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Additive Eigenvalue Problem

Shrawan Kumar (University of North Carolina, Chapel Hill, NC 27599-3250, USA)

1 Introduction

The classical Hermitian eigenvalue problem addresses
the following question: What are the possible eigen-
values of the sum A + B of two Hermitian matrices
A and B, provided we fix the eigenvalues of A and
B. A systematic study of this problem was initiated
by H. Weyl (1912). By virtue of contributions from a
long list of mathematicians, notably Weyl (1912), Horn
(1962), Klyachko (1998) and Knutson-Tao (1999), the
problem is finally settled. The solution asserts that
the eigenvalues of A + B are given in terms of cer-
tain system of linear inequalities in the eigenvalues of
A and B. These inequalities are given explicitly in
terms of certain triples of Schubert classes in the sin-
gular cohomology of Grassmannians and the standard
cup product. Belkale (2001) gave an optimal set of in-
equalities for the problem in this case. The Hermitian
eigenvalue problem has been extended by Berenstein-
Sjamaar (2000) and Kapovich-Leeb-Millson (2005) for
any semisimple complex algebraic group G. Their so-
lution is again in terms of a system of linear inequal-
ities obtained from certain triples of Schubert classes
in the singular cohomology of the partial flag varieties
G/P (P being a maximal parabolic subgroup) and the
standard cup product. However, their solution is far
from being optimal. In a joint work with P. Belkale, we
defined a deformation of the cup product in the coho-
mology of G/P and used this new product to generate
a system of inequalities which solves the problem for
any G optimally (as shown by Ressayre). This article
is a brief survey of this additive eigenvalue problem.
The eigenvalue problem is equivalent to the saturated
tensor product problem.

This note was written during my visit to the Univer-
sity of Sydney, hospitality of which is gratefully ac-
knolwledged. Also, partial support from NSF grant
number DMS- 1501094 is gratefully acknowledged.

2 Main Results

We now explain the classical Hermitian eigenvalue prob-
lem and its generalization to an arbitrary connected re-
ductive group more precisely.

For any n × n Hermitian matrix A, let λA = (λ1 ≥

· · · ≥ λn) be its set of eigenvalues written in descending
order. Recall the following classical problem, known
as the Hermitian eigenvalue problem: Given two n-
tuples of nonincreasing real numbers: λ = (λ1 ≥ · · · ≥

λn) and µ = (µ1 ≥ · · · ≥ µn), determine all possible
ν = (ν1 ≥ · · · ≥ νn) such that there exist Hermitian
matrices A, B,C with λA = λ, λB = µ, λC = ν and
C = A + B. This problem has a long history starting
with the work of Weyl (1912) followed by works of
Fan (1949), Lidskii (1950), Wielandt (1955), and cul-
minating into the following conjecture given by Horn
(1962). (Also see Thompson-Freede (1971).)

For any positive integer r < n, inductively define
the set S n

r as the set of triples (I, J,K) of subsets of
[n] := {1, . . . , n} of cardinality r such that∑

i∈I

i +
∑
j∈J

j = r(r + 1)/2 +
∑
k∈K

k (1)

and for all 0 < p < r and (F,G,H) ∈ S r
p the following

inequality holds:∑
f∈F

i f +
∑
g∈G

jg ≤ p(p + 1)/2 +
∑
h∈H

kh. (2)

Conjecture 1. A triple λ, µ, ν occurs as eigenvalues of
Hermitian n× n matrices A, B,C respectively such that
C = A + B if and only if

n∑
i=1

νi =

n∑
i=1

λi +

n∑
i=1

µi,

and for all 1 ≤ r < n and all triples (I, J,K) ∈ S n
r , we

have ∑
k∈K

νk ≤
∑
i∈I

λi +
∑
j∈J

µ j.

Horn’s above conjecture was settled in the affirma-
tive (cf. Corollary 11) by combining the work of Kly-
achko [Kly] (1998) with the work of Knutson-Tao [KT]
(1999) on the ‘saturation’ problem.

The above system of inequalities is overdetermined.
Belkale (2001) proved that a certain subset of the above
set of inequalities suffices. Subsequently, Knutson-
Tao-Woodward (2004) proved that the subsystem of
inequalities given by Belkale forms an irredundant sys-
tem of inequalities.

Now, we discuss a generalization of the above Her-
mitian eigenvalue problem (which can be rephrased in
terms of the special unitary group SU(n) and its com-
plexified Lie algebra sl(n)) to an arbitrary complex
semisimple group. Let G be a connected, semisimple
complex algebraic group. We fix a Borel subgroup B,
a maximal torus H, and a maximal compact subgroup
K. We denote their Lie algebras by the correspond-
ing Gothic characters: g, b, h, k respectively. Let R+ be



the set of positive roots (i.e., the set of roots of b) and
let ∆ = {α1, . . . , α`} ⊂ R+ be the set of simple roots.
There is a natural homeomorphism δ : k/K → h+,
where K acts on k by the adjoint representation and
h+ := {h ∈ h : αi(h) ≥ 0∀ i} is the positive Weyl cham-
ber in h. The inverse map δ−1 takes any h ∈ h+ to the
K-conjugacy class of

√
−1h.

For any positive integer s, define the eigencone

Γ̄s(g) :={(h1, . . . , hs) ∈ hs
+ | ∃(k1, . . . , ks) ∈ ks :

s∑
j=1

k j

= 0 and δ(k j) = h j∀ j}.

By virtue of the general convexity result in symplec-
tic geometry, the subset Γ̄s(g) ⊂ hs

+ is a convex rational
polyhedral cone (defined by certain inequalities with
rational coefficients). The aim of the general additive
eigenvalue problem is to find the inequalities describ-
ing Γ̄s(g) explicitly. (The case g = sl(n) and s = 3
specializes to the Hermitian eigenvalue problem if we
replace C by −C.)

Let Λ = Λ(H) denote the character group of H and
let Λ+ := {λ ∈ Λ : λ(α∨i ) ≥ 0∀ simple coroots α∨i }
denote the set of all the dominant characters. Then, the
set of isomorphism classes of irreducible (finite dimen-
sional) representations of G is parameterized by Λ+ via
the highest weights of irreducible representations. For
λ ∈ Λ+, we denote by [λ] the corresponding irreducible
representation (of highest weight λ).

Similar to the eigencone Γ̄s(g), one defines the satu-
rated tensor semigroup

Γs(G) ={(λ1, . . . , λs) ∈ Λs
+ : ([Nλ1] ⊗ · · · ⊗ [Nλs])G

, 0, for some N ≥ 1}.

Then, under the identification ϕ : h
∼
−→ h∗ (via the

Killing form)

ϕ(Γs(g)) ∩ Λs
+ = Γs(G). (3)

(cf. Theorem 5).
For any 1 ≤ j ≤ `, define the element x j ∈ h by

αi(x j) = δi, j, ∀ 1 ≤ i ≤ `. (4)

Let P ⊃ B be a standard parabolic subgroup with
Lie algebra p and let l be its unique Levi component
containing the Cartan subalgebra h. Let ∆(P) ⊂ ∆ be
the set of simple roots contained in the set of roots of l.
Let WP be the Weyl group of P (which is, by definition,
the Weyl Group of the Levi component L) and let WP

be the set of the minimal length representatives in the
cosets of W/WP. For any w ∈ WP, define the Schubert
variety:

XP
w := BwP/P ⊂ G/P.

It is an irreducible (projective) subvariety of G/P of
dimension `(w). Let µ(XP

w) denote the fundamental

class of XP
w considered as an element of the singular

homology with integral coefficients H2`(w)(G/P,Z) of
G/P. Then, from the Bruhat decomposition, the ele-
ments {µ(XP

w)}w∈WP form a Z-basis of H∗(G/P,Z). Let
{[XP

w]}w∈WP be the Poincaré dual basis of the singular
cohomology H∗(G/P,Z). Thus,

[XP
w] ∈ H2(dim G/P−`(w))(G/P,Z).

Write the standard cup product in H∗(G/P,Z) in the
{[XP

w]} basis as follows:

[XP
u ] · [XP

v ] =
∑

w∈WP

cw
u,v[XP

w]. (5)

Introduce the indeterminates τi for each αi ∈ ∆ \ ∆(P)
and define a deformed cup product � as follows:

[XP
u ]�[XP

v ] =
∑

w∈WP

( ∏
αi∈∆\∆(P)

τ
(w−1ρ−u−1ρ−v−1ρ−ρ)(xi)
i

)
cw

u,v[XP
w],

(6)
where ρ is the (usual) half sum of positive roots of
g. By Corollary 16 and the identity (13), whenever
cw

u,v is nonzero, the exponent of τi in the above is a
nonnegative integer. Moreover, the product � is asso-
ciative (and clearly commutative). The cohomology
algebra of G/P obtained by setting each τi = 0 in
(H∗(G/P,Z)⊗Z[τi],�) is denoted by (H∗(G/P,Z),�0).
Thus, as a Z-module, this is the same as the singular co-
homology H∗(G/P,Z) and under the product �0 it is as-
sociative (and commutative). Moreover, it continues to
satisfy the Poincaré duality (cf. [BK1, Lemma 16(d)]).
The definition of the deformed product �0 (now known
as the Belkale-Kumar product) was arrived at from the
crucial concept of Levi-movability as in Definition 14.
For a cominuscule maximal parabolic P, the product
�0 coincides with the standard cup product (cf. Lemma
17).

Now we are ready to state the main result on solution
of the eigenvalue problem for any connected semisim-
ple G. For a maximal parabolic P, let αiP be the unique
simple root not in the Levi of P and let ωP := ωiP be
the corresponding fundamental weight.

Theorem 2. Let (h1, . . . , hs) ∈ hs
+. Then, the following

are equivalent:
(a) (h1, . . . , hs) ∈ Γ̄s(g).
(b) For every standard maximal parabolic subgroup

P in G and every choice of s-tuples (w1, . . . ,ws) ∈

(WP)s such that [XP
w1

] · · · [XP
ws

] = d[XP
e ] for some d , 0,

the following inequality holds:

IP
(w1,...,ws) : ωP(

s∑
j=1

w−1
j h j) ≤ 0.

(c) For every standard maximal parabolic subgroup
P in G and every choice of s-tuples (w1, . . . ,ws) ∈

(WP)s such that [XP
w1

] · · · [XP
ws

] = [XP
e ],
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the above inequality IP
(w1,...,ws)

holds.
(d) For every standard maximal parabolic subgroup

P in G and every choice of s-tuples (w1, . . . ,ws) ∈

(WP)s such that [XP
w1

] �0 · · · �0 [XP
ws

] = [XP
e ],

the above inequality IP
(w1,...,ws)

holds.

The equivalence of (a) and (b) in the above theo-
rem for general G is due to Berenstein-Sjamaar (2000).
Kapovich-Leeb-Millson (2009) showed the equivalence
of (a) and (c). The equivalence of (a) and (d) is due
to Belkale-Kumar (2006). If we specialize the above
Theorem for G = SL(n), then, in the view of Theo-
rem 10, the equivalence of (a) and (b) is nothing but
the Horn’s conjecture (Corollary 11) solved by com-
bining the work of Klyachko (1998) with the work of
Knutson-Tao (1999). In this case, the equivalence of
(a) and (c) is due to Belkale (2001). In this case, ev-
ery maximal parabolic subgroup P is cominuscule and
hence the deformed product �0 in H∗(G/P) coincides
with the standard cup product. Hence the parts (c) and
(d) are the same in this case.

Because of the identification (3), the above theorem
allows us to determine the saturated tensor semigroup
Γs(G) (see Theorem 18 for a precise statement).

The following result was proved by Ressayre [R]
(2010). As mentioned above, for g = sl(n) it was
proved by Knutson-Tao-Wodward. Ressayre’s proof
relies on the notion of well-covering pairs, which is
equivalent to the notion of Levi-movability with cup
product 1.

Theorem 3. The inequalities given by the (d) part of
the above theorem form an irredundant system of in-
equalities determining the cone Γ̄s(g) (cf. Theorem 23
for a more precise statement).

As shown by Kumar-Leeb-Millson (2003), the (c)
part of the above theorem gives rise to 126 inequalities
for g of type B3 or C3, whereas by the (d) part one gets
only 93 inequalities.

We refer the reader to the survey article of Fulton [F]
on the Hermitian eigenvalue problem; and for general
G the survey articles by Brion [Br] and by Kumar [K3].

3 Determination of the eigencone (A Weaker Re-
sult)

We give below an indication of the proof of the equiv-
alence of (a) and (b) in Theorem 2 .

Definition 4. Let S be any (not necessarily reductive)
algebraic group acting on a (not necessarily projective)
variety X and let L be an S -equivariant line bundle on
X. Any algebraic group morphism Gm → S is called
a one parameter subgroup (for short OPS) in S . Let
O(S ) be the set of all the OPS in S . Take any x ∈ X

and δ ∈ O(S ) such that the limit limt→0 δ(t)x exists in
X (i.e., the morphism δx : Gm → X given by t 7→ δ(t)x
extends to a morphism δ̃x : A1 → X). Then, follow-
ing Mumford, define a number µL(x, δ) as follows: Let
xo ∈ X be the point δ̃x(0). Since xo is Gm-invariant via
δ, the fiber of L over xo is a Gm-module; in particular,
is given by a character of Gm. This integer is defined
as µL(x, δ).

Under the identification ϕ : h
∼
−→ h∗ (via the Killing

form) Γs(G) corresponds to the set of integral points
of Γs(g). Specifically, we have the following result es-
sentially following from Mumford [N, Appendix] (also
see [Sj, Theorem 7.6] and [Br, Théorème 1.3]).

Theorem 5.

ϕ(Γs(g)) ∩ Λs
+ = Γs(G).

Let P be any standard parabolic subgroup of G act-
ing on P/BL via the left multiplication, where L is the
Levi subgroup of P containing H and BL := B ∩ L is
a Borel subgroup of L. We call δ ∈ O(P) P-admissible
if, for all x ∈ P/BL, limt→0 δ(t) · x exists in P/BL. If
P = G, then P/BL = G/B and any δ ∈ O(G) is G-
admissible since G/B is a projective variety.

Observe that, BL being the semidirect product of its
commutator [BL, BL] and H, any λ ∈ Λ extends uniquely
to a character of BL. Thus, for any λ ∈ Λ, we have
a P-equivariant line bundle LP(λ) on P/BL associated
to the principal BL-bundle P → P/BL via the one di-
mensional BL-module λ−1. We abbreviate LG(λ) by
L(λ). We have taken the following lemma from [BK1,
Lemma 14]. It is a generalization of the corresponding
result in [BS, Section 4.2].

Lemma 6. Let δ ∈ O(H) be such that δ̇ ∈ h+. Then,
δ is P-admissible and, moreover, for any λ ∈ Λ and
x = ulBL ∈ P/BL (for u ∈ U, l ∈ L), we have the
following formula:

µLP(λ)(x, δ) = −λ(wδ̇),

where U is the unipotent radical of P, PL(δ) := P(δ)∩L
and w ∈ WP/WPL(δ) is any coset representative such
that l−1 ∈ BLwPL(δ).

Let λ = (λ1, . . . , λs) ∈ Λs
+ and let L(λ) denote the G-

linearized line bundle L(λ1) � · · · � L(λs) on (G/B)s

(under the diagonal action of G). Then, there exist
unique standard parabolic subgroups P1, . . . , Ps such
that the line bundle L(λ) descends as an ample line
bundle L̄(λ) on X(λ) := G/P1 × · · · × G/Ps. We call
a point x ∈ (G/B)s G-semistable (with respect to, not
necessarily ample, L(λ)) if its image in X(λ) under the
canonical map π : (G/B)s → X(λ) is semistable with
respect to the ample line bundle L̄(λ). Now, one has the
following fundamental theorem due to Klyachko [Kly]
for G = SL(n), extended to general G by Berenstein-
Sjamaar [BS].
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Theorem 7. Let λ1, . . . , λs ∈ Λ+. Then, the following
are equivalent:
(a) (λ1, . . . , λs) ∈ Γs(G)
(b) For every standard maximal parabolic subgroup

P and every Weyl group elements w1, . . . ,ws ∈

WP ' W/WP such that

[XP
w1

] . . . [XP
ws

] = d[XP
e ], for some d , 0, (7)

the following inequality is satisfied:

IP
(w1,...,ws) :

s∑
j=1

λ j(w jxP) ≤ 0,

where αiP is the unique simple root not in the Levi
of P and xP := xiP .

The equivalence of (a) and (b) in Theorem 2 follows
easily by combining Theorems 7 and 5.

Remark 8. As proved by Belkale [B1] for G = SL(n)
and extended for an arbitrary G by Kapovich-Leeb-
Millson [KLM], Theorem 7 remains true if we replace
d by 1 in the identity (7). A much sharper (and opti-
mal) result for an arbitrary G is obtained in Theorem
18.

4 Specialization of Results to G = SL(n): Horn
Inequalities

We first need to recall the Knutson-Tao saturation theo-
rem [KT], conjectured by Zelevinsky [Z]. Other proofs
of their result are given by Derksen-Weyman [DK],
Belkale [B3] and Kapovich-Millson [KM2].

Theorem 9. Let G = SL(n) and let (λ1, . . . , λs) ∈
Γs(G) be such that λ1 + · · · + λs belongs to the root
lattice. Then,

([λ1] ⊗ · · · ⊗ [λs])G , 0.

Specializing Theorem 7 to G = SL(n), as seen be-
low, we obtain the classical Horn inequalities.

In this case, the partial flag varieties corresponding
to the maximal parabolics Pr are precisely the Grass-
mannians of r-planes in n-space G/Pr = Gr(r, n), for
0 < r < n. The Schubert cells in Gr(r, n) are parame-
terized by the subsets of cardinality r:

I = {i1 < . . . < ir} ⊂ {1, . . . , n}.

The corresponding Weyl group element wI ∈ WPr is
nothing but the permutation

1 7→ i1, 2 7→ i2, · · · , r 7→ ir

and wI(r+1), . . . ,wI(n) are the elements in {1, . . . , n}\I
arranged in ascending order.

Let I′ be the ‘dual’ set

I′ = {n + 1 − i, i ∈ I},

arranged in ascending order.
Then, the Schubert class [XI := XPr

wI ] is Poincaré
dual to the Schubert class [XI′ ] ∈ H∗(Gr(r, n),Z). More-
over,

dim XI = codim XI′ = (
∑
i∈I

i) −
r(r + 1)

2
. (8)

For 0 < r < n, recall the definition of the set S r
n

of triples (I, J,K) of subsets of {1, . . . , n} of cardinal-
ity r from Section 2. The following theorem follows
from Theorem 7 for G = SL(n) (proved by Klyachko)
and Theorem 9 (proved by Knutson-Tao). Belkale [B3]
gave another geometric proof of the theorem.

Theorem 10. For subsets (I, J,K) of {1, . . . , n} of car-
dinality r, the product

[XI′ ] · [XJ′ ] · [XK] = d[XPr
e ], for some d , 0

⇔ (I, J,K) ∈ S r
n.

For a Hermitian n × n matrix A, let λA = (λ1 ≥ · · · ≥

λn) be its set of eigenvalues (which are all real). Let
a be the standard Cartan subalgebra of sl(n) consisting
of traceless diagonal matrices and let b ⊂ sl(n) be the
standard Borel subalgebra consisting of traceless upper
triangular matrices (where sl(n) is the Lie algebra of
SL(n) consisting of traceless n×n-matrices). Then, the
Weyl chamber

a+ = {diag (e1 ≥ · · · ≥ en) :
∑

ei = 0}.

Define the Hermitian eigencone

Γ̄(n) = {(a1, a2, a3) ∈ a3+ : there exist n × n Hermitian matrices
A, B,C withλA = a1, λB = a2, λC = a3 and A + B = C}.

It is easy to see that Γ̄(n) essentially coincides with the
eigencone Γ̄3(sl(n)). Specifically,

(a1, a2, a3) ∈ Γ̄(n)⇔ (a1, a2, a∗3) ∈ Γ̄3(sl(n)),

where (e1 ≥ · · · ≥ en)∗ := (−en ≥ · · · ≥ −e1).
Combining Theorems 7 and 5 for sl(n) with Theo-

rem 10, we get the following Horn’s conjecture [Ho]
established by the works of Klyachko (equivalence of
(a) and (b) in Theorem 2 for g = sl(n)) and Knutson-
Tao (Theorem 9).

Corollary 11. For (a1, a2, a3) ∈ a3+, the following are
equivalent.
(a) (a1, a2, a3) ∈ Γ̄(n)
(b) For all 0 < r < n and all (I, J,K) ∈ S r

n,

|a3(K)| ≤ |a1(I)| + |a2(J)|,

where for a subset I = (i1 < · · · < ir) ⊂ {1, . . . , n}
and a = (e1 ≥ · · · ≥ en) ∈ a+, a(I) := (ei1 ≥ · · · ≥

eir ), and |a(I)| := ei1 + · · · + eir .
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We have the following representation theoretic ana-
logue of the above corollary, obtained by combining
Theorems 7, 9 and 10.

Corollary 12. Let λ = (λ1 ≥ · · · ≥ λn ≥ 0), µ =

(µ1 ≥ · · · ≥ µn ≥ 0) and ν = (ν1 ≥ · · · ≥ νn ≥ 0)
be three partitions such that |λ| + |µ| − |ν| ∈ nZ, where
|λ| := λ1 + · · ·+ λn. Then, the following are equivalent:

(a) [ν] appears as a SL(n)-submodule of [λ] ⊗ [µ].
(b) For all 0 < r < n and all (I, J,K) ∈ S r

n,

|ν(K)| ≤ |λ(I)| + |µ(J)| −
r
n

(|λ| + |µ| − |ν|),

where for a subset I = (i1 < · · · < ir) ⊂ {1, . . . , n}, λ(I)
denotes (λi1 ≥ · · · ≥ λir ) and |λ(I)| := λi1 + · · · + λir .

5 Deformed product

This section is based on the work [BK1] due to Belkale-
Kumar. Consider the shifted Bruhat cell:

ΦP
w := w−1BwP ⊂ G/P.

Let T P = T (G/P)e be the tangent space of G/P at e ∈
G/P. It carries a canonical action of P. For w ∈ WP,
define T P

w to be the tangent space of ΦP
w at e. We shall

abbreviate T P and T P
w by T and Tw respectively when

the reference to P is clear. It is easy to see that BL

stabilizes ΦP
w keeping e fixed. Thus,

BLTw ⊂ Tw. (9)

The following result follows from the Kleiman transver-
sality theorem by observing that gΦP

w passes through
e⇔ gΦP

w = pΦP
w for some p ∈ P.

Proposition 13. Take any (w1, . . . ,ws) ∈ (WP)s such
that

s∑
j=1

codim ΦP
w j
≤ dim G/P. (10)

Then, the following three conditions are equivalent:
(a) [XP

w1
] . . . [XP

ws
] , 0 ∈ H∗(G/P).

(b) For general (p1, . . . , ps) ∈ Ps, the intersection

p1ΦP
w1
∩ · · · ∩ psΦ

P
ws

is transverse at e.

(c) For general (p1, . . . , ps) ∈ Ps,

dim(p1Tw1∩· · ·∩psTws ) = dim G/P−
s∑

j=1

codim ΦP
w j
.

The set of s-tuples in (b) as well as (c) is an open subset
of Ps.

Definition 14. Let w1, . . . ,ws ∈ WP be such that
s∑

j=1

codim ΦP
w j

= dim G/P. (11)

We then call the s-tuple (w1, . . . ,ws) Levi-movable for
short L-movable if, for general (l1, . . . , ls) ∈ Ls, the
intersection l1ΦP

w1
∩ · · · ∩ lsΦ

P
ws

is transverse at e.

By Proposition 13, if (w1, . . . ,ws) is L-movable, then
[XP

w1
] . . . [XP

ws
] = d[XP

e ] in H∗(G/P), for some nonzero
d.

For w ∈ WP, define the character χw ∈ Λ by

χw =
∑

β∈(R+\R+
l

)∩w−1R+

β . (12)

Then, from [K1, 1.3.22.3],

χw = ρ − 2ρL + w−1ρ, (13)

where ρ (resp. ρL) is half the sum of roots in R+ (resp.
in R+

l
).

Proposition 15. Assume that (w1, . . . ,ws) ∈ (WP)s sat-
isfies equation (11). Then, the following are equiva-
lent.

(a) (w1, . . . ,ws) is L-movable.
(b) [XP

w1
] . . . [XP

ws
] = d[XP

e ] in H∗(G/P), for some
nonzero d, and for each αi ∈ ∆ \ ∆(P), we have

(
(

s∑
j=1

χw j ) − χ1
)
(xi) = 0.

Corollary 16. For any u, v,w ∈ WP such that cw
u,v , 0

(cf. equation (5)), we have

(χw − χu − χv)(xi) ≥ 0, for each αi ∈ ∆ \ ∆(P). (14)

The above corollary together with the identity (13)
justifies the definition of the deformed product�0 given
in Section 2. This deformed product is used in deter-
mining the facets (codimension 1 faces) of Γ̄s(g).

Lemma 17. Let P be a cominuscule maximal standard
parabolic subgroup of G (i.e., the unique simple root
αP ∈ ∆ \ ∆(P) appears with coefficient 1 in the highest
root of R+). Then, the product � coincides with the cup
product in H∗(G/P).

6 Efficient determination of the eigencone

This section is again based on the work [BK1] due to
Belkale-Kumar. The following theorem [BK1, The-
orem 22] determines the saturated tensor semigroup
Γs(G) efficiently. Specifically, as proved by Ressayre
(see Theorem 23), the set of inequalities given by (b)
of the following theorem is an irredundant set of in-
equalities determining Γs(G).

For G = SL(n), each maximal parabolic P is comi-
nuscule, and hence, by Lemma 17, �0 coincides with
the standard cup product in H∗(G/P). Thus, the fol-
lowing theorem in this case reduces to Theorem 7 with
d = 1 in the identity (7).

It may be mentioned that replacing the product �0 in
the (b)-part of the following theorem by the standard
cup product (i.e., Theorem 7 with d = 1 in the identity
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(7); cf. Remark 8), we get, in general, ‘far more’ in-
equalities for simple groups other than SL(n). For ex-
ample, for G of type B3 (or C3), Theorem 7 with d = 1
gives rise to 126 inequalities, whereas the following
theorem gives only 93 inequalities (cf. [KuLM]).

Theorem 18. Let G be a connected semisimple group
and let (λ1, . . . , λs) ∈ Λs

+. Then, the following are
equivalent:

(a) λ = (λ1, . . . , λs) ∈ Γs(G).
(b) For every standard maximal parabolic subgroup

P in G and every choice of s-tuples (w1, . . . ,ws) ∈
(WP)s such that

[XP
w1

] �0 · · · �0 [XP
ws

] = [XP
e ] ∈

(
H∗(G/P,Z),�0

)
,

the following inequality holds:

IP
(w1,...,ws) :

s∑
j=1

λ j(w jxP) ≤ 0,

where αiP is the (unique) simple root in ∆ \ ∆(P) and
xP := xiP .

We briefly recall some of the main ingredients which
go into the proof of the above theorem and which are
of independent interest.

Definition 19. (Maximally destabilizing one parame-
ter subgroups) Let X be a projective variety with the
action of a connected reductive group S and let L be
a S -linearized ample line bundle on X. Introduce the
set M(S ) of fractional OPS in S . This is the set con-
sisting of the ordered pairs (δ, a), where δ ∈ O(S ) and
a ∈ Z>0, modulo the equivalence relation (δ, a) ' (γ, b)
if δb = γa. The equivalence class of (δ, a) is denoted by
[δ, a]. An OPS δ of S can be thought of as the element
[δ, 1] ∈ M(S ). The group S acts on M(S ) via conju-
gation: g · [δ, a] = [gδg−1, a]. Choose a S -invariant
norm q : M(S ) → R+, where norm means that q|M(H)

is the square root of a positive definite quadratic form
on the Q-vector space M(H) for a maximal torus H
of S . We can extend the definition of µL(x, δ) to any
element δ̂ = [δ, a] ∈ M(S ) and x ∈ X by setting
µL(x, δ̂) =

µL(x,δ)
a .

For any unstable (i.e., nonsemistable) point x ∈ X,
define

q∗(x) = inf
δ̂∈M(S )

{q(δ̂) | µL(x, δ̂) ≤ −1},

and the optimal class

Λ(x) = {δ̂ ∈ M(S ) | µL(x, δ̂) ≤ −1, q(δ̂) = q∗(x)}.

Any δ̂ ∈ Λ(x) is called Kempf’s OPS associated to x.
By a theorem of Kempf (cf. [Ki, Lemma 12.13]),

Λ(x) is nonempty and the parabolic P(δ̂) := P(δ) (for
δ̂ = [δ, a]) does not depend upon the choice of δ̂ ∈

Λ(x). The parabolic P(δ̂) for δ̂ ∈ Λ(x) will be denoted
by P(x) and called the Kempf’s parabolic associated to
the unstable point x. Moreover, Λ(x) is a single conju-
gacy class under P(x).

We recall the following theorem due to Ramanan-
Ramanathan [RR, Proposition 1.9].

Theorem 20. For any unstable point x ∈ X and δ̂ =

[δ, a] ∈ Λ(x), let

xo = lim
t→0

δ(t) · x ∈ X.

Then, xo is unstable and δ̂ ∈ Λ(xo).

Indication of the Proof of Theorem 18: The impli-
cation (a) ⇒ (b) of Theorem 18 is of course a special
case of Theorem 7.

To prove the implication (b) ⇒ (a) in Theorem 18,
we need to recall the following result due to Kapovich-
Leeb-Millson [KLM]. Suppose that x = (ḡ1, . . . , ḡs) ∈
(G/B)s is an unstable point and P(x) the Kempf’s parabolic
associated to π(x), where π : L → L(λ) is the map de-
fined above Theorem 7. Let δ̂ = [δ, a] be a Kempf’s
OPS associated to π(x). Express δ(t) = fγ(t) f −1, where
γ̇ ∈ h+. Then, the Kempf’s parabolic P(γ) is a stan-
dard parabolic. Define w j ∈ W/WP(γ) by f P(γ) ∈
g jBw jP(γ) for j = 1, . . . , s. Let P be a maximal parabolic
containing P(γ).

Theorem 21. (i) The intersection
⋂s

j=1 g jBw jP ⊂ G/P
is the singleton { f P}.

(ii) For the simple root αiP ∈ ∆\∆(P),
∑s

j=1 λ j(w jxiP ) >
0.

The equivalence of (a) and (d) in Theorem 2 follows
easily by combining Theorems 18 and 5.

Remark 22. The cone Γ̄3(g) ⊂ h3+ is quite explicitly
determined for any simple g of rank 2 in [KLM, §7];
any simple g of rank 3 in [KuLM]; and for g = so(8) in
[KKM]. It has 12(6+6); 18(9+9); 30(15+15); 41(10+

21 + 10); 93(18 + 48 + 27); 93(18 + 48 + 27); 294(36 +

186+36+36); 1290(126+519+519+126); 26661(348+

1662+4857+14589+4857+348) facets inside h3+ (inter-
secting the interior of h3+) for g of type A2; B2; G2; A3;
B3; C3; D4; F4; E6 respectively. The notation 30(15 +

15) means that there are 15 (irredundant) inequalities
coming from G/P1 and there are 15 inequalities com-
ing from G/P2. (The indexing convention is as in [Bo,
Planche I - IX].)

The following result is due to Ressayre [R]. In the
case G = SL(n), the result was earlier proved by Knutson-
Tao-Woodward [KTW].

Theorem 23. Let s ≥ 3. The set of inequalities pro-
vided by the (b)-part of Theorem 18 is an irredundant
system of inequalities describing the cone Γs(G)R gen-
erated by Γs(G) inside Λ+(R)s, i.e., the hyperplanes
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given by the equality in IP
(w1,...,ws)

are precisely those
facets of the cone Γs(G)R which intersect the interior
of Λ+(R)s.

By Theorem 5, the same result is true for the cone
Γ̄s(g).

Let g be a simple simply-laced Lie algebra and let
σ : g → g be a diagram automorphism with fixed
subalgebra k (which is necessarily a simple Lie algebra
again). Let b (resp. h) be a Borel (resp. Cartan) sub-
algebra of g such that they are stable under σ. Then,
bk := bσ (resp. hk := hσ) is a Borel (resp. Cartan) sub-
algebra of k. Let h+ and hk+ be the dominant chambers
in h and hk respectively. Then,

h
k
+ = h+ ∩ k.

We have the following result originally conjectured by
Belkale-Kumar [BK2] and proved by Belkale-Kumar
[BK2], Braley [Bra] and Lee [Le] (case by case).

Theorem 24. For any s ≥ 1,

Γ̄s(k) = Γ̄s(g) ∩ (hk+)s.

7 Saturation Problem

In Section 2, we defined the saturated tensor semigroup
Γs(G) (for any integer s ≥ 1) and determined it by de-
scribing its facets (cf. Theorems 18 and 23).

Define the tensor semigroup for G:

Γ̂s(G) =
{
(λ1, . . . , λs) ∈ Λs

+ : ([λ1] ⊗ · · · ⊗ [λs])G , 0
}
.

It is indeed a semigroup by [K2, Lemma 3.9]. The
saturation problem aims at comparing these two semi-
groups. We recall the following result (cf. [K2, Lemma
3.9]).

Lemma 25. There exists a uniform integer d > 0 (de-
pending only upon s and G) such that for any λ =

(λ1, . . . , λs) ∈ Γs(G), dλ = (dλ1, . . . , dλs) ∈ Γ̂s(G).

We now begin with the following definition. We take
s = 3 as this is the most relevant case to the tensor
product decomposition.

Definition 26. An integer d ≥ 1 is called a saturation
factor for G, if for any (λ, µ, ν) ∈ Γ3(G) such that λ +

µ+ν ∈ Q, we have (dλ, dµ, dν) ∈ Γ̂3(G), where Q is the
root lattice of G. Of course, if d is a saturation factor
then so is its any multiple. If d = 1 is a saturation factor
for G, we say that the saturation property holds for G.

The saturation theorem of Knutson-Tao (cf. The-
orem 9) asserts that the saturation property holds for
G = SL(n).

The following general result (though not optimal)
on saturation factor is obtained by Kapovich-Millson

[KM2] by using the geometry of geodesics in Euclidean
buildings and Littelmann’s path model. A weaker form
of the following theorem was conjectured by Kumar in
a private communication to J. Millson (also see [KT,
Conjecture]).

Theorem 27. For any connected simple G, d = k2
g

is a saturation factor, where kg is the least common
multiple of the coefficients of the highest root θ of the
Lie algebra g of G written in terms of the simple roots
{α1, . . . , α`}.

Observe that the value of kg is 1 for g of type A`(` ≥
1); it is 2 for g of type B`(` ≥ 2),C`(` ≥ 3),D`(` ≥ 4);
and it is 6, 12, 60, 12, 6 for g of type E6, E7, E8, F4,G2
respectively.

Kapovich-Millson determined Γ̂3(G) explicitly for
G = Sp(4) and G2 (cf. [KM1, Theorems 5.3, 6.1]).
In particular, from their description, the following the-
orem follows easily.

Theorem 28. The saturation property does not hold
for either G = Sp(4) or G2. Moreover, 2 is a saturation
factor (and no odd integer d is a saturation factor) for
Sp(4), whereas both of 2, 3 are saturation factors for
G2 (and hence any integer d > 1 is a saturation factor
for G2).

It was known earlier that the saturation property fails
for G of type B` (cf. [E]).

Kapovich-Millson [KM1] made the following very
interesting conjecture:

Conjecture 29. If G is simply-laced, then the satura-
tion property holds for G.

Apart from G = SL(n), the only other simply-connected,
simple, simply-laced group G for which the above con-
jecture is known so far is G = Spin(8), proved by
Kapovich-Kumar-Millson [KKM, Theorem 5.3] by ex-
plicit calculation using Theorem 18.

Finally, we have the following improvement of The-
orem 27 for the classical groups SO(n) and Sp(2`). It
was proved by Belkale-Kumar [BK2, Theorems 25 and
26] for the groups SO(2` + 1) and Sp(2`) by using
geometric techniques. Sam [S] proved it for SO(2`)
(and also for SO(2` + 1) and Sp(2`)) via the quiver ap-
proach following the proof by Derksen-Weyman [DW]
for G = SL(n). Hong-Shen [HS] show that the spin
group Spin(2` + 1) has saturation factor 2.

Theorem 30. For the groups SO(n) (n ≥ 7), Spin(2` +

1) and Sp(2`) (` ≥ 2), 2 is a saturation factor.
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