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Let G be a semisimple and simply connected algebraic group over an
algebraically closed field of characterisgic> 0. LetU be the unipotent
radical of a Borel subgroup ¢ G anduthe Lie algebra o). Springer [16]

has shown for good primes, that there iBaequivariant isomorphism

U — u, whereB acts through conjugation dd and through the adjoint
action onu (for G = SL;,, one has the well known equivariant isomorphism
A — A— 1| between unipotent and nilpotent upper triangular matrices). Let
p be a good prime fof5. Then there is an isomorphism of homogeneous
bundlesX = G xBU — G xBu, where the latter can be identified with
the cotangent bundl&*(G/B) of G/B.

Motivated in part by [12] we establish a link between tBdnvariant
form x on the Steinberg modul&t = H%(G/B, (p — 1)p) (cf. §1.8)
and Frobenius splittings [15] of the cotangent bundleGofB: the rep-
resentationH®(G/B, 2(p — 1)p) is a quotient of the space of functions
HO(X, ©x) on X (hereH°(G/B, M) denotes th&-module induced from
the B-moduleM and p half the sum of the root®" opposite to the roots
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of B) (cf. Corollary 1). There is a natural map
¢ : St® St— H(X, Ox)

such that the multiplicatiop : St® St — H(G/B, 2(p — 1)p) factors
through the projectiom®(X, Ox) — H°(G/B, 2(p — 1)p). In the notation
of Corollary 1,9’ = H%g). Surprisingly the simple situation of [12] gener-
alizes inthay’(v) is a Frobenius splitting ok if and only if x(v) # 0 (if and
only if «(v) is a Frobenius splitting a&/B) (cf. Theorem 1). In particular,
the cotangent bundl&*(G/B) is Frobenius split (cf. Corollary 2).

Frobenius splitting of the cotangent bundle in this setup has a number of
interesting consequences. By filtering the differential forms via a morphism
to a suitable partial flag variety and using diagonality of Hodge cohomology
and Koszul resolutions, we obtain the vanishing theorem (cf. Theorem 2)

H'(G/B, Su*®1) =0,i > 0

where A is any dominant weight an&u* denotes the symmetric alge-
bra of u*. This was proved in [1] for large dominant weights and for all
dominant weights for groups of classical type aagl (and large primes).
The simple key lemma in the very simple proof of the Borel-Bott—\Weil
theorem [6] implies that the above vanishing theorem can be extended to
weightsC = {A| (A, a") > —1, Ya € R'}. This vanishing theorem was
proved in characteristic zero by Broer [3] using complete reducibility and
the Borel-Bott—Weil theorem. As in characteristic zero ([3], Theorem 4.4)
it follows that the subregular nilpotent variety is normal, Gorenstein and
has rational singularities (cf. Theorem 6).

In the parabolic case we prove the above vanishing theorem-fegu-
lar dominant weights (after proving that the cotangent bundle of partial flag
varietiesG/ P is also Frobenius split) (cf. Corollary 3 and Theorem 5).

By using the Koszul resolution, the vanishing theorem also gives the
Dolbeault vanishing:

Hi (G/B, QL5 ® £(x)) —=0

fori > jandi € € (cf. Theorem 3). Another consequence is the con-
jectured isomorphism in ([9], 11.12.15) between the group cohomology
H' (G4, HO(G/B, )= of the first Frobenius kernel @ and the space of
sections of a homaogeneous line bundldéiiG / B) (cf. Theorem 8 for a pre-
cise statement). Furthermore, by using Bienodule structure 06t® St,
it follows easily thatT*(G/B) carries a canonical Frobenius splitting [13,
10]. This implies that

H%(G/B, Su* ® 1)

has a good filtration [10] for any weighit (cf. Theorem 7). One ob-
tains, in particular, that the cohomology of induced representatib¢s,,
HO(G/B, u))"Y has a good filtration [1] (fopr dominant and bigger than
the Coxeter number db).
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All of our proofs (and results) work for all groups in a uniform manner.
Our canonical splitting relates to the splitting of Mehta and van der Kallen
in the GL,-case [14] by taking a certain homogeneous component. For now
we have ignored the more combinatorial aspects of the methods in this
paper, like analyzing compatible Frobenius splitting.

AcknowledgementsWe are grateful to H. H. Andersen, B. Broer, J. C. Jantzen, B. Kostant,
O. Mathieu, V. Mehta, T. R. Ramadas, T. Springer and W. van der Kallen for valuable
discussions.

1. Notation and preliminaries

The following notation is used throughout the paper. Fix an algebraically
closed fieldk of characteristiop > 0. All schemes and morphisms will be
overk.

1.1. Group data. Let G be a connected, simply connected, semisimple
algebraic groupB a Borel subgroup o5, T ¢ B a maximal torus antl
the unipotent radical oB. The Lie algebras o6, B andU are denoted
g, b andu respectively. In the followingB will act on U by conjugation
and onu by the adjoint action. LeB™ be the opposite Borel subgroup with
unipotent radical ™, R = R(T, G) the root system o6 with respect to
T, R~ = R(T, U) (the negative roots)R"™ = R(T,U") = {aq,...,an]
(the positive roots)S ¢ Rt the simple roots ant the Coxeter number
of G. For a parabolic subgroup > B we letUp denote the unipotent
radical of P, U7 the opposite unipotent radical & up the Lie algebra of
Up, p the Lie algebra oP andRp O T the Levi factor ofP. By (-, -) we
denote the natural pairing(T) x Y(T) — Z, whereX(T) is the group of
characters (also identified with the weight lattice) add) the group of one
parameter subgroups of (also identified with the coroot lattice). A simple
roota € R* defines the (simple) reflectiog (L) = A — (A, «")a, where
A € X(T) anda" € Y(T) is the coroot associated with For a subselt ¢ S
we let P = P, denote the associated parabolic subgroup. Recall that the
group of characterX(P) of P can beidentified withih. € X(T)|(A, a”) =0,
foralla € I}. In particular, X(B) = X(T). A weightx € X(B) is called
dominantif (A, «¥) > O for all @ € S. A dominant weightt € X(P) is
called P-regularif (A, «") > Oforalla ¢ I, whereP = P, is a parabolic
subgroup. AB-regular dominant weight is calledgular. The Weyl group
W of G is generated by the simple reflections. The “dot” action\bbn
X(T)is given byw - A = w(A + p) — p, where{p, ") = 1 for every simple
roota € S. On the weight latticeX(T) the integral coneZ, R" € X(T)
defines the partial ordek: > w iff A — u € Z,R".

Recall that the prim@ s defined to be good primdor G if pis coprime
to all the coefficients of the highest rootGfwritten in terms of the simple
roots. For simples, p is a good prime ifp > 2 for type A; p > 3 for the
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typesB, C andD; p > 5 for the typesk,, Es, E7 andG»; p > 7 for the
type Es.

1.2. Homogeneous bundlesA P-schemeX gives rise to an associated
locally trivial fibrationG x P X overG/P ([9], 1.5.14, 1.4.1). IfM is a finite
dimensionalP-representation, we lef (M) denote the sheaf of sections of
the vector bundl&s xP M on G/ P.

1.3. The relative Frobenius morphism. The absolute Frobenius mor-
phismon a scheme is the identity on point spaces and raising tq-the
power locally on functions. The absolute Frobenius morphism is not a mor-
phism ofk-schemes. Letr : X — Speck) be a scheme. LeX’ be the
scheme obtained fro by base change with the absolute Frobenius mor-
phism onSpeck), i.e., the underlying topological space Xfis that of X

with the same structure sheéfy of rings, only the underlyind-algebra
structure onOy is twisted ash © f = AYPf, for x € kand f € Ox.
Using this description oK', the relative Frobenius morphisid : X — X’

is defined in the same way as the absolute Frobenius morphism and it is
a morphism ok-schemes.

1.4. Frobenius splitting. Following Mehta and Ramanathan [15] a variety
X is called Frobenius splitif the homomorphisn®®yx — F,Ox of Ox-
modules is split. A homomorphism : F.Ox — Oy is a splitting of
Ox — F.0Oxifand only ifo(1) = 1. By abuse of terminology we will call
an @y -module homomorphismr : F,Ox — Ox a Frobenius splittingf
o(1) € k\ {0} (so thato is a splitting up to a constant).

A splitting o : F,.Ox — Ox is said tosplit the subvarietyy € X
compatiblyif o(F.Ty) C Iy, wherely denotes the ideal sheaf of

If X is a smooth variety with canonical line bundig, the Cartier
operator gives an isomorphism ([15], Proposition 5)

Ftome,, (F.0x, Ox) = F, (@} °).

In this way global sections mﬁ(—” correspond to homomorphismiis@x —

Ox . A section ofwi{p which corresponds to a Frobenius splitting in this
way, is calleda splitting sectionThe above isomorphism can be described
quite explicitly in local coordinates ([15], Proposition 5).

Proposition 1. Let P be a closed point of a smooth varietyoverk of di-
mensiom. Choose a system, . . ., X, Of regular parameters in the (regu-
lar) local ring Oy, p. Then the isomorphism

F, (aﬁp) — Jomy,, (F.Oy, Oy)

is locally described as
X2 /(dX)PL : xP s x(@FATD/P-1
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foranya = (a1, ..., an), B € Z7. Here we use the multinomial notation
x* for the elemenii*...x% € Oyp, andm = (m,..., m) € 7" for
an integerm. If y = (y1, ..., yn) with at least oney; nonintegral, we

interpretx” as zero. Furthermorelx denotes the elemedi; A - - - A dX,,
andx®/(dx)P~* denotes the local section offp with valuex® on (dx)P~1.

We also have the following well known [15]

Lemma 1. LetU be an open dense subset of a smooth vaMetya section
s € HO(X, wy P) restricts to a splitting sectiosly € H(U, w; "), thens
is a splitting section.

Lemma 2. Let X be a Frobenius split variety and a line bundle onX.
Then there is for each> 0 an injection

H (X, £) = H' (X, £P)

of abelian groups.

1.5. Volume forms. Let X be a smooth variety with trivial canonical
bundlewy. A volume formis a nowhere vanishing sectigg of wy (neces-
sarily unique up to scalar multiples HO(X, @x)* = k). A function f on
X is said to Frobenius spliX (with respect twy) if f 9>1(p is a splitting
section ofw}, P.

Proposition 2. Let X = Spe[X, ..., Xs] be affinen-space. A volume
form on X is given byfx = dx; A --- A dX%, and a functionf e K[X]
Frobenius splitsX if and only if the coefficient of?=1 in f is nonzero and
the coefficients of the term&=2"P are zero fora € 7", \ {0} (in the
multinomial notation of Proposition 1). B

Proof. An elementoc € Homy,, (F.Ox, Ox) is a Frobenius splitting if
and only ifo(1) is a nonzero constant. The proposition now follows from
Proposition 1. O

1.6. Filtration of differentials. Let f : X — Y be a smooth morphism
between smooth varieties andY. Let 2x . (resp.£2x,v) be the sheaf of
differentials ofX (resp. the sheaf of relative differentialsXfverY). Then
we have the following

Lemma 3. There is a short exact sequence
0— f*.Qy/k e QX/k —> -QX/Y e O,

giving a natural filtration of the sheaf oh-forms 2%, for m > 1 with
associated graded object

m
Graf, =P 2 ® 2%y
i=0
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1.7. Theinduction functor. Let P be a parabolic subgroup) a P-module
andH(G/P, M) the induceds-module. Recall that® (G /P, M) = (K[G]®
M)P, whereP acts onk[G] by right multiplication (it is aG-module with
G acting trivially onM and by left multiplication ork[G]). This translates
into the more familiar

HY(G/P,M) ={f:G— M|f(gp =p *.f(®)¥ge G, pe P}.

In this formulatiorH® (G/ P, M) is simply the global sections of the homoge-
neous vector bundlé(M) onG/P. The sheaf cohomologdy (G/P, L(M))
will also be denotedH'(G/P, M) for i > 0. For P = B, the functor
H°(G/B, —) is also denotedH’(—). If M is a G-module, theri : M —
HO(G/P, M) given byi(m)(g) = g~1.mis an isomorphism o-modules.

1.8. The Steinberg module. TheSteinberg modulst=H%G/B, (p—1)p)
is irreducible and selfdual. Fix an isomorphi$h— St* and denote the
image ofv € Stin St* by v*. This defines &-invariant form given by
x(v® w) = (v, w) = v*(w). Let v andv~ denote highest and lowest
weight vectors ofst

Let G act on itself by conjugation. Then the m&pg St — Kk[G] given
by (v ® w)(g) = (v, gw) is aG-homomorphism. We get, in particular, by
restriction aB-homomorphism

@ : St® St— K[U].

The global functions oG x B U can be identified wittH°(G/B, k[U]). In
this setting we havel®(p) (v ® w)(g, u) = (v, gugtw) using the identifi-
cationi from 81.7.

1.9. The Frobenius kernel. The relative Frobenius morphistd — U’
is @ homomorphism of group schemes. The keltels called the (first)
Frobenius kernebnd is a hormal (one point) subgroup schem& af9],
1.9). If we fix a T-equivariant isomorphism (such thathas weighty;)

k[U] — k[Xl, RN XN],

thenk[U;] = K[xq,...,Xnl/(X], ..., XxR). Let y denote the (restriction)
homomorphismk[U] — k[U1]. Notice thatk[U;] is a finite dimensional
B-representation with all weights 2(p — 1) p and thaty is B-equivariant.

The T-equivariant projection on the highest weight space spanned by the
vectors?™* .. xP is aB-homomorphismy : k[U;] — 2(p — 1)p, where

the bar denotes the corresponding elemeRiflih ].
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2. Frobenius splitting of G xB U

We begin with the following elementary lemma.

Lemma 4. For any parabolic subgrouf, the canonical line bundle of the
varietiesG xP Up andG x P up is G-equivariantly trivial.

Proof. We give the proof in the cagg x " Up. The argument fo6G x P up is
similar (in fact this is, for good primes, isomorphic to the cotangent bundle
of G/P). Letn = dimUp. The restriction of the locally free sheaf of relative
differentials 2 = 2.y c/p ON G xP Up to Up = P xP Up is the
sheaf of differentials olp, and hence2"|y, = wy,. Letby, be a volume
form on Up. Sincek[Up] has no nonconstant units, the canonical action
of P on 6y, gives rise to a characted of P, which can be determined
by considering the action d? on wy,|e, as the identitye € Up is fixed
under P. The cotangent space ais canonically isomorphic t&)e/912,
whereie denotes the maximal ideal of functionskfiJp] vanishing at.
Hencef = ), rruy) @ Sinces2" is aG-sheaf, it is the pull back of the
line bundle induced by on G/P. As the canonical line bundle @& /P is
induced by— g, the result follows from Lemma 3. O

Fix T-eigenfunctions;, . .., yn of weights—ay, ..., —ay respectively,
such thatklU*] = K[yi, ..., yn]. By Lemma 4,X = G xB U carries
a volume formpy restricting tody; A --- Adyny A dxg A -+ - A dXy ON the
open subset)t x U < G xB U. The following lemma is instrumental in
proving Frobenius splitting o6 x B U.

Lemma5. The mapy oy o ¢ : St® St— 2(p — 1)p is non-zero.

Proof. It suffices to prove that the monomial™*...x%™ occurs with

non-zero coefficient if € k[U], where f(x) = (v, xv™). The functions
X — (vF,xv7) andx — (v, xv~) from G to k are highest and lowest
weight vectors irSt = H°(G/B, (p — 1)p) respectively. By Theorem 2.3
in [12] the functiono

X (vF, xv ") (v, xv") € HA(G/B, 2(p — 1)p)

is a splitting section of5/B. The restriction o to U™ c G/B is given
by x — (v~, xv™). Since f corresponds to this function (which Frobe-
nius splitsU ™) under conjugation withug (the longest element iWw), the
coefficient ofx”* ... x27"in f must be nonzero by Proposition 2. O

If M is aG-module andN a B-module, then by Frobenius reciprocity,
restriction followed by evaluation &< G is an isomorphism ([9], Propo-
sition 1.3.4)

Homg (M, H%(G/B, N)) — Homg(M, N).
Let i : St® St— H°(G/B, 2(p — 1)p) denote the multiplication map.
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Corollary 1. There is a commutative diagram

H%(G/B, kIU]) T HO(G/B, k[U1])

H°<¢>T lHO(w)

St® St———= HY(G/B, 2(p — 1)p)

of G-equivariant homomorphisms.

Proof. By applying the induction functor we get a homomorphism
Ho(¥) o H(y) 0 H(g) : St® St— H%(G/B, 2(p — 1)p),

which is non-zero by Lemma 5 (and Frobenius reciprocity). By Frobenius
reciprocity i is (up to a constant) the uniq@@-homomorphisnmu : St® St

— H°(G/B, 2(p — 1)p). Adjusting constants this gives that the diagram is
commutative. O

Theorem 1. Letv = ), vi ® w; be an element dbt® St The function
f, = HO%)(v) Frobenius splitsG xB U if and only if u(v) is a splitting
section ofwg .

In particular, the functionf, : G x® U — k given by

fv(gv U) = Z (Ui s gug—lwi)

i
for g € G, u e U, Frobenius splitsG xB U if and only if x(v) is nonzero.

Proof. Suppose that (v) is a splitting section o«‘ué_/g Let f = HO%p)(v).

We prove thatf Frobenius splitsX = G xB U with respect to the volume
form6x. Restrictf 65 P tothe open subset™ xU < GxBU. This leadsto
aform f/(dyiA---Adyny AdX A - - AdXy)T P onUT x U. By Proposition 2
and Lemma 1, we are done if we prove that the monogfiatxP=1 occurs
with nonzero coefficient inf’ and the monomialy®=2+P*xP=1+P8 occur
with zero coefficient wherer, 8 € ZY, not simultaneously zero (in the
multinomial notation of Proposition 1). We have the following commutative
diagram

KIU*] @ kU] —2> KU+ ® KU1 ] ——> KU+ ® 2(p — D)p

| T ]

(KIG] @ KIUDE ~— (KG] @ K[Us])® ~— > (KIG] ® 2(p — 1))®

with naturalT -equivariant maps. A monomigP=2+P*xP=1+P% gccuring in
f’ must haveg = 0, as it is the restriction of an element in the image of
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(KIG] ® St® SH® — (K[G] ® k[U])® and since any weight iBt® Stis

< 2(p—1)p. Furthermore, by Corollary TH°(y) o H()) () restricted to

UT is a Frobenius splitting. Chasing through the above diagram this means
(using = 0) thate = 0 and the monomiay®=1xP=1 occurs with nonzero
coefficient in f/, so thatf Frobenius split$G x B U. On the other hand if
H°¢)(v) is a Frobenius splitting it is easy to read off the diagram tha

is a splitting section. The last part of the theorem follows from Theorem 2.3
in [12]. o

Recall that the cotangent bundié(G/ P) of G/P is theG-fibration as-
sociated to thé>-module(g/p)* under the adjoint action. It is well known
that there is an isomorphisfg/p)* = up of P-modules in good character-
istics ([16], Lemma 4.4). Hence in this ca8&G/P) = G x" up. We have
the following crucial result due to Springer ([16], Proposition 3.5).

Proposition 3. Let chark be a good prime foG. Then there exists 8-
equivariant isomorphisng : U — u. Moreover for any parabolic sub-
group P, ¢ restricts to give aP-equivariant isomorphismp : Up — up.

Corollary 2. Letchark be a good prime fo. Then the cotangent bundle
T*(G/B) of G/B is Frobenius split.

Proof. By Proposition 3 we get &-isomorphismG xBU — G xBu,
where the latter can be identified with the cotangent bundié . The
result now follows from Theorem 1. O

Remark 1.For v € St® Stdefine f, : G x B — k as in Theorem 1
(where B acts on itself by cojugation). Thef, Frobenius splitsG x B B

if and only if x(v) # 0. Also the functiong — (v, gv*)(v—, g tv ™)
splitsG. Furthermore, if chak is a good prime fofs, any suchv gives rise
to a Frobenius splitting o6 x B b, which descends via the mag, X) —
Ad(g) X to the Lie algebrgy. Since we have no nontrivial applications of
these results we do not give any proofs.

3. Vanishing

Let
¢ ={ne XM, a’) = -1 Va e RT}.

It is easy to see ([4], Proposition 2) thatis the set of weighté such that
if 1 is a dominant weight with < u < A1, thenu = A ™ (herer™ denotes
the dominant weight in thé/-orbit of 1). The set® is precisely the weights
of line bundles orG/B in characteristic zero, which have vanishing higher
cohomology when pulled back to the cotangent bundle ([3], Theorem 2.4).
In this section we prove the analogous vanishing theorem in good prime
characteristics.

Andersen and Jantzen ([1], Theorem 3.6) proved the following vanishing
theorem under the assumption tigat- h and eitherh = 0 or A strongly
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dominant (i.e. (A, oY) > h—1foralla € §). Forp > h — 1 and all
components ofs classical oG, they proved the vanishing theorem for
dominant ([1], Proposition 5.4). Actually the conditiar4- o dominant in

([1], Proposition 5.4) is not sufficient for vanishing as noticed by Graham
and Broer — this is also revealed using Lemma 6 in 83.2 coupled with Bott’s
theorem. Letr : T*(G/B) — G/B denote the projection.

Theorem 2. Let chark be a good prime folG and suppose that € C.
Then

H'(T*(G/B), 7*£(})) = H'(G/B, Su* ® 1) = 0

wheni > 0.

Remark 2.By the semicontinuity theorem our result implies the same van-
ishing theorem over fields of characteristic zero.

3.1. The Koszul resolution. Let
0O-V->V->V =0

be a short exact sequence of vector spaces. Fomasy0 one obtains
a functorial exact sequence (called #aszul resolution([9], 11.12.12))

s VAV 5 s VeV 5 SV s SV 0.

3.2. A simple lemma. Let P, be the minimal parabolic subgroup corres-
ponding to a simple roat. If A € X(T) is a weight with(), «") = —1 and
V a P,-module, then

H'(G/B,V®X1) =0

fori > 0. This result is the simple key lemma in Demazure’s very simple
proof of the Borel-Bott—\Weil theorem [6]. It has the following consequence
(a similar approach has been used by Broer in [5]).

Lemma 6. Suppose that € € and(x, «¥) = —1for a simple rootx. Then
s,(A) € € and

H' (G/B, S'w* ® 1) = H (G/B, S " ® 5,(1))

fori > 0andn > 0.

Proof. As s, permutesRt \ {«} and maps to —«, we get thak, (1) € C.
The isomorphism follows by applying 83.1 to the short exact sequence of
B-modules

0= a—u"—up -0,

and then tensoring with. o
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3.3. Large dominant weights. This section contains a proof of a lemma
enabling us to turn Frobenius splitting into vanishing for weights, which
are not necessarily regular. The key lies in filtering differentials using the
fibrationG/B — G/ P for a suitable parabolic subgrop > B.

Lemma 7. Let ) be a dominant weight. Then
H (G/B, 2L,p® £(m1)) =0

fori > j and all m sufficiently big.

Proof. If & = 0, we are done by the fact that'(G/B, £2¢ 5) = O for
i # j ([9], 11.6.18). This is usually referred to as diagonality of Hodge
cohomology. IfA # 0, there exists a (unique) parabolic subgrdug: G,
such that is a (P-regular) character d? and the induced line bundl&(x)
is ample onG/P. Let f denote the smoottP/B)-fibrationG/B — G/P.
Using Lemma 3, we see that it is enough to prove that the cohomology
groups

H' (G/B. 1200 ® 2/g5)c/m ® L))
vanish for all sufficiently bigm, where 0< r < j. The Ex-terms in the
Leray spectral sequence forare (using the projection formula)

EPY — HP (G/P, LML) ® 26, ® R f*9<j<s_/rB>/<e/P>>
_HP (G/P, LML) ® 25,p ® L (Hq (P/B’ 9%))) '

For all m sufficiently big we gete}® = 0 for p > 0 by Serre vanishing.
Diagonality of Hodge cohomology foP/B gives thatE}® = 0 unless

g = j —r. In particular, form sufficiently big, combining the two, we get
EP? = 0 unlessp = 0 andg = j — r. Now the result follows by the Leray
spectral sequence, since j by assumption. |

3.4. Proof of Theorem 2. Thefirstisomorphismfollows sinee: T*(G/B)
— G/B is an affine morphism and,. Ot ,g = £L(Su*). To prove the
vanishing part we may assume thais dominant, because of the follow-
ing argument: Assume by induction arthatH'(G/B, S'u* ® A) = 0O for

j <n,i>0andr € C. We wish to prove the same result fpr= n.
Take a non dominant weighte €. Then there is a simple roatsuch that
(A, ¥y =—1. By Lemma 65,(1) € C and

H (G/B, Sw* ® 1) = H' (G/B, S"u* ® 5,(1))

where the latter group vanishes by induction.
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So assume that is dominant. Sincgb/u)* is a trivial B-module, it
follows from 83.1 (applied to the sequence-9 (b/u)* — b* — u*
— 0, and breaking the resulting Koszul resolution up into short exact
sequences) that the vanishingb{G/B, Sb* ® 1) implies the vanishing of
H'(G/B, Su*® A) fori > 0. Again using 83.1 for the short exact sequence
0— (g/b)* - g* — b* — 0 we get fom > 1 an exact sequence

o ANg/) @ S g e - gL — ST eL— 0

after tensoring with.. By breaking this up into short exact sequences, we
see that the vanishing'(G/B, Sb* ® 1) = 0 for any fixedi > 0 follows
from the vanishing

H* (G/B, Al(g/b)*® 1) =0

forall j > 0. TheB-representation (g/b)* induces the bundle gtforms
Qé/B onG/B. By Lemma 7, we get for all large enouglthatH'*1 (G/B,
A(g/b)* ® (p'A)) = 0for j > 0 and henceH'(G/B, Su* ® (p'A)) =0
fori > 0. But by Corollary 2 and Lemma 2, we have an injection of abelian
groups

H (T*(G/B), 7*£L(1) = H(T*(G/B), 7*L(p' 1))

which translates into an injectiod' (G/B, Su* ® ) — H(G/B, Su* ®
(p'A)) for anyr > 0 (this is where the assumption thais good forG is
used). This proves the theorem.

3.5. Dolbeault vanishing. Theorem 2 is in fact equivalent to the following
(Dolbeault) vanishing (see [4] for results in characteristic zero and the
parabolic case).

Theorem 3. Letchark be a good prime foG andx € €. Then
H (G/B, QL5 ® £(x)) —0
fori > j.

Proof. Theorem 2 implies thatl' (G/B, S'* ® 1) = 0 fori > 0, using
induction onn in the Koszul resolution (tensored with) coming from the
short exact sequence-8 (b/u)* — b* — u* — 0. This vanishing now
fits in a similar induction om in the Koszul resolution (tensored wigt)
coming from the short exact sequence>0(g/b)* — g* — b* — 0. This
gives the desired vanishing. O

4. The parabolic case

In this section we prove that the cotangent bundleGgfP, where P is
a parabolic subgroup, is Frobenius split whdrark is a good prime foG.
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4.1. Frobenius splitting of G xP Up. Let P = P, O B be the parabolic
subgroup given by a subskic S. Let R, denote the root system generated
by I. The space of functionk[(Up)1] on the Frobenius kernel dfp is

a finite dimensionaP-representation with all weights (p — 1)8p, where

Op = ) gerr\r- @ € X(P). Observe that-6p is the weight inducing the

canonical line bundle o6/P. The canonical line bundle @& x” Up is
trivial by Lemma 4. The space of global functiokfG x” Up] can be
identified withH%(G/ P, k[Up]). As in the case of a Borel subgro@c P,
we have a naturaP-equivariant map : St® St — k[Up]. The natural
map

HO(G/P, k[Up]) — H%(G/P,k[(Up)1]) — H(G/P, (p — 1)8p),

(where the lastmap is induced by tRemodule mak[(Up)1] — (p—1)8p)
composed wittH%(G/ P, ¢p) gives theG-eqivariant magep : St® St —
HY%(G/P, (p— 1)3p).

Theorem 4. Letv = ), vi ® w; be an element dbt® St The function
f = HY(G/P, ¢p)(v) Frobenius splitsG xP Up if and only if up(v) is
a splitting section ofog, B

The functionf = f” : G xP Up — kgiven by

fP(g ) =>"(u,gug w)

i
for g € G, u € Up, Frobenius splitss x P Up if and only if x(v) is nonzero.

Proof. It follows by analogous weight considerations for the restriction of
f toUS x Up as in theB-case, thatf = HO(G/P, ¢p)(v) Frobenius splits

G xP Up if and only if up(v) is a splitting section ofG/P (since any

a« € R™\ Rf contains a simple root outsidewith nonzero coefficient
when written as a sum of simple roots ai— 1)5p + Zﬂiem\rzr n; Bi can

not be a weight o6t® Stfor n; > 0 unless each; is 0).

In order to prove the last part of the theorem, we need to exhibit an
elementw e St Stsuch thaH®(¢p) (w) Frobenius split& x P Up (because
this implies thajup (w) is a Frobenius splitting d&/ P, so thatu p followed
by the G-equivariant “evaluation” map [12H°(G/P, (p — 1)ép) — ks
a non-zeroG-homomorphismSt ® St — k and hence equalg up to
a non-zero scalar multiple).

As proved in Theorem 1, the functiof{g, u) = (v—, gug *v*), Frobe-
nius splitsG xB U. The restriction of this function t&J* x U therefore
Frobenius split¥) ™ x U. Observe that this restriction is given by

f(g,u) = (v_,gw"), ge U, ueU.

Let wy be the longest element of the Weyl group R and letvl =
wouT, v, = wyu~. Index the set of positive rooty, ..., an} in such
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a manner that the first:= | R/ | roots are the positive roots &p. Lety; :

k — U (respx; : k — U™)bethe roothomomorphism corresponding to the
ror?t —aj (resp.«j). Write u = yn(tn) ... Y1(t1) andg = X1(S1) .. . Xn(Sn).
Then

uwt =ynNan) ... Ve (thes) ( Z c|t'nn .. .t!w + Ctr?*1 .. ‘tflvg) ,

I#p—1
for somec, ¢ € k andv; weight vectors irSt, wherel = (I, ..., Ip).
As f Frobenius splitdJ* x U, we see that the coefficient qﬁ‘;ll
28t in

(Vg Xnr1(Si41) - - XN(SOYNEN) - - - Ynga(tns) V)
is nonzero. By weight considerations, it therefore easily follows that the
function
f: U,Jg x Up =k, f'(g,u) = <Ua,gUU3_)
Frobenius splitd);, x Up. But f’ extends to the function (again denoted
by) f': G x” Up — kgiven by(g, u) — (vy, gugtvy). (To see this, it
suffices to observe that;, fixesvj.) Hencef’ Frobenius split$s x 7 Up.
|

Corollary 3. Letchark be a good prime fof5. Then the cotangent bundle
T*(G/P) of G/P is Frobenius split.

Proof. This follows from Theorem 4 and Proposition 3. O

Theorem 5. Assume thathark is a good prime foiG. Letx € X(P) be
a P-regular weight. Then
H (T*(G/P), n*£L(») =H (G/P, Sup ® 1) = 0
fori > 0, wherer = np : T*(G/P) — G/P is the projection.
Proof. The proof follows 83.4. One applies the Koszul resolution for the

short exact sequence &modules 0— (g/up)* — g* — up — 0. We
get forn > 1 an exact sequence

o S @ Alg/up) @A — S @A — Sup @A — 0

after tensoring with.. Again the vanishingd' (G/P, Su: ® 1) = 0 for any
fixedi > O follows from the vanishing

H*I(G/P, Al(g/up)* @ 1) =0

for all j > 0. Sincex induces an ample line bundle @y P this vanishing
follows whenax is replaced by for all sufficiently largen. In particular,
we get the vanishing dfi' (T*(G/P), 7*L(p'2)) = H(G/P, Sup @ p'2)
for anyi > O and all sufficiently large. Now the result follows from
Corollary 3 and Lemma 2. O
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5. The subregular nilpotent variety

Throughout this section we assume tBds simple (and simply connected)
and thatchark is good forG.

Let U be the unipotent variety i, i.e., the closed subvariety @
consisting of all the unipotent elements. Then the map

¢:GxBU > U

mapping(g, u) to gug! is a resolution of singularities ([8], Theorem 6.3)
for all prime characteristics. IP = P, is the minimal parabolic subgroup
associated with a short simple raattheny restricted toG x B Up factors
through

Ve 1 G xPUp > U

Lemma 8. The map
¢ :GxPUp— S

is birational onto its imageS, which consists of the closed subvariety of
irregular elements (called the subregular unipotent variety).

Proof. It follows by an argument of Tits thap, has connected fibres
(see [3], Proposition 4.2), so we need to show thats separable (since
dimG x” Up =dim S). By Richardson’s theorem ([17], | 5.1-5.6) the orbit
maps for the conjugation action &f on itself are separable for very good
primes. This implies the separability @f for good primes, whel is not

of type A. In type A the separability of, follows from theGL,-case, where
the orbit maps for the conjugation action are separable for all primes.

By ([2], Corollary 9.3.4) there is a (SpringeB-isomorphism between
the unipotent varietf and the nilpotent cong/, i. e., the closed subvariety
of g consisting of all the nilpotent elements. In particular, we get #ias
normal by the normality ot ([8], Theorem 4.24(iii)). As in the unipotent
case, the Springer resolution

?:GxBu— N, (g, X) — Adg(X),
is a resolution of singularities, which gives a resolution (Lemma 8)
Gy G xPup— 8
of singularities of the subregular nilpotent varigtywhereup is the nilpo-
tent radical of the Lie algebra &. Moreover, all the morphisms @, ¢, @

are projective morphisms. Let: T*(G/B) — G/B denote the projection.

Theorem 6. The subregular nilpotent variety is a normal Gorenstein
variety with rational singularities.
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Proof. The characteristic zero proof ([3], Theorem 4.4) carries over: The
closed subvarietyc x B up of the cotangent bundl& xB u is the zero
scheme of a section of the pull backL (—«). SO we get an exact sequence

0 — 7*L(e) > Ogxby = Ogyby, — 0.

By Theorem 2 (since € ¢) and the normality of¥', we get a short exact
sequence

0 — HYT*(G/B), 7" L(@) — KIN] — K[G x" up] — 0.

Let § denote the normalization &. The surjectiork[ /] — K[G x P up]
factors through the injectiok[8] — k[&] (followed by the magk[8] —
K[G xP up] induced by the normalization) via the restriction mdép/] —
k[8]. This proves thak[$] = k[&] so that4 is normal. By Theorem 2
the higher cohomologies a.e, and 7*£L(x) vanish. It follows that
H'(G x®B up, Og,8y,) = H(G xP up, Og,py,) = 0 fori > 0, giving
that$ has rational singularities (singg is birational by Lemma 8). As the
canonical line bundle dB x P up is trivial, 4 is Gorenstein ([11], p. 49-50).
]

6. Good filtrations

Let X be a smoothB-variety. A splitting section (or Frobenius splitting)
o e H9(X, wi"’) is calledcanonical[13], ([10], Definition 4.3.5) ifo is
T-invariant and for allk € Sandt € k

p—1

X (1).o = Z tiai’a

i=0

for suitables; , € HO(X, w} P) (of weighti o), wherex, : k — B is the
root homomorphism corresponding to the reat.

Recall that a filtration = Vy; C V; C ... of aG-moduleV is called
a good filtrationif V is the union of theG-submodulesvy, V1, ... and
Vi/Vi_1 = HY%G/B, 1;) for A; dominant. We have the following weaker
version of a result due to Mathieu ([10], Lemma 4.4.2) sufficient for our
purposes.

Lemma 9. Let X be a smoottB-variety and.L a G-equivariant line bundle
on G xB X. Assume thaG xB X admits a canonical splitting, then the
G-moduleH%(G xB X, .£) has a good filtration.

For good primes there is@-equivariant map
¢ : St® St— H? (T*(G/B), Ot+c/8))

such thaty’ (a®b) is a splitting section ifg(a®b) # 0 (wherey’ := HO%y),
cf. 82). Consider the splitting section of the cotangent buhd(& / B) given
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by ¢’ (vt ® v7). It is easy to see that' (v ® v™) is a canonical Frobenius
splitting of T*(G/B) = G xB u, since the definition can be checked for
VT ®v e St St

Theorem 7. Suppose thathark is a good prime forG. LetA € X(T) be
a weight (not necessarily dominant). Then

H°(G/B, S'u* ® 1)
has a good filtration fon > 0.

Proof. By the aboveT*(G/B) = G xB u admits a canonical Frobenius
splitting. Hence

HO(T*(G/B), n*£L(%)) = HA(G/B, Su* ® 1)

has a good filtration by Lemma 9, where T*(G/B) — G/B denotes the
projection. O

Remark 3.Using Theorem 4 it follows in the same way that the cotangent
bundleT*(G/P) = G x P up of G/ P admits a canonical Frobenius splitting
for any parabolic subgrouB > B. Mathieu has informed us that®(X, .£)

has a good filtration iX is a smoothG-variety with a canonical Frobenius
splitting and.L a G-equivariant line bundle oX. In our case one can prove
directly thatG xB (G xP up) = G/B x (G xP up) admits a canonical
Frobenius splitting, so that Lemma 9 implies th&(G/P, Sut, ® 1) has

a good filtration for (arbitrary) weights € X(P).

Theorem 8. Suppose thap > h and letA be a dominant weight. Then we
have an isomorphism for any € W such thatw - 0 + px is dominant

H' (G, HYG/B, w- 0+ pi)) " =

H (G/B, STt /2 @A) ifi = ¢(w) mod 2
0 otherwise

where()!=! denotes Frobenius (un)twist of a representation. In particular,
H' (G1, HY(G/B, w - 0+ p )~ admits a good filtration.

Proof. The key ingredient in the proof (in [1], §3.3) of the isomorphism is
the vanishing Theorem 2, which makes the spectral sequence ([1], 3.3(2))
degenerate. The good filtrations follow from Theorem 7. 0

Remark 4.Andersen and Jantzen proved Theorem 8 for groups not having
any components of typel and F([1], 85). For arbitraryG they proved
Theorem 8 under the assumption thais strongly dominant ([1], Corol-
lary 3.7(b)).
Remark 5.1t follows from the linkage principle that the only domingst
with

H* (G1, H%(G/B, w) #0
are of the formw - 0+ p A for somei dominant andv € W.
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7. Homogeneous Frobenius splittings

We assume that chdeis a good prime forG. The space of functions
(KIG] ® Klup])® = (K[G] ® Sub)® on the cotangent bundE*(G/P) has

a natural grading. Letrq : (KIG] ® Sut)P — (K[G] ® S'u)P be the
projection on theal-th homogeneous factor. LBl denote the dimension of
G/P. Then afunctionf Frobenius split§ *(G/ P) implies thatr, p—1)( f)
Frobenius splitsT*(G/P). A homogeneous splitting function (of degree
Np(p — 1)) descends to give a Frobenius splitting of the projectivization
P(T*(G/P)) (lines inT*(G/P)) of the cotangent bundle. These splittings
are in some sense better behaved than the splittings coming directly from
St® Stvia Corollaries 2 and 3.

7.1. The A -case. In type A, (G = SLy;1(k)) we have theB-equivariant
isomorphismr : A+ | +Abetweenthe uppertriangular nilpotent matrices
u and the upper triangular unipotent matrit¢ésin this way we see that the
element™ ® v~ in St® Stmaps to the (splitting) functiorf

(9. A — (vF g(A+ hg™v7)

on the cotangent bundiE*(G/B) = G xBuviaH%) ando. The function

g — (vt, gv) is a highest weight vector i8tand equals th¢p — 1)-st
power of the highest weight functiofy, : g — (w*, gw™), wherew™ and
w™ are highest and lowest weight vectorsHA(G/ B, p). The functionf,

is a product of certain highest weight functiofig, ..., f,,, with weight
of f,, = wi, wherew; denotes the-th fundamental dominant weight. Let
A = (& j)1<i j<nt+1 be a matrix inG, then it is well known that

o (A) = det((a j)1<i.j<s)

for 1 < s < n. In this way the (magical) splitting function of Mehta
and van der Kallen [14] oT*(G/B) is exactly wnp-1)(f), whereN =
n(n+ 1)/2. One interesting aspect of the Mehta—van der Kallen splitting is
that it compatibly splits alG x B up, for any parabolic subgroup > B.
Finding a suitable splitting in this context for the other groups would be
very interesting.
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