12) with (13) we see that it is sufficient to show that

(14) γ∗O(Xu×Xv)P ⊗OȲ
P

(
p̂∗OPj

⊗OY
P
Δ̃∗((ξw)P)

)
= ONγ

(−M2
γ )
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and

(15) γ∗O(Xu×Xv)P ⊗OȲ
P

(
p̂∗O∂Pj

⊗OY
P
Δ̃∗((ξw)P)

)
= OM1

γ
(−M1

γ ∩M2
γ ).

To prove (14) and (15) consider the short exact sequence

(16) 0 → Δ̃∗((ξw)P) → Δ̃∗(O(Xw)P) → Δ̃∗(O(∂Xw)P) → 0.

Tensor the sequence (16) with p̂∗(OPj
) over OYP

, which preserves exactness by the
proof of Lemma 4.9, and then tensor with γ∗O(Xu×Xv)P over OȲP

, which preserves
exactness by Theorem 6.2. For closed subschemes X and Y of a scheme Z,

OX ⊗OZ
OY = OX∩Y .

Thus,

γ∗O(Xu×Xv)P ⊗OȲ
P

(
p̂∗(OPj

)⊗OY
P
Δ̃∗(O(Xw)P)

)
= Oγ(Xu×Xv)P∩Δ̃((Xw)j)

= ONγ

and

γ∗O(Xu×Xv)P ⊗OȲ
P

(
p̂∗(OPj

)⊗OY
P
Δ̃∗(O(∂Xw)P)

)
= Oγ(Xu×Xv)P∩Δ̃((∂Xw)j)

= OM2
γ
.

Thus, (14) follows.
Similarly, (15) follows by tensoring the sequence (16) with p̂∗(O∂Pj

) over OYP
,

which preserves exactness by the proof of Lemma 4.9, and then tensoring with
γ∗O(Xu×Xv)P over OȲP

, which preserves exactness by Theorem 6.2. This completes
the proof. �

By the previous lemma, Theorem 5.1 part b) is equivalent to the following the-
orem:

Theorem 9.2. For general γ ∈ Γ̄ and any u, v, w ∈ W, j ∈ [N ]r such that cwu,v(j) �=
0 we have

Hp(Nγ ,ONγ
(−Mγ)) = 0,

for all p �= |j|+ �(w)− �(u)− �(v).

Proof. First, the theorem is equivalent to the statement that for general γ ∈ Γ̄,

(17) Hp(Nγ , ωNγ
(Mγ)) = 0, ∀p > 0.

To see this, observe that:

Hp(Nγ , ωNγ
(Mγ)) = Hp(Nγ ,H omONγ

(ONγ
(−Mγ), ωNγ

))
ϕ1� ExtpNγ

(ONγ
(−Mγ), ωNγ

)

ϕ2� Hn−p(Nγ ,ONγ
(−Mγ))

∗,

where n := dimNγ = |j| + �(w) − �(u) − �(v), the isomorphism ϕ1 follows by
Corollary 7.11 and the local to global Ext spectral sequence [Go, Théorème 7.3.3,
Chap. II], and the isomorphism ϕ2 follows by Corollary 7.10 and Serre duality
[H, Chap. III, Theorem 7.6].

We now prove (17), which implies the theorem. By [S, Chapter I, §6.3, Theorem
1.25] and [H, Chap. III, Exercise 10.9], there is a non-empty open subset U ⊂ Γ̄
such that π : π−1(U) → U is flat. (Observe that, by the proof of Corollary 7.10, π
is surjective.) We prove that ωZ(∂Z) is flat over U :

To show this, let A = OU , B = Oπ−1(U), and M = ωZ(∂Z)|π−1(U). By taking
stalks, we immediately reduce to showing that for an embedding of local rings
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A ⊂ B such that A is regular and B is flat over A, we have that M is flat over A.
Now, to prove this, let {x1, . . . , xd} be a minimal set of generators of the maximal
ideal of A. Let K• = K•(x1, . . . , xd) be the Koszul complex of the xi’s over A.
Then, recall that a finitely generated B-module N is flat over A iff K• ⊗A N is
exact except at the extreme right, i.e., Hi(K• ⊗A N) = 0 for i < d [E, Corollary
17.5 and Theorem 6.8]. Thus, by hypothesis, K•⊗AB is exact except at the extreme
right and hence the xi’s form a B-regular sequence [E, Theorem 17.6]. Now, since
OZ and O∂Z are CM, we have that OZ(−∂Z) is a CM OZ -module. Thus, by
[I, Proposition 11.33], we have that M is a CM B-module of dimension equal to
dimB. Therefore, by [I, Exercise 11.36], the xi’s form a regular sequence on the
B-module M . Hence, (K•⊗AB)⊗B M � K•⊗A M is exact except at the extreme
right [E, Corollary 17.5]. This proves that M is flat over A, as desired.

Thus, by Corollary 8.8 and the semicontinuity theorem [Ke, Theorem 13.1] to
prove (17), it is sufficient to show that for general γ ∈ Γ̄, that

(18) ωZ(∂Z)|π−1(γ) � ωNγ
(Mγ).

To prove this, observe that since U is smooth and Z and ∂Z are CM, and the
assertion is local in U , it suffices to observe (cf. [I, Corollary 11.35]) that for a
non-zero function θ on U , the sheaf

S/θ · S = H omOZθ
(OZ(−∂Z)/θ · OZ(−∂Z), ωZθ

),

where Zθ denotes the zero scheme of θ in Z and the sheaf

S := H omOZ (OZ(−∂Z), ωZ).

Choosing θ to be in a local coordinate system and using induction and the above
result, the desired conclusion (18) is obtained. �
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[El] R. Elkik, Singularités rationnelles et déformations (French), Invent. Math. 47 (1978),
no. 2, 139–147, DOI 10.1007/BF01578068. MR501926

[EV] H. Esnault and E. Viehweg, Lectures on vanishing theorems, DMV Seminar, vol. 20,
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