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Abstract. Let X be a quasiprojective smooth surface defined over an algebraically closed field
of positive characteristic. In this note we show that ifX is Frobenius split then so is the Hilbert
scheme Hilbn(X) of n points inX. In particular, we get the higher cohomology vanishing for
ample line bundles on Hilbn(X) whenX is projective and Frobenius split.

Introduction

LetX be a quasiprojective smooth surface defined over an algebraically closed
field k of positive characteristicp. For an integern ≥ 1, letX(n) be then-th
symmetric product ofX and letX[n] denote the Hilbert scheme ofn points in
X (parametrizing the zero dimensional closed subschemes ofX of lengthn).
Recall thatX[n] is smooth and there is a birational ‘Hilbert-Chow’ morphism
ψ : X[n] → X(n), which to each zero dimensional closed subscheme inX

of lengthn associates its support (with multiplicities). LetX(n)∗ denote the open
locus ofX(n) corresponding to the set of n-tuples with at leastn−1 distinct points
and letX[n]∗ denote its inverse image underψ . We show thatψ : X[n]∗ → X(n)∗
is a crepant resolution ifp > 2, in the sense thatX(n)∗ is Gorenstein such that
its dualizing line bundleω

X
(n)∗ pulls back to the canonical bundleω

X
[n]∗ onX[n]∗

underψ (cf. Theorem 1). In fact, ifp > n, ψ : X[n] → X(n) itself is a crepant
resolution (cf. Corollary 1). (This generalizes the corresponding result in char. 0
due to Beauville.) We make crucial use of our Theorem 1 to prove the following
main result of this paper:

LetX be as above andp > 2 .Assume thatX is Frobenius split. Then, for any
n ≥ 1, the Hilbert schemeX[n] is Frobenius split (cf. Theorem 2). In particular,
if X, in addition, is projective andL is an ample line bundle onX[n], thenL has
vanishing higher cohomology (cf. Corollary 2).
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The contents of the paper are as follows: Section 1 is devoted to recalling
the definition of Hilbert schemes, and Sect. 2 is devoted to the basic definitions
of Frobenius splitting. Sects. 3 and 4 are devoted to proving thatψ is a crepant
resolution. We prove our main theorem (Theorem 2) in Sect. 5.
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1. Hilbert schemes of points

Let X be a quasiprojective variety defined over an algebraically closed field
k. Fix an integern ≥ 1. The Hilbert schemeX[n] = Hilbn(X) of n points inX
parameterizes zero dimensional closed subschemes ofX of lengthn. The scheme
Hilbn(X) is quasiprojective and in fact projective whenX is so.

1.1. Symmetric products

Let Xn = X × · · · × X denote the n-fold product ofX, and letSn denote the
symmetric group onn letters. ThenSn acts onXn by permuting the factors. As
Xn is quasiprojective andSn is finite, the geometric quotient of this action exists
(cf. [10], Chap. III, Sect. 14). The quotient is denoted byX(n) and is called the
n-th symmetric productof X. LetΦ : Xn → X(n) denote the quotient map.

Points inX(n) correspond to unordered tuples of (not necessarily distinct)n

points inX. The open subset ofX(n) consisting of the tuples ofn distinct points
is denoted byX(n)∗∗ . If X is smooth, the varietyX(n) is smooth alongX(n)∗∗ and
moreover it is singular along the complement ofX(n)∗∗ if dim X ≥ 2 (cf. [3],
Sect. 2). Clearly, the codimension ofX(n) \ X(n)∗∗ in X(n) is equal to dimX. Let
X(n)∗ denote the open locus ofX(n) corresponding to the set of n-tuples with at
leastn− 1 distinct points.

1.2. Hilbert-Chow morphism ([2], Sect. 2)

Let X[n]
red denote the underlying reduced subscheme ofX[n]. TheHilbert-Chow

morphismis the mapψ : X[n]
red → X(n), which to each zero dimensional closed

subscheme inX of length n associates its support (with multiplicities). The
Hilbert-Chow morphism is birational, being an isomorphism over the open set
X(n)∗∗ .
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WhenX is a smooth surface, the Hilbert schemeX[n] is also smooth (in
particular reduced). Hence, in this case,ψ is a desingularization of the symmetric
productX(n).

2. Frobenius splitting – basic definitions

Let π : X → Spec(k) be a scheme defined over an algebraically closed field
k of positive characteristicp. The absolute Frobenius morphismon X is the
identity on point spaces and raising to thep-th power locally on functions. The
absolute Frobenius morphism isnot a morphism ofk-schemes. LetX′ be the
scheme obtained fromX by base change with the absolute Frobenius morphism
on Spec(k), i.e., the underlying topological space ofX′ is that ofXwith the same
structure sheafOX of rings, only the underlyingk-algebra structure onOX′ is
twisted asλ
 f = λ1/pf , for λ ∈ k andf ∈ OX′ . Using this description ofX′,
the relative Frobenius morphismF : X → X′ is defined in the same way as the
absolute Frobenius morphism and it is a morphism ofk-schemes.

2.1. Frobenius splitting [8]

Recall that a varietyX is calledFrobenius splitif the homomorphismOX′ →
F∗OX of OX′-modules is split.A homomorphismσ : F∗OX → OX′ is a splitting
of OX′ → F∗OX (called aFrobenius splitting) if and only if σ(1) = 1.

WhenX is a smooth variety with canonical bundleωX, there is a natural
isomorphism ofOX′-modules ([8]):

F∗(ω
1−p
X ) ∼= HomOX′ (F∗OX,OX′).

In this way global sections ofω1−p
X correspond to homomorphismsF∗OX →

OX′ . A section ofω1−p
X which corresponds to a Frobenius splitting in this way,

is called asplitting section. Checking whether a section ofω1−p
X is a splitting

section can be done locally. More precisely, we have the following result.

Lemma 1([8]). LetU be an open dense subset of a smooth varietyX. If a section
s ∈ H0(X, ω

1−p
X ) restricts to a splitting sections|U ∈ H0(U, ω

1−p
U ) onU , thens

is a splitting section.
An immediate consequence of the definition of Frobenius splitting is

Lemma 2 ([8]). LetX be a Frobenius split variety and letL be a line bundle on
X such thatHi(X,Lm) = 0 for all largem (for a fixedi). ThenHi(X,L) = 0.

Proof. This follows from the fact that ifX is Frobenius split andL is a line
bundle onX, then there is an injective map

Hi(X,L) ↪→ Hi(X,Lp)

of abelian groups. ��
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In particular, Lemma 2.1 implies that ample line bundles on projective Frobe-
nius split varieties have vanishing higher cohomology.

3. Ramification

In this section we have the following setup. ByH = {e, σ } we denote the group
of order 2, acting nontrivially on a smooth quasiprojective varietyY over a field
of characteristicp �= 2. We denote the quotient ofY under this action byX
with the corresponding quotient mapπ . We will assume, in addition, thatX is
smooth.

Lemma 3. Assume thatY = Spec(B)andX = Spec(A)areaffine. LetE denote
an irreducible subvariety ofX of codimension 1 corresponding to a prime ideal
p in A. Let s ∈ A generatep in the local ringAp. If π is bijective overE, then
there exist a unique prime idealp′ in B over p. Furthermore, ifv denotes the
valuation on the discrete valuation ringBp′, thenv(s) = 2.

Proof. Assume thatp′ andp′′ are two different prime ideals inB lying over the
prime idealp in A. LetE′ andE′′ denote the corresponding subvarieties ofY .
Thenσ(E′) = E′′. Choosey ∈ E′ \E′′. Sinceσ(y) ∈ E′′, σ(y) �= y. Buty and
σ(y) both map to the same point inE, which is a contradiction. This proves the
first part of the statement.

LetE′ denote the irreducible subvariety ofY corresponding to the prime ideal
p′ in B lying overp. Let t ∈ B be an element generating the maximal ideal in
the local ringBp′. Chooseb, b′ ∈ B \ p′ such that

s = tv(s)
b

b′ .

As the productσ(t)t is H -invariant, we can finda, a′ ∈ A \ p and a positive
integerl such that

σ(t)t = sl
a

a′ .

Hence, we get

s2 = σ(s)s = (σ (t)t)v(s)
σ (b)b

σ(b′)b′ = slv(s)(
a

a′ )
v(s) σ (b)b

σ(b′)b′ ,

from which we obtainlv(s) = 2 (observe thatσ(b)b andσ(b′)b′ ∈ A \ p).
Assume, if possible, thatv(s) = 1. Then replacingt by tbσ (b′)ands bysb′σ(b′),
we can assume thats = t . Take a nonzerof ∈ B such thatσ(f ) = −f (e.g.
f = g−σ(g) for an elementg not invariant underH ). SinceH is acting trivially
onE′, it acts trivially onB/p′ and hencef belongs top′ (here we are using the
assumption thatp �= 2).
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Write
f = tv(f )

c

c′ ,

for c, c′ ∈ B \ p′. Applying σ we get,

σ(f ) = tv(f )
σ (c)

σ (c′)
.

But, by choice,σ(f ) = −f and henceσ(cσ (c′)) = −(cσ (c′)). In particular,
cσ (c′) ∈ p′. A contradiction, proving thatv(s) = 2. ��
Proposition 1. LetE be an irreducible reduced divisor ofX and assume thatπ
is bijective overE. Then there exist a unique irreducible reduced divisorE′ of
Y mapping ontoE. Furthermore,π∗(O(E)) = O(2E′).

Proof. That there exists a unique (reduced and irreducible) divisorE′ in Y map-
ping ontoE follows from the corresponding local statement in Lemma 3. Let
s be a section ofO(E) with scheme theoretic divisor of zeros(s)0 equal toE.
We want to show thatπ∗(s) has divisor of zeros equal to 2E′. But this can be
checked locally, and the local statement follows from Lemma 3. ��
Remark 1.The above proposition is false, in general, forp = 2 and so is the
next lemma.

The following lemma is well known.

Lemma 4. LetV be a closedH -invariant subvariety ofY . Thenπ(V ) (with the
reduced closed subscheme structure) is the quotient ofV byH . (For this lemma,
it is not necessary to assumeY or X to be smooth.)

The following is an analogue of Hurwitz theorem.

Proposition 2. LetE = {y ∈ Y : σ(y) = y} denote the fixed point (reduced)
subvariety of the action ofH on Y . If E is a (closed) irreducible divisor inY ,
thenπ∗(ωX) = ωY ⊗ O(−E).
Proof. Let (dπ)n : π∗(ωX) → ωY denote then-th (wheren := dim(Y )) exte-
rior power of the differentialdπ : π∗(ΩX) → ΩY of π , and letρ denote the
corresponding global section of the line bundleωY ⊗ π∗(ωX)−1. We want to
show that the scheme theoretic divisor of zeros(ρ)0 of ρ is equal toE:

LetU denote the complement ofE in Y . ThenU is an open subset ofY on
whichH acts freely. The restriction of the quotient mapπ to U is hence ´etale.
In particular, the support of(ρ)0 must be contained inE. AsE is irreducible and
(ρ)0 is effective, there exists a non-negative integerl such that(ρ)0 = lE. We
have to show thatl = 1: This can be done locally around a point inE, so we
may assume thatX andY are affine with coordinate ringsA ⊂ B respectively.
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By Lemma 4, the imageπ(E) (with the reduced closed subscheme structure)
is isomorphic toE. We may therefore think ofE as a closed (irreducible) sub-
variety of bothX andY (of codim. 1). Letp (resp.p′) denote the prime ideal
of height 1 inA (resp.B) corresponding toE. Chooses ∈ A (resp.t ∈ B)
generatingp (resp.p′) in the local ringAp (resp.Bp′).

By Lemma 3, we know that there existb, b′ ∈ B \ p′ such that

s = t2
b

b′ .

Replacings by sb′σ(b′) andb by bσ(b′), we may assume thatb′ = 1. Hence
s = t2b. Now choose a pointz in E such that

– E is smooth atz.
– b(z) �= 0.
– p (resp.p′) is generated bys (resp.t) in the local ringAmz (resp.Bm′

z
), where

mz (resp.m′
z) is the maximal ideal corresponding toz in X (resp.Y ).

(Since all these three conditions are separately valid on dense open sets inE,
such az indeed exists.) AsE (by the choice ofz) is smooth atz, the local ring
Amz/p = Bm′

z
/p′ is regular. We can therefore choose elementss2, . . . , sn ∈ A

generating the maximal ideal in this local ring. Henceds∧ds2 ∧· · ·∧dsn (resp.
dt ∧ ds2 ∧ · · · ∧ dsn) is a generator ofπ∗(ωX) (resp.ωY ) at z. Let c ∈ Bm′

z
be

the element such that

db ∧ ds2 ∧ · · · ∧ dsn = c · (dt ∧ ds2 ∧ · · · ∧ dsn).
Then

ds ∧ ds2 ∧ · · · ∧ dsn = t (ct + 2b) · (dt ∧ ds2 ∧ · · · ∧ dsn).(1)

Noticing thatct + 2b is a unit inBm′
z

(by the choice ofz), it follows thatl = 1
(sincel is the exponent oft on the right side of Equation (1) above). ��
Remark 2.All the results in this section are apparently known, but we did not
find an appropriate reference. Also one can formulate and prove the analogues of
all these results forH replaced by any finite groupG, provided thatp is coprime
to the order ofG.

4. Crepant resolutions

In this sectionX will denote a smooth quasiprojective surface over an alge-
braically closed fieldk of char.p �= 2. For any positive integern, as in Sect. 1,
let X[n] denote the Hilbert scheme ofn points inX andψ : X[n] → X(n) the
Hilbert-Chow morphism. WheneverZ is a smooth variety, we denote byωZ the
canonical bundle onZ.
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4.1. A fibre diagram

As in Sect. 1, letΦ : Xn → X(n) denote the quotient map. Restrictions ofΦ

andψ toXn∗ := Φ−1(X(n)∗ ) andX[n]∗ := ψ−1(X(n)∗ ) respectively, yields the fibre
product diagram:

X̃n∗
ψ̃−−−→ Xn∗

Φ̃



�



�Φ

X[n]∗
ψ−−−→ X(n)∗

It is well known thatX̃n∗ is the blow-up ofXn∗ along the big diagonals∆ij :=
{(x1, . . . , xn) ∈ Xn∗ : xi = xj } (i < j ), and that the map̃Φ is the quotient map
by the inducedSn-action (cf. [3], Lemma 4.4). Let̃Eij denote the exceptional
(reduced) divisor inX̃n∗ corresponding to the diagonal∆ij , and letẼ denote the
union of theẼij . LetX[n]∗∗ denote the open subsetψ−1(X(n)∗∗ ) in X[n]∗ , and letE
denote the complement ofX[n]∗∗ in X[n]∗ with the reduced scheme structure. The
varietyE is called theexceptional locusof X[n]∗ . Clearly,E is the image ofẼij
underΦ̃ for anyi < j . In particular,E is an irreducible variety.

4.2. Factorization ofΦ̃

As mentioned above, the map̃Φ : X̃n∗ → X[n]∗ is the quotient of a certainSn-
action onX̃n∗ .We may divide this quotient into two parts. LetAn be the alternating
(normal) subgroup ofSn, and letH denote the quotientSn/An. Let X̃[n]∗ denote
the quotient ofX̃n∗ by An, and letΦ̃1 denote the corresponding quotient map.
ClearlyX[n]∗ is then the quotient of̃X[n]∗ byH , and we denote the corresponding
quotient map byΦ̃2. ThenΦ̃ = Φ̃2 ◦ Φ̃1.

4.2.1. Description ofΦ̃1 andΦ̃2 It is easily seen thatAn is acting freely onXn∗
and hence also oñXn∗ . As X̃n∗ is smooth, this implies that the quotientX̃[n]∗ is also
smooth, and that the quotient map is ´etale. In particular, we get

Lemma 5. Φ̃∗
1(ωX̃[n]∗ ) = ωX̃n∗ .

All the divisorsẼij map to the same divisorE′ in X̃[n]∗ . ClearlyH acts trivially
on E′, hence it follows from Lemma 4 that (reduced)E′ is isomorphic toE.
We will however keep the notationE′ to emphasize thatE′ is thought of as a
subvariety ofX̃[n]∗ . By Proposition 1, we get

Lemma 6. Φ̃∗
2(O(E)) = O(2E′).

We also need the following similar result.
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Lemma 7. Φ̃∗
1(O(E′)) = O(Ẽ).

Proof. This follows easily sinceΦ̃1 is an étale map (in particular, a smooth
morphism) and the set theoretic inverse image ofE′ underΦ̃1 is exactly equal
to Ẽ. ��

Finally, we need the following result which follows immediately from Propo-
sition 2.

Lemma 8. Φ̃∗
2(ωX[n]∗ ) = ω

X̃
[n]∗ ⊗ O(−E′).

4.3. Crepant resolution

In this section we will prove the following crucial result.

Theorem 1. Let char.k �= 2. Thenψ : X[n]∗ → X(n)∗ is a crepant resolution,
meaning thatX(n)∗ is Gorenstein such that its dualizing line bundleω

X
(n)∗ pulls

back to the canonical bundleω
X

[n]∗ onX[n]∗ underψ .

First we need the following preparatory lemmas.

Recall that two cyclesZ = ∑
miZi andY = ∑

njYj in an irreducible scheme
X are said to meetproperly if codim(Zi ∩ Yj ) = codim(Zi) + codim(Yj ),
whenevermi andnj are non-zero (cf. [4], Sect. 11.4).

Lemma 9. Let L be a line bundle on any quasiprojective smooth varietyX

defined over an algebraically closed fieldk, andp1, p2, . . . , pn be a finite set of
points inX. Then there exist an open subsetU in X containingp1, p2, . . . , pn
such that the restriction ofL toU is trivial.

Proof. As any line bundle on a smooth variety is the quotient of two effective
line bundles, we may assume thatL is effective. Lets be a global section of
L, and let(s)0 denote the divisor of zeros ofs. By the Moving Lemma ([4],
Sect. 11.4), there exist a divisorZ rationally equivalent to(s)0 such thatZ meets
properly with

∑
pi . In other words, the complementU of the support ofZ

containsp1, . . . , pn. Since rationally equivalent divisors give rise to isomorphic
line bundles (cf. [4], Example 2.1.1),L|U is trivial. This proves the lemma. ��

Let nowX be a smooth quasiprojective even dimensional variety of dimension
m, and letω denote the canonical bundle onX. Then the canonical bundle on
Xn is isomorphic toωn := ⊗n

i=1p
∗
i (ω), wherepi is the projectionXn → X on

thei-th factor. We regardωn as aSn-equivariant sheaf onXn in the obvious way.
The sheafωSnn of Sn-invariant sections ofωn can then naturally be thought of as
a sheaf onX(n). We claim

Lemma 10. The sheafωSnn is a line bundle onX(n).
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Proof. Let p = (p1, . . . , pn) be a point ofX(n). By the above Lemma, there
exist an open subsetU ofX containingp1, . . . , pn and such that the line bundle
ω|U is trivial. As the fibre overp (under the quotient map) is contained inUn and
as the assertion of the lemma is local, we may assume thatX = U . In particular,
we can assume thatω is trivial.

Let dX be a generating global section ofω. ThendXn = �n
i=1dX is a

generating global section ofωn. As dX is an even form, the sectiondXn is Sn-
invariant, and hence also a global generating section ofωSnn . This proves thatωSnn
is a line bundle. ��
Lemma 11. As above, letX be a smooth quasiprojective even dimensional va-
riety. Then, there exists a unique line bundleL onX(n) which restricts to the
canonical bundle onX(n)∗∗ .

In particular, if char.k �= 2,X(n)∗ is Gorenstein with the dualizing line bundle
L|X(n)∗ . (We denoteL|X(n)∗ byω

X
(n)∗ .)

Proof. TakingL = ωSnn , the existence of line bundleL follows from the above
lemma. Since the mapΦ restricted toXn∗∗ is étale, the canonical bundleω

X
(n)∗∗

pulls back to the canonical bundleωXn∗∗ . Hence,L restricts to the canonical bundle
onX(n)∗∗ . The uniqueness ofL follows since the codimension ofX(n) \X(n)∗∗ in the
normal varietyX(n) ism ≥ 2.

SinceAn acts freely on (smooth)Xn∗ , the quotientX̃(n)∗ is smooth (and hence
Cohen-Macaulay). Further,X(n)∗ = X̃(n)∗ /H and hence it is Cohen-Macaulay
(sincep �= 2). Now, the assertion thatX(n)∗ is Gorenstein, follows from [6],
Lemma (2.7). ��
Remark 3.LetX be a normal and Gorenstein varietyX of even dimension over
an algebraically closed field of char.p. ThenX(n) is Gorenstein (and normal)
providedp > n. (This is a result due to Aramova [1].) To prove this, apply the
‘descent’ lemma (cf., e.g., [7]) to the canonical bundleωXn of theSn-varietyXn

to get a line bundleL onX(n). Moreover,L|U(n)∗∗ is the canonical bundle (where
U ⊂ X is the smooth locus), sinceΦ|Un is anétale map. But the complement of
U(n)∗∗ inX(n) has codim.≥ 2 andX(n) is Cohen-Macaulay. Hence, by [6], Lemma
(2.7),L is the dualizing line bundle ofX(n). This proves thatX(n) is Gorenstein.

From now on, we revert to the assumption thatX is a smooth quasiprojective
surface andp �= 2.

Lemma 12. Let ω
X
(n)∗ be the dualizing line bundle onX(n)∗ guaranteed by the

above lemma. Then there exist an integert such that

ψ∗(ω
X
(n)∗ ) � ω

X
[n]∗ ⊗ O(tE).
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Proof. As ψ is an isomorphism overX(n)∗∗ and the restriction ofω
X
(n)∗ toX(n)∗∗ is

isomorphic to the canonical bundle, we see that

(ψ∗(ω
X
(n)∗ ))|X[n]∗∗ = ω

X
[n]∗∗ .

AsE is irreducible, this clearly implies the result. ��
Lemma 13. The canonical bundle oñXn∗ is given by

ωX̃n∗ = ψ̃∗(ωXn∗ )⊗ O(Ẽ),
whereωXn∗ denotes the canonical bundle onXn∗ .

Proof. Follows from [5], Exercise II.8.5. ��
Now we can prove Theorem 1.

Proof. (of Theorem 1) Chooset ∈ Z with the property as given in Lemma 12.
We need to show thatt = 0: By Lemmas 12, 5 - 8, we know that

Φ̃∗(ψ∗(ω
X
(n)∗ )) = Φ̃∗(ω

X
[n]∗ ⊗ O(tE))

= Φ̃∗
1(ωX̃[n]∗ ⊗ O((2t − 1)E′))

= ωX̃n∗ ⊗ O((2t − 1)Ẽ).

(2)

We want to compare this with an alternative way of calculating the left side of
the equation above. Sinceψ ◦ Φ̃ = Φ ◦ ψ̃ ,

Φ̃∗(ψ∗(ω
X
(n)∗ )) = ψ̃∗(Φ∗(ω

X
(n)∗ )).(3)

AsΦ is étale overX(n)∗∗ , the canonical bundle onX(n)∗∗ pulls back to the canonical
bundle onXn∗∗. In particular,Φ∗(ω

X
(n)∗ ) restricts to the canonical bundle onXn∗∗.

But the complement ofXn∗∗ in Xn∗ has codimension 2, which forcesΦ∗(ω
X
(n)∗ )

to be the canonical bundle onXn∗ (asXn∗ is smooth, in particular, normal). By
Lemma 13, we therefore get

ψ̃∗(Φ∗(ω
X
(n)∗ )) = ωX̃n∗ ⊗ O(−Ẽ).(4)

Combining(2)− (4), we get(2t−1) = −1 (sinceO(Ẽ) is a nontorsion element
of Pic X̃n∗), which forcest to be equal to zero as desired. ��

The following result in char. 0 is due to Beauville.

Corollary 1. Let char.k > n. ThenX(n) is Gorenstein andψ : X[n] → X(n) is
a crepant resolution.

Proof. The assertion thatX(n) is Gorenstein follows by the same argument as
for X(n)∗ (cf. the proof of Lemma 11) . Now, since the codim. ofX[n] \ X[n]∗ in
X[n] is at least two, the corollary follows from the above theorem. ��
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5. Frobenius splitting of Hilbert schemes

Let X be a quasiprojective smooth surface over an algebraically closed fieldk

of positive char.p. In this section we will prove thatX[n] is Frobenius split ifX
is Frobenius split. First we need

Lemma 14. LetY be a quasiprojective Frobenius split variety overk. Then the
n-th symmetric productY (n) of Y is Frobenius split.

Proof. Letσ : F∗OY → OY ′ be a Frobenius splitting ofY .Thenσ�n : F∗OYn →
O(Y n)′ is a Frobenius splitting of then-fold product ofY . As σ�n is equivariant
with respect to the natural actions of the symmetric groupSn, it takesSn-invariant
functions onYn to Sn-invariant functions on(Y n)′. As OY (n) is the subsheaf of
OYn consisting ofSn-invariant functions,σ�n induces a Frobenius splitting of
Y (n). ��
Theorem 2. LetX be a quasiprojective Frobenius split smooth surface over an
algebraically closed fieldk of char.p > 2 . Then, for anyn ≥ 1, the Hilbert
schemeX[n] of n points inX is Frobenius split.

Proof. By Lemma 14, then-th symmetric productX(n) is Frobenius split. In
particular,X(n)∗∗ is Frobenius split. Letσ ′ be a splitting section ofω1−p

X
(n)∗∗

onX(n)∗∗ .

Thinking of σ ′ as a section ofω1−p
X
(n)∗

overX(n)∗∗ , asX(n)∗ is normal and codim. of

X(n)∗ \ X(n)∗∗ in X(n)∗ is two, we can extendσ ′ to a global sectionσ of ω1−p
X
(n)∗

over

X(n)∗ (cf. Lemma 11). Consider the sectionσ̃ = ψ∗(σ ) of ψ∗(ω1−p
X
(n)∗
) = ω

1−p
X

[n]∗
overX[n]∗ (cf. Theorem 1), and extend it to a sectionσ̂ of ω1−p

X[n] overX[n]. (This is
possible sinceX[n] is smooth, in particular, normal and the codim. ofX[n] \X[n]∗
in X[n] is at least two.)

We claim thatσ̂ is a splitting section ofω1−p
X[n] overX[n]. To see this, it is

enough to prove that the restriction̂σ ′ of σ̂ to X[n]∗∗ is a splitting section over
X[n]∗∗ . ButX[n]∗∗ is isomorphic toX(n)∗∗ underψ , and moreover̂σ ′ corresponds to
σ ′ under this isomorphism. Asσ ′, by definition, Frobenius splitsX(n)∗∗ , the result
follows. ��
Corollary 2. LetX be a smooth projective Frobenius split surface over a field
of characteristicp > 2, and letL be an ample line bundle on the Hilbert scheme
X[n]. ThenL has vanishing higher cohomology.

Remark 4.(a) One can use Corollary 2 and the Semicontinuity Theorem to get
a similar vanishing result in characteristic 0.

(b) As mentioned by V. Mehta, the known list of Frobenius split smooth
surfaces includes
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(1) Projective examples : toric surfaces (in particularP
1 × P

1 andP
2), ordinary

K3 surfaces and ordinary abelian surfaces. Furthermore, ifs is a splitting
section of a smooth surfaceX which vanishes to order(p− 1) along a point
x onX, then the blow-up ofX alongx is also Frobenius split.

(2) Affine examples : any smooth affine surface is Frobenius split. (In fact, any
smooth affine variety is Frobenius split.)

It is furthermore known that any projective surface, with Kodaira dimension
≥ 1, is not Frobenius split. Also non-ordinary K3 and abelian surfaces are not
Frobenius split.

(c) If the punctual Hilbert schemeH [n] (i.e. the fibre of the Hilbert-Chow
morphismψ at (x, · · · , x) for somex ∈ X) hasHi(H [n],OH [n]) = 0 for all
i > 0, then (under the assumptions of Theorem 2 )ψ is a rational resolution. In
particular, for any smooth quasi projective surfaceX (not necessarily Frobenius
split),X(n) would be Cohen-Macaulay.

Remark 5.T. Ekedahl has informed us that the following vanishing theorem can
be deduced from the results in this paper : LetX be an abelian surface over a field
of characteristic zero and letL be an ample line bundle onX[n]. Using thatX
has infinitely many ordinary reductions to fields of positive characteristics ([9],
Cor. 2.9) one gets :Hi(X[n], L) = 0 , i > 0.
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