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Abstract. Let X be a quasiprojective smooth surface defined over an algebraically closed field
of positive characteristic. In this note we show thaXifs Frobenius split then so is the Hilbert
scheme HilB(X) of n points in X. In particular, we get the higher cohomology vanishing for
ample line bundles on HiliX) whenX is projective and Frobenius split.

Introduction

Let X be a quasiprojective smooth surface defined over an algebraically closed
field k of positive characteristip. For an integen > 1, let X® be then-th
symmetric product of and letX" denote the Hilbert scheme afpoints in

X (parametrizing the zero dimensional closed subschemés aiflengthn).
Recall thatX"! is smooth and there is a birational ‘Hilbert-Chow’ morphism
¥ X" — X@™ which to each zero dimensional closed subschem in
of lengthn associates its support (with multiplicities). L&{” denote the open
locus ofX ™ corresponding to the set of n-tuples with at leastl distinct points
and letx!"! denote its inverse image undgr We show thaty : X! — x ™

is a crepant resolution if > 2, in the sense that™ is Gorenstein such that
its dualizing line bundleuxin) pulls back to the canonical bunddgdnl on X!

undery (cf. Theorem 1). In fact, ifp > n, ¥ : X"l — X® itself is a crepant
resolution (cf. Corollary 1). (This generalizes the corresponding resultin char. 0
due to Beauville.) We make crucial use of our Theorem 1 to prove the following
main result of this paper:

Let X be as above ang > 2. Assume thak is Frobenius split. Then, for any
n > 1, the Hilbert schemé ! is Frobenius split (cf. Theorem 2). In particular,
if X, in addition, is projective and is an ample line bundle ok, thenL has
vanishing higher cohomology (cf. Corollary 2).
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The contents of the paper are as follows: Section 1 is devoted to recalling
the definition of Hilbert schemes, and Sect. 2 is devoted to the basic definitions
of Frobenius splitting. Sects. 3 and 4 are devoted to provingythiata crepant
resolution. We prove our main theorem (Theorem 2) in Sect. 5.
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1. Hilbert schemes of points

Let X be a quasiprojective variety defined over an algebraically closed field
k. Fix an integern > 1. The Hilbert schem& ! = Hilb"(X) of n points inX
parameterizes zero dimensional closed subscheniésfdengthn. The scheme
Hilb” (X) is quasiprojective and in fact projective wh&ns so.

1.1. Symmetric products

Let X" = X x --- x X denote the n-fold product of, and letS, denote the
symmetric group om letters. Thers, acts onX” by permuting the factors. As
X" is quasiprojective ang, is finite, the geometric quotient of this action exists
(cf. [10], Chap. lll, Sect. 14). The quotient is denotedX¥’ and is called the
n-th symmetric produadf X. Let @ : X" — X denote the quotient map.
Points inX™ correspond to unordered tuples of (not necessarily distinct)
points inX. The open subset & ™ consisting of the tuples of distinct points
is denoted byX™. If X is smooth, the variet) ™ is smooth alongk” and
moreover it is singular along the complementXf? if dim X > 2 (cf. [3],
Sect. 2). Clearly, the codimension &f” \ X in X™ is equal to dimx. Let
X denote the open locus of™ corresponding to the set of n-tuples with at
leastn — 1 distinct points.

1.2. Hilbert-Chow morphism ([2], Sect. 2)

Let X"l denote the underlying reduced subschem&6f. The Hilbert-Chow
morphismis the mapy : X}, — X which to each zero dimensional closed
subscheme X of lengthn associates its support (with multiplicities). The
Hilbert-Chow morphism is birational, being an isomorphism over the open set
xm,
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When X is a smooth surface, the Hilbert scherk&! is also smooth (in
particular reduced). Hence, in this cagds a desingularization of the symmetric
productX ™.

2. Frobenius splitting — basic definitions

Letr : X — Speck) be a scheme defined over an algebraically closed field
k of positive characteristip. The absolute Frobenius morphison X is the
identity on point spaces and raising to thih power locally on functions. The
absolute Frobenius morphismmnet a morphism ofk-schemes. LeK’ be the
scheme obtained frorki by base change with the absolute Frobenius morphism
on Speck), i.e., the underlying topological spaceXfis that ofX with the same
structure shea®y of rings, only the underlying-algebra structure 0®y. is
twisted as. © f = AYP f, for A € k and f € Oy .. Using this description ok’,

the relative Frobenius morphisi : X — X' is defined in the same way as the
absolute Frobenius morphism and it is a morphisrhk-e€hemes.

2.1. Frobenius splitting [8]

Recall that a variety is calledFrobenius splitif the homomorphisnOy: —
F.Ox of Oyx,-modules is split. Ahomomorphism: F.Ox — Oy is a splitting
of Oy — F.Oyx (called aFrobenius splitting if and only ifo (1) = 1.

When X is a smooth variety with canonical bundig, there is a natural
isomorphism ofDx.-modules ([8]):

F.(wy ") = Homo,,(F,Ox, Ox).

In this way global sections czﬁ)l{” correspond to homomorphisniEOy —
Oyx. A section ofa)i_” which corresponds to a Frobenius splitting in this way,
is called asplitting section Checking whether a section a)fi{” is a splitting
section can be done locally. More precisely, we have the following result.
Lemma 1([8]). Let U be an open dense subset of a smooth vaietlya section
s € HO(X, wy, ”) restricts to a splitting sectiar, € HO(U, oy, ”) onU, thens
is a splitting section.

An immediate consequence of the definition of Frobenius splitting is

Lemma 2 ([8]). Let X be a Frobenius split variety and [etbe a line bundle on
X such thatd’(X, L™) = 0 for all largem (for a fixedi). ThenH' (X, L) = 0.

Proof. This follows from the fact that ifX is Frobenius split and. is a line
bundle onX, then there is an injective map

Hi (X, L) — Hi (X, L")

of abelian groups. O
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In particular, Lemma 2.1 implies that ample line bundles on projective Frobe-
nius split varieties have vanishing higher cohomology.

3. Ramification

In this section we have the following setup. By= {e, o} we denote the group
of order 2, acting nontrivially on a smooth quasiprojective varietyer a field
of characteristico # 2. We denote the quotient of under this action by
with the corresponding quotient map We will assume, in addition, tha is
smooth.

Lemma 3. Assumethal = Spe¢B) andX = SpecA) are affine. Le denote
an irreducible subvariety ok of codimension 1 corresponding to a prime ideal
pin A. Lets € A generatep in the local ring A, If 7 is bijective overE, then
there exist a unique prime idegal in B overp. Furthermore, ifv denotes the
valuation on the discrete valuation ringy,, thenv(s) = 2.

Proof. Assume thap’ andp” are two different prime ideals iB lying over the
prime idealp in A. Let E’ and E” denote the corresponding subvarietieg of
Theno (E’) = E”. Choosey € E’'\ E”. Sinceo (y) € E”,o(y) # y.Buty and
o (y) both map to the same point i, which is a contradiction. This proves the
first part of the statement.

Let £’ denote the irreducible subvarietytorresponding to the prime ideal
p’in B lying overp. Letr € B be an element generating the maximal ideal in
the local ringB,,. Chooseb, b" € B \ p’ such that

v(s)ﬁ_
b/

As the product (7)t is H-invariant, we can findi, ' € A \ p and a positive

integer! such that

s =1

a
o(t)t = sl—/.
a
Hence, we get

)U(S) o (b)b lv(s)( )U(S) o(b)b
o(bb o (D)’

from which we obtainv(s) = 2 (observe that (b)b ando (b)b' € A\ p).
Assume, if possible, thats) = 1. Thenreplacingby:bo (') ands by sb'o (1),
we can assume that= r. Take a nonzerg’ € B such thaib (f) = —f (e.Q.
f = g—o(g) for an elemeng notinvariant undeH). SinceH is acting trivially
on E’, it acts trivially onB/p’ and hencef belongs tg’ (here we are using the
assumption thap £ 2).

§% = o(s)s = (o(t)t
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Write c
_ (N
f=r02

forec, ¢’ € B\ p'. Applying o we get,

o(f)= t”(f)—a(c) )

o(c)
But, by choiceg (f) = —f and hencer(co (¢')) = —(co(c")). In particular,
co(c") € p’. A contradiction, proving that(s) = 2. O

Proposition 1. Let E be an irreducible reduced divisor &f and assume that
is bijective overE. Then there exist a unique irreducible reduced divigoiof
Y mapping ontaE. Furthermore*(O(E)) = O(2E').

Proof. That there exists a unique (reduced and irreducible) divisam Y map-
ping onto E follows from the corresponding local statement in Lemma 3. Let
s be a section 0O (FE) with scheme theoretic divisor of zer@s)o equal toE.

We want to show that*(s) has divisor of zeros equal tak2. But this can be
checked locally, and the local statement follows from Lemma 3. O

Remark 1.The above proposition is false, in general, joe= 2 and so is the
next lemma.

The following lemma is well known.

Lemma 4. LetV be a closedd-invariant subvariety of'. Thenr (V) (with the
reduced closed subscheme structure) is the quotievityf H. (For this lemma,
it is not necessary to assurieor X to be smooth.)

The following is an analogue of Hurwitz theorem.

Proposition 2. LetE = {y € Y : o(y) = y} denote the fixed point (reduced)
subvariety of the action aff onY. If E is a (closed) irreducible divisor iry,
thenn*(wy) = wy @ O(—E).

Proof. Let (dn)" : n*(wx) — wy denote the:-th (wheren := dim(Y)) exte-
rior power of the differentializ : 7*(2x) — 2y of =, and letp denote the
corresponding global section of the line bundlg ® 7*(wx)~!. We want to
show that the scheme theoretic divisor of zefoxg of p is equal toE':

Let U denote the complement @& in Y. ThenU is an open subset dof on
which H acts freely. The restriction of the quotient mapo U is henceetale.
In particular, the support @jp)o must be contained if. As E is irreducible and
(p)o is effective, there exists a non-negative integeuch that(p)o = I E. We
have to show that = 1: This can be done locally around a pointAn so we
may assume thaX andY are affine with coordinate ringé C B respectively.
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By Lemma 4, the image (E) (with the reduced closed subscheme structure)
is isomorphic toE. We may therefore think of as a closed (irreducible) sub-
variety of bothX andY (of codim. 1). Letp (resp.p’) denote the prime ideal
of height 1 inA (resp.B) corresponding t&&. Chooses € A (resp.t € B)
generating (resp.p’) in the local ringA,, (resp.By).

By Lemma 3, we know that there existh’ € B \ p’ such that

Replacings by sb'o (') andb by bo (b'), we may assume that = 1. Hence
s = t?b. Now choose a poing in E such that

— E is smooth at..

— b(z) #0.

— p (resp.p’) is generated by (resp.r) in the local ringA,,. (resp.B,, ), where
m_ (resp.m’) is the maximal ideal correspondinggan X (resp.Y).

(Since all these three conditions are separately valid on dense open #gts in
such az indeed exists.) A& (by the choice ot) is smooth at;, the local ring
A,./p = B, /p" is regular. We can therefore choose elemepts. ., s, € A
generating the maximal ideal in this local ring. Hedsex dsy A - - - Adss,, (resp.

dt Adsy A --- Ads,) is a generator of*(wy) (resp.wy) atz. Letc € B, be

the element such that '

db ANdsyAN---ANds, =c-(dt ANdsy A---ANdsy).
Then
Q) ds Ndso N - Nds, =t(ct +2b) - (dt ANdsa A -+ Ndsy).

Noticing thatcr + 2b is a unitin B,,; (by the choice ot), it follows that/ = 1
(sincel is the exponent of on the right side of Equation (1) above). ]

Remark 2.All the results in this section are apparently known, but we did not
find an appropriate reference. Also one can formulate and prove the analogues of
all these results foH replaced by any finite grou@, provided thap is coprime

to the order ofG.

4. Crepant resolutions

In this sectionX will denote a smooth quasiprojective surface over an alge-
braically closed field of char.p # 2. For any positive integer, as in Sect. 1,

let X!"! denote the Hilbert scheme afpoints inX andy : X"l — X® the
Hilbert-Chow morphism. Whenevet is a smooth variety, we denote by the
canonical bundle ox.
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4.1. Afibre diagram

As in Sect. 1, le : X" — X denote the quotient map. Restrictionsdf
andy to X := &~1(XW) and X" := ~1(X™) respectively, yields the fibre
product diagram:

}2: AN X"
i e
n __V ()
XM —— X
It is well known that}?: is the blow-up ofX” along the big diagonald;; :=
{(x1,...,x,) € X! : x; = x;} (i < j), and thatthe mapb is the quotient map
by the induceds,-action (cf. [3], Lemma 4.4). LeE,»j denote the exceptional
(reduced) divisor inf(" corresponding to the diagonal;, and letE denote the
union of theE;;. LetX["] denote the open subsgt1(X™) in X", and letE
denote the complement afl™ in X! with the reduced scheme structure. The
variety E is called theexceptional locusf X!"I. Clearly, E is the image oft;;
under® for anyi < j. In particular,E is an irreducible variety.

4.2. Factorization ofd

As mentioned above, the map : X" — X"l is the quotient of a certaifi,-
action onX”. We may divide this quotient into two parts. L&t be the alternating
(normal) subgroup of,,, and letH denote the quotiers, /A,,. Let X"! denote
the quotient ofX” by A,, and let®; denote the corresponding quotient map.
Clearly X" is then the quotient ok "l by H, and we denote the corresponding
quotient map byb,. Thend = &, o @;.

4.2.1. Description of>; and®, Itis easily seen thad, is acting freely onx”
and hence also oK. As X” is smooth, this implies that the quotiexi{"! is also
smooth, and that the quotient mageiale. In particular, we get

Lemma 5. @1 (wzim) = wgzn.

All the divisorsE;; map to the same divisd¥ in X! ClearlyH acts trivially
on E’, hence it follows from Lemma 4 that (reduce#) is isomorphic toE.
We will however keep the notatioA’ to emphasize thak’ is thought of as a
subvariety ofX"!, By Proposition 1, we get

Lemma 6. ®3(O(E)) = O2E").

We also need the following similar result.
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Lemma 7. ®;(O(E")) = O(E).

Proof. This follows easily sincep; is anétale map (in particular, a smooth
morphism) and the set theoretic inverse imagé&otinder®; is exactly equal
toE. O

Finally, we need the following result which follows immediately from Propo-
sition 2.

Lemma 8. @;(a)xgn) = wgin ® O(—FE).

4.3. Crepant resolution

In this section we will prove the following crucial result.

Theorem 1. Let char.k # 2. Theny : X"l — X® is a crepant resolution,
meaning thatX( is Gorenstein such that its dualizing line bundig. pulls

back to the canonical bundte, i on X" undery.

First we need the following preparatory lemmas.

RecallthattwocycleZ = ) m;Z;andY = ) n;Y;inanirreducible scheme
X are said to meeproperly if codim(Z; N Y;) = codim(Z;) + codim(Yj),
whenevern; andn; are non-zero (cf. [4], Sect. 11.4).

Lemma 9. Let L be a line bundle on any quasiprojective smooth varigty
defined over an algebraically closed fidldand p1, po, ..., p, be afinite set of
points inX. Then there exist an open subggin X containingps, p2, ..., p,
such that the restriction af to U is trivial.

Proof. As any line bundle on a smooth variety is the quotient of two effective
line bundles, we may assume thatis effective. Lets be a global section of
L, and let(s)o denote the divisor of zeros af By the Moving Lemma ([4],
Sect. 11.4), there exist a divisgrrationally equivalent t@s)o such thaZ meets
properly with > p;. In other words, the compleme#t of the support ofZ
containsps, ..., p,. Since rationally equivalent divisors give rise to isomorphic
line bundles (cf. [4], Example 2.1.1},y is trivial. This proves the lemma. O

LetnowX be a smooth quasiprojective even dimensional variety of dimension
m, and letw denote the canonical bundle &h Then the canonical bundle on
X" is isomorphic taw, := ®!_; pf(w), Wherep; is the projection” — X on
thei-th factor. We regard, as aS$,-equivariant sheaf oX” in the obvious way.
The sheaf»3" of S,-invariant sections ab, can then naturally be thought of as
a sheaf onx ™. We claim

Lemma 10. The sheaf»3" is a line bundle orX ™.
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Proof. Let p = (p1,..., p,) be a point ofX™. By the above Lemma, there
exist an open subsét of X containingp, ..., p, and such that the line bundle
wyy is trivial. As the fibre ovep (under the quotient map) is containedift and
as the assertion of the lemma is local, we may assume&tkat’ . In particular,
we can assume thatis trivial.

Let dX be a generating global section of ThendX, = X! ,dX is a
generating global section af,. AsdX is an even form, the sectiahX,, is S,-
invariant, and hence also a global generating sectieffofThis proves thab>»
is a line bundle. O

Lemma 11. As above, le be a smooth quasiprojective even dimensional va-
riety. Then, there exists a unique line bundleon X ™ which restricts to the
canonical bundle orx ™.

In particular, if char.k # 2, X is Gorenstein with the dualizing line bundle
LIXL")' (We denoteLlXin) bya)Xin).)

Proof. Taking L = ", the existence of line bundle follows from the above
lemma. Since the mag restricted toX?, is étale, the canonical bund&ex<n)
pulls back to the canonical bundig:, HenceL restricts to the canonical bundle
on X™. The uniqueness df follows since the codimension &) \ XM inthe
normal varietyX ™ ism > 2.

SinceA, acts freely on (smoothY”, the quotienﬂ?i”) is smooth (and hence
Cohen-Macaulay). FurtheX™ = X®/H and hence it is Cohen-Macaulay
(sincep # 2). Now, the assertion that™ is Gorenstein, follows from [6],
Lemma (2.7). O

Remark 3.Let X be a normal and Gorenstein varigfyof even dimension over
an algebraically closed field of chgr. Then X is Gorenstein (and normal)
providedp > n. (This is a result due to Aramova [1].) To prove this, apply the
‘descent’ lemma (cf., e.g., [7]) to the canonical bundle of the S, -variety X"

to get a line bundl€. on X™. MoreoverLlU(m is the canonical bundle (where
U C X is the smooth locus), sinegy is anétale map. But the complement of
U™ in X™ has codim> 2 andX ™ is Cohen-Macaulay. Hence, by [6], Lemma
(2.7), L is the dualizing line bundle of ™. This proves thak ™ is Gorenstein.

From now on, we revert to the assumption tixais a smooth quasiprojective
surface andp # 2.

Lemma 12. Letw,w be the dualizing line bundle ok " guaranteed by the
above lemma. Then there exist an integsuch that

1,0 (Q)X(n>) 2wy ®O(Z‘E)
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Proof. As v is an isomorphism oveX” and the restriction ob o 10 XM is
isomorphic to the canonical bundle, we see that

(W™ (@x)) i = @y
As E is irreducible, this clearly implies the result. O
Lemma 13. The canonical bundle oX” is given by
wgzr =¥ (wx1) ® O(E),
wherewy: denotes the canonical bundle afj.
Proof. Follows from [5], Exercise 11.8.5. O
Now we can prove Theorem 1.

Proof. (of Theorem LChooser € Z with the property as given in Lemma 12.
We need to show that= 0: By Lemmas 12, 5 - 8, we know that

@Z*(‘(//*(Q)Xin))) = é*(a)X[nJ ® O(IE))
(2) = ch(a) 1® O((2t — 1)E"))
= 0u ® O((Zt —DE).

We want to compare this with an alternative way of calculating the left side of
the equation above. Singeo & = @ o v,

3) * (Y (wym)) = P (P (@ym)).

As @ is étale overX ™, the canonical bundle ok pulls back to the canonical
bundle onX?, . In particular,®* () restricts to the canonical bundle afj, .
But the complement ok, in X! has codimension 2, which forc@s" (w,m)
to be the canonical bundle ax! (asX! is smooth, in particular, normal). By

Lemma 13, we therefore get

(4) VH(@" (ym)) = wgy ® O(=E).

Combining(2) — (4), we get(2r —1) = -1 (since®(E) is a nontorsion element

of Pic X!), which forces to be equal to zero as desired. o
The following result in char. 0 is due to Beauville.

Corollary 1. Let char.k > n. ThenX™ is Gorenstein and : X!"! — X® s
a crepant resolution.

Proof. The assertion thaX™ is Gorenstein follows by the same argument as
for X(™ (cf. the proof of Lemma 11) . Now, since the codim.)of! \ X"l in
X["l'is at least two, the corollary follows from the above theorem. i
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5. Frobenius splitting of Hilbert schemes

Let X be a quasiprojective smooth surface over an algebraically closedfield
of positive charp. In this section we will prove thax!"! is Frobenius split ifY
is Frobenius split. First we need

Lemma 14. LetY be a quasiprojective Frobenius split variety oweiThen the
n-th symmetric product ™ of Y is Frobenius split.

Proof. Leto : F,Oy — Oy be aFrobenius splitting 6f. Theno ™" : F,Oy» —
Oyny is a Frobenius splitting of the-fold product ofY. As ™" is equivariant
with respect to the natural actions of the symmetric gr&yjit takessS,,-invariant
functions onY” to S,-invariant functions on(Y")’. As Oyw is the subsheaf of
Oy~ consisting ofS,,-invariant functionsg®" induces a Frobenius splitting of
y®™, i

Theorem 2. Let X be a quasiprojective Frobenius split smooth surface over an
algebraically closed field of char.p > 2. Then, for any: > 1, the Hilbert
schemex™ of n points inX is Frobenius split.

Proof. By Lemma 14, the:-th symmetric produc™ is Frobenius split. In

particular,X™ is Frobenius split. Let’ be a splitting section ab;f)’ onXx™.

Thinking of o’ as a section o&);n’)’ over X, asX™ is normal and codim. of

XM\ X™ in X™ is two, we can extend’ to a global sectiom of »’,” over
Xy

XM (cf. Lemma 11). Consider the sectién= v*(o) of w*(w;_i,f) = w;’]’

overX!"! (cf. Theorem 1), and extend it to a sectibof w,,” overX!"!. (Thisis

possible since!"! is smooth, in particular, normal and the codimXof! \ x!"!

in X"!'is at least two.)

We claim thats is a splitting section ofoy,” over X"1. To see this, it is
enough to prove that the restrictién of 6 to X! is a splitting section over
X1 But X!"!'is isomorphic toX™ undery, and moreoveé’ corresponds to
o’ under this isomorphism. As’, by definition, Frobenius split¥ ™, the result

*%k 7

follows. O

Corollary 2. Let X be a smooth projective Frobenius split surface over a field
of characteristicp > 2, and letL be an ample line bundle on the Hilbert scheme
X", ThenL has vanishing higher cohomology.

Remark 4.(a) One can use Corollary 2 and the Semicontinuity Theorem to get
a similar vanishing result in characteristic 0.

(b) As mentioned by V. Mehta, the known list of Frobenius split smooth
surfaces includes
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(1) Projective examples : toric surfaces (in particitarx P* andP?), ordinary
K3 surfaces and ordinary abelian surfaces. Furthermoseisifa splitting
section of a smooth surfacéwhich vanishes to ordé€p — 1) along a point
x on X, then the blow-up oKX alongx is also Frobenius split.

(2) Affine examples : any smooth affine surface is Frobenius split. (In fact, any
smooth affine variety is Frobenius split.)

It is furthermore known that any projective surface, with Kodaira dimension
> 1, is not Frobenius split. Also non-ordinary K3 and abelian surfaces are not
Frobenius split.

(c) If the punctual Hilbert schem#& ™ (i.e. the fibre of the Hilbert-Chow
morphismys at (x, - - - , x) for somex € X) hasH (H™, Oym) = 0 for all
i > 0, then (under the assumptions of Theoremj2i} a rational resolution. In
particular, for any smooth quasi projective surfacénot necessarily Frobenius
split), X would be Cohen-Macaulay.

Remark 5.T. Ekedahl has informed us that the following vanishing theorem can
be deduced from the results in this paper : Kéde an abelian surface over a field
of characteristic zero and lét be an ample line bundle oxi*. Using thatX

has infinitely many ordinary reductions to fields of positive characteristics ([9],
Cor. 2.9) one getsH' (X", L) =0, i > 0.
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