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Let G be a semisimple and simply connected algebraic group over an
algebraically closed field of characteristicp > 0. Let U be the unipotent
radical of a Borel subgroupB ⊂ G andu the Lie algebra ofU. Springer [16]
has shown for good primes, that there is aB-equivariant isomorphism
U → u, whereB acts through conjugation onU and through the adjoint
action onu (for G = SLn one has the well known equivariant isomorphism
A 7→ A− I between unipotent and nilpotent upper triangular matrices). Let
p be a good prime forG. Then there is an isomorphism of homogeneous
bundlesX = G ×B U → G ×B u, where the latter can be identified with
the cotangent bundleT∗(G/B) of G/B.

Motivated in part by [12] we establish a link between theG-invariant
form χ on the Steinberg moduleSt = H0(G/B, (p − 1)ρ) (cf. §1.8)
and Frobenius splittings [15] of the cotangent bundle ofG/B: the rep-
resentationH0(G/B, 2(p− 1)ρ) is a quotient of the space of functions
H0(X,OX) on X (hereH0(G/B,M) denotes theG-module induced from
the B-moduleM andρ half the sum of the rootsR+ opposite to the roots
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of B) (cf. Corollary 1). There is a natural map

ϕ′ : St⊗ St→ H0(X,OX)

such that the multiplicationµ : St⊗ St→ H0(G/B,2(p− 1)ρ) factors
through the projectionH0(X,OX)→ H0(G/B,2(p− 1)ρ). In the notation
of Corollary 1,ϕ′ = H0(ϕ). Surprisingly the simple situation of [12] gener-
alizes in thatϕ′(v) is a Frobenius splitting ofX if and only ifχ(v) 6= 0 (if and
only if µ(v) is a Frobenius splitting ofG/B) (cf. Theorem 1). In particular,
the cotangent bundleT∗(G/B) is Frobenius split (cf. Corollary 2).

Frobenius splitting of the cotangent bundle in this setup has a number of
interesting consequences. By filtering the differential forms via a morphism
to a suitable partial flag variety and using diagonality of Hodge cohomology
and Koszul resolutions, we obtain the vanishing theorem (cf. Theorem 2)

Hi (G/B, Su∗ ⊗ λ) = 0, i > 0

whereλ is any dominant weight andSu∗ denotes the symmetric alge-
bra of u∗. This was proved in [1] for large dominant weights and for all
dominant weights for groups of classical type andG2 (and large primes).
The simple key lemma in the very simple proof of the Borel–Bott–Weil
theorem [6] implies that the above vanishing theorem can be extended to
weightsC = {λ | 〈λ, α∨〉 ≥ −1, ∀α ∈ R+}. This vanishing theorem was
proved in characteristic zero by Broer [3] using complete reducibility and
the Borel–Bott–Weil theorem. As in characteristic zero ([3], Theorem 4.4)
it follows that the subregular nilpotent variety is normal, Gorenstein and
has rational singularities (cf. Theorem 6).

In the parabolic case we prove the above vanishing theorem forP-regu-
lar dominant weights (after proving that the cotangent bundle of partial flag
varietiesG/P is also Frobenius split) (cf. Corollary 3 and Theorem 5).

By using the Koszul resolution, the vanishing theorem also gives the
Dolbeault vanishing:

Hi
(

G/B,Ω j
G/B⊗L(λ)

)
= 0

for i > j andλ ∈ C (cf. Theorem 3). Another consequence is the con-
jectured isomorphism in ([9], II.12.15) between the group cohomology
Hi (G1,H0(G/B, µ))[−1] of the first Frobenius kernel ofG and the space of
sections of a homogeneous line bundle onT∗(G/B) (cf. Theorem 8 for a pre-
cise statement). Furthermore, by using theB-module structure ofSt⊗ St,
it follows easily thatT∗(G/B) carries a canonical Frobenius splitting [13,
10]. This implies that

H0(G/B, Su∗ ⊗ λ)
has a good filtration [10] for any weightλ (cf. Theorem 7). One ob-
tains, in particular, that the cohomology of induced representationsHi (G1,
H0(G/B, µ))[−1] has a good filtration [1] (forµ dominant andp bigger than
the Coxeter number ofG).
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All of our proofs (and results) work for all groups in a uniform manner.
Our canonical splitting relates to the splitting of Mehta and van der Kallen
in theGLn-case [14] by taking a certain homogeneous component. For now
we have ignored the more combinatorial aspects of the methods in this
paper, like analyzing compatible Frobenius splitting.

Acknowledgements.We are grateful to H. H. Andersen, B. Broer, J. C. Jantzen, B. Kostant,
O. Mathieu, V. Mehta, T. R. Ramadas, T. Springer and W. van der Kallen for valuable
discussions.

1. Notation and preliminaries

The following notation is used throughout the paper. Fix an algebraically
closed fieldk of characteristicp > 0. All schemes and morphisms will be
overk.

1.1. Group data. Let G be a connected, simply connected, semisimple
algebraic group,B a Borel subgroup ofG, T ⊂ B a maximal torus andU
the unipotent radical ofB. The Lie algebras ofG, B andU are denoted
g, b andu respectively. In the followingB will act on U by conjugation
and onu by the adjoint action. LetB+ be the opposite Borel subgroup with
unipotent radicalU+, R = R(T,G) the root system ofG with respect to
T, R− = R(T,U) (the negative roots),R+ = R(T,U+) = {α1, . . . , αN}
(the positive roots),S ⊂ R+ the simple roots andh the Coxeter number
of G. For a parabolic subgroupP ⊃ B we let UP denote the unipotent
radical ofP, U+P the opposite unipotent radical ofP, uP the Lie algebra of
UP, p the Lie algebra ofP and RP ⊃ T the Levi factor ofP. By 〈·, ·〉 we
denote the natural pairingX(T) × Y(T) → Z, whereX(T) is the group of
characters (also identified with the weight lattice) andY(T) the group of one
parameter subgroups ofT (also identified with the coroot lattice). A simple
root α ∈ R+ defines the (simple) reflectionsα(λ) = λ − 〈λ, α∨〉α, where
λ ∈ X(T) andα∨ ∈ Y(T) is the coroot associated withα. For a subsetI ⊂ S
we let P = PI denote the associated parabolic subgroup. Recall that the
group of charactersX(P)of P can be identified with{λ ∈ X(T)|〈λ, α∨〉 = 0,
for all α ∈ I }. In particular,X(B) = X(T). A weight λ ∈ X(B) is called
dominantif 〈λ, α∨〉 ≥ 0 for all α ∈ S. A dominant weightλ ∈ X(P) is
called P-regular if 〈λ, α∨〉 > 0 for all α 6∈ I , whereP = PI is a parabolic
subgroup. AB-regular dominant weight is calledregular. The Weyl group
W of G is generated by the simple reflections. The “dot” action ofW on
X(T) is given byw ·λ = w(λ+ρ)−ρ, where〈ρ, α∨〉 = 1 for every simple
root α ∈ S. On the weight latticeX(T) the integral coneZ+R+ ⊆ X(T)
defines the partial order:λ ≥ µ iff λ− µ ∈ Z+R+.

Recall that the primep is defined to be agood primefor G if p is coprime
to all the coefficients of the highest root ofG written in terms of the simple
roots. For simpleG, p is a good prime ifp ≥ 2 for type A; p ≥ 3 for the
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typesB, C and D; p ≥ 5 for the typesF4, E6, E7 andG2; p ≥ 7 for the
type E8.

1.2. Homogeneous bundles.A P-schemeX gives rise to an associated
locally trivial fibrationG×P X overG/P ([9], I.5.14, II.4.1). IfM is a finite
dimensionalP-representation, we letL(M) denote the sheaf of sections of
the vector bundleG×P M on G/P.

1.3. The relative Frobenius morphism. The absolute Frobenius mor-
phismon a scheme is the identity on point spaces and raising to thep-th
power locally on functions. The absolute Frobenius morphism is not a mor-
phism of k-schemes. Letπ : X → Spec(k) be a scheme. LetX′ be the
scheme obtained fromX by base change with the absolute Frobenius mor-
phism onSpec(k), i.e., the underlying topological space ofX′ is that of X
with the same structure sheafOX of rings, only the underlyingk-algebra
structure onOX′ is twisted asλ � f = λ1/p f , for λ ∈ k and f ∈ OX′.
Using this description ofX′, the relative Frobenius morphismF : X→ X′
is defined in the same way as the absolute Frobenius morphism and it is
a morphism ofk-schemes.

1.4. Frobenius splitting. Following Mehta and Ramanathan [15] a variety
X is calledFrobenius splitif the homomorphismOX′ → F∗OX of OX′-
modules is split. A homomorphismσ : F∗OX → OX′ is a splitting of
OX′ → F∗OX if and only ifσ(1) = 1. By abuse of terminology we will call
anOX′-module homomorphismσ : F∗OX → OX′ a Frobenius splittingif
σ(1) ∈ k \ {0} (so thatσ is a splitting up to a constant).

A splitting σ : F∗OX → OX′ is said tosplit the subvarietyY ⊆ X
compatiblyif σ(F∗4Y) ⊆ 4Y′ , where4Y denotes the ideal sheaf ofY.

If X is a smooth variety with canonical line bundleωX, the Cartier
operator gives an isomorphism ([15], Proposition 5)

HomOX′ (F∗OX,OX′) ∼= F∗
(
ω

1−p
X

)
.

In this way global sections ofω1−p
X correspond to homomorphismsF∗OX →

OX′. A section ofω1−p
X which corresponds to a Frobenius splitting in this

way, is calleda splitting section. The above isomorphism can be described
quite explicitly in local coordinates ([15], Proposition 5).

Proposition 1. Let P be a closed point of a smooth varietyY overk of di-
mensionn. Choose a systemx1, . . . , xn of regular parameters in the (regu-
lar) local ring OY,P. Then the isomorphism

F∗
(
ω

1−p
Y

)
→ HomOY′ (F∗OY,OY′)

is locally described as

xα/(dx)p−1 : xβ 7→ x((α+β+1)/p)−1,
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for anyα = (α1, . . . , αn), β ∈ Zn+. Here we use the multinomial notation
xα for the elementxα1

1 . . . xαn
n ∈ OY,P, and m = (m, . . . ,m) ∈ Zn+ for

an integerm. If γ = (γ1, . . . , γn) with at least oneγi nonintegral, we
interpret xγ as zero. Furthermoredx denotes the elementdx1 ∧ · · · ∧ dxn,
andxα/(dx)p−1 denotes the local section ofω1−p

Y with valuexα on (dx)p−1.

We also have the following well known [15]

Lemma 1. LetU be an open dense subset of a smooth varietyX. If a section
s ∈ H0(X, ω1−p

X ) restricts to a splitting sections|U ∈ H0(U, ω1−p
U ), thens

is a splitting section.

Lemma 2. Let X be a Frobenius split variety andL a line bundle onX.
Then there is for eachi ≥ 0 an injection

Hi (X,L) ↪→ Hi (X,Lp)

of abelian groups.

1.5. Volume forms. Let X be a smooth variety with trivial canonical
bundleωX. A volume formis a nowhere vanishing sectionθX of ωX (neces-
sarily unique up to scalar multiples ifH0(X,OX)

∗ = k). A function f on
X is said to Frobenius splitX (with respect toθX) if f θ1−p

X is a splitting
section ofω1−p

X .

Proposition 2. Let X = Speck[x1, . . . , xn] be affinen-space. A volume
form on X is given byθX = dx1 ∧ · · · ∧ dxn and a function f ∈ k[X]
Frobenius splitsX if and only if the coefficient ofxp−1 in f is nonzero and
the coefficients of the termsxp−1+pα are zero forα ∈ Zn

≥0 \ {0} (in the
multinomial notation of Proposition 1).

Proof. An elementσ ∈ HomOX′ (F∗OX,OX′) is a Frobenius splitting if
and only ifσ(1) is a nonzero constant. The proposition now follows from
Proposition 1. ut
1.6. Filtration of differentials. Let f : X → Y be a smooth morphism
between smooth varietiesX andY. LetΩX/k (resp.ΩX/Y) be the sheaf of
differentials ofX (resp. the sheaf of relative differentials ofX overY). Then
we have the following

Lemma 3. There is a short exact sequence

0→ f ∗ΩY/k→ ΩX/k→ ΩX/Y→ 0,

giving a natural filtration of the sheaf ofm-formsΩm
X/k for m ≥ 1 with

associated graded object

GrΩm
X/k =

m⊕
i=0

f ∗Ω i
Y/k ⊗Ωm−i

X/Y .
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1.7. The induction functor. Let P be a parabolic subgroup,M a P-module
andH0(G/P,M) the inducedG-module. Recall thatH0(G/P,M) = (k[G]⊗
M)P, whereP acts onk[G] by right multiplication (it is aG-module with
G acting trivially onM and by left multiplication onk[G]). This translates
into the more familiar

H0(G/P,M) = { f : G→ M| f(g p) = p−1. f(g)∀g ∈ G, p ∈ P
}
.

In this formulationH0(G/P,M) is simply the global sections of the homoge-
neous vector bundleL(M)onG/P. The sheaf cohomologyHi (G/P,L(M))
will also be denotedHi (G/P,M) for i ≥ 0. For P = B, the functor
H0(G/B,−) is also denotedH0(−). If M is a G-module, theni : M →
H0(G/P,M) given byi(m)(g) = g−1.m is an isomorphism ofG-modules.

1.8. The Steinberg module.TheSteinberg moduleSt=H0(G/B, (p−1)ρ)
is irreducible and selfdual. Fix an isomorphismSt→ St∗ and denote the
image ofv ∈ St in St∗ by v∗. This defines aG-invariant form given by
χ(v ⊗ w) = 〈v,w〉 = v∗(w). Let v+ and v− denote highest and lowest
weight vectors ofSt.

Let G act on itself by conjugation. Then the mapSt⊗St→ k[G] given
by (v⊗ w)(g) = 〈v, gw〉 is aG-homomorphism. We get, in particular, by
restriction aB-homomorphism

ϕ : St⊗ St→ k[U].

The global functions onG×B U can be identified withH0(G/B, k[U]). In
this setting we haveH0(ϕ)(v⊗w)(g,u) = 〈v, gug−1w〉 using the identifi-
cationi from §1.7.

1.9. The Frobenius kernel.The relative Frobenius morphismU → U ′
is a homomorphism of group schemes. The kernelU1 is called the (first)
Frobenius kerneland is a normal (one point) subgroup scheme ofU ([9],
I.9). If we fix a T-equivariant isomorphism (such thatxi has weightαi )

k[U] → k[x1, . . . , xN],

then k[U1] ∼= k[x1, . . . , xN]/(xp
1 , . . . , x

p
N). Let γ denote the (restriction)

homomorphismk[U] → k[U1]. Notice thatk[U1] is a finite dimensional
B-representation with all weights≤ 2(p− 1)ρ and thatγ is B-equivariant.
The T-equivariant projection on the highest weight space spanned by the
vectorx̄p−1

1 . . . x̄p−1
N is a B-homomorphismψ : k[U1] → 2(p− 1)ρ, where

the bar denotes the corresponding element ink[U1].
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2. Frobenius splitting of G×B U

We begin with the following elementary lemma.

Lemma 4. For any parabolic subgroupP, the canonical line bundle of the
varietiesG×P UP andG×P uP is G-equivariantly trivial.

Proof. We give the proof in the caseG×P UP. The argument forG×PuP is
similar (in fact this is, for good primes, isomorphic to the cotangent bundle
of G/P). Letn = dimUP. The restriction of the locally free sheaf of relative
differentialsΩ = Ω(G×PUP)/(G/P) on G ×P UP to UP = P ×P UP is the
sheaf of differentials ofUP, and henceΩn|UP = ωUP . Let θUP be a volume
form on UP. Sincek[UP] has no nonconstant units, the canonical action
of P on θUP gives rise to a characterβ of P, which can be determined
by considering the action ofP on ωUP|e, as the identitye ∈ UP is fixed
under P. The cotangent space ate is canonically isomorphic toMe/M

2
e,

whereMe denotes the maximal ideal of functions ink[UP] vanishing ate.
Henceβ = ∑α∈R(T,U+P )

α. SinceΩn is a G-sheaf, it is the pull back of the
line bundle induced byβ on G/P. As the canonical line bundle ofG/P is
induced by−β, the result follows from Lemma 3. ut

Fix T-eigenfunctionsy1, . . . , yN of weights−α1, . . . ,−αN respectively,
such thatk[U+] ∼= k[y1, . . . , yN]. By Lemma 4,X = G ×B U carries
a volume formθX restricting tody1 ∧ · · · ∧ dyN ∧ dx1 ∧ · · · ∧ dxN on the
open subsetU+ ×U ↪→ G×B U. The following lemma is instrumental in
proving Frobenius splitting ofG×B U.

Lemma 5. The mapψ ◦ γ ◦ ϕ : St⊗ St→ 2(p− 1)ρ is non-zero.

Proof. It suffices to prove that the monomialxp−1
1 . . . xp−1

N occurs with
non-zero coefficient inf ∈ k[U], where f(x) = 〈v+, x v+〉. The functions
x 7→ 〈v+, x v−〉 andx 7→ 〈v−, x v−〉 from G to k are highest and lowest
weight vectors inSt = H0(G/B, (p− 1)ρ) respectively. By Theorem 2.3
in [12] the functionσ

x 7→ 〈v+, x v−〉〈v−, x v−〉 ∈ H0(G/B,2(p− 1)ρ)

is a splitting section ofG/B. The restriction ofσ to U+ ⊂ G/B is given
by x 7→ 〈v−, x v−〉. Since f corresponds to this function (which Frobe-
nius splitsU+) under conjugation withw0 (the longest element inW), the
coefficient ofxp−1

1 . . . xp−1
N in f must be nonzero by Proposition 2. ut

If M is a G-module andN a B-module, then by Frobenius reciprocity,
restriction followed by evaluation ate ∈ G is an isomorphism ([9], Propo-
sition I.3.4)

HomG
(
M,H0(G/B, N)

)→ HomB(M, N).

Letµ : St⊗ St→ H0(G/B,2(p− 1)ρ) denote the multiplication map.
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Corollary 1. There is a commutative diagram

H0(G/B, k[U]) //

H0(γ)
H0(G/B, k[U1])

��

H0(ψ)

St⊗ St

OO

H0(ϕ)

//
µ

H0(G/B,2(p− 1)ρ)

of G-equivariant homomorphisms.

Proof. By applying the induction functor we get a homomorphism

H0(ψ) ◦ H0(γ) ◦ H0(ϕ) : St⊗ St→ H0(G/B,2(p− 1)ρ),

which is non-zero by Lemma 5 (and Frobenius reciprocity). By Frobenius
reciprocityµ is (up to a constant) the uniqueG-homomorphismµ : St⊗St
→ H0(G/B,2(p− 1)ρ). Adjusting constants this gives that the diagram is
commutative. ut
Theorem 1. Let v = ∑

i vi ⊗ wi be an element ofSt⊗ St. The function
fv = H0(ϕ)(v) Frobenius splitsG ×B U if and only ifµ(v) is a splitting
section ofω1−p

G/B.
In particular, the functionfv : G×B U → k given by

fv(g,u) =
∑

i

〈
vi , gug−1wi

〉
for g ∈ G, u ∈ U, Frobenius splitsG×B U if and only ifχ(v) is nonzero.

Proof. Suppose thatµ(v) is a splitting section ofω1−p
G/B. Let f = H0(ϕ)(v).

We prove thatf Frobenius splitsX = G×B U with respect to the volume
formθX. Restrict f θ1−p

X to the open subsetU+×U ↪→ G×BU. This leads to
a form f ′(dy1∧· · ·∧dyN∧dx1∧· · ·∧dxN)

1−p onU+×U. By Proposition 2
and Lemma 1, we are done if we prove that the monomialyp−1xp−1 occurs
with nonzero coefficient inf ′ and the monomialsyp−1+pαxp−1+pβ occur
with zero coefficient whereα, β ∈ ZN

≥0 not simultaneously zero (in the
multinomial notation of Proposition 1). We have the following commutative
diagram

k[U+] ⊗ k[U] //
1⊗γ

k[U+] ⊗ k[U1] //
1⊗ψ

k[U+] ⊗ 2(p− 1)ρ

(k[G] ⊗ k[U])B

OO

//
H0(γ)

(k[G] ⊗ k[U1])B

OO

//
H0(ψ)

(k[G] ⊗ 2(p− 1)ρ)B

OO

with naturalT-equivariant maps. A monomialyp−1+pαxp−1+pβ occuring in
f ′ must haveβ = 0, as it is the restriction of an element in the image of



Frobenius splitting of cotangent bundles of flag varieties 611

(k[G] ⊗ St⊗ St)B → (k[G] ⊗ k[U])B and since any weight inSt⊗ St is
≤ 2(p−1)ρ. Furthermore, by Corollary 1,(H0(ψ)◦H0(γ))( f) restricted to
U+ is a Frobenius splitting. Chasing through the above diagram this means
(usingβ = 0) thatα = 0 and the monomialyp−1xp−1 occurs with nonzero
coefficient in f ′, so that f Frobenius splitsG ×B U. On the other hand if
H0(ϕ)(v) is a Frobenius splitting it is easy to read off the diagram thatµ(v)
is a splitting section. The last part of the theorem follows from Theorem 2.3
in [12]. ut

Recall that the cotangent bundleT∗(G/P) of G/P is theG-fibration as-
sociated to theP-module(g/p)∗ under the adjoint action. It is well known
that there is an isomorphism(g/p)∗ ∼= uP of P-modules in good character-
istics ([16], Lemma 4.4). Hence in this caseT∗(G/P) ∼= G×P uP. We have
the following crucial result due to Springer ([16], Proposition 3.5).

Proposition 3. Let chark be a good prime forG. Then there exists aB-
equivariant isomorphismζ : U → u. Moreover for any parabolic sub-
group P, ζ restricts to give aP-equivariant isomorphismζP : UP→ uP.

Corollary 2. Let chark be a good prime forG. Then the cotangent bundle
T∗(G/B) of G/B is Frobenius split.

Proof. By Proposition 3 we get aG-isomorphismG ×B U → G ×B u,
where the latter can be identified with the cotangent bundle ofG/B. The
result now follows from Theorem 1. ut
Remark 1.For v ∈ St⊗ St define f̃v : G ×B B → k as in Theorem 1
(whereB acts on itself by cojugation). Theñfv Frobenius splitsG ×B B
if and only if χ(v) 6= 0. Also the functiong 7→ 〈v−, gv+〉〈v−, g−1v+〉
splitsG. Furthermore, if chark is a good prime forG, any suchv gives rise
to a Frobenius splitting ofG×B b, which descends via the map(g, X) 7→
Ad(g)X to the Lie algebrag. Since we have no nontrivial applications of
these results we do not give any proofs.

3. Vanishing

Let
C = {µ ∈ X(T)|〈µ, α∨〉 ≥ −1,∀α ∈ R+

}
.

It is easy to see ([4], Proposition 2) thatC is the set of weightsλ such that
if µ is a dominant weight withλ ≤ µ ≤ λ+, thenµ = λ+ (hereλ+ denotes
the dominant weight in theW-orbit of λ). The setC is precisely the weights
of line bundles onG/B in characteristic zero, which have vanishing higher
cohomology when pulled back to the cotangent bundle ([3], Theorem 2.4).
In this section we prove the analogous vanishing theorem in good prime
characteristics.

Andersen and Jantzen ([1], Theorem 3.6) proved the following vanishing
theorem under the assumption thatp > h and eitherλ = 0 or λ strongly
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dominant (i.e.〈λ, α∨〉 ≥ h − 1 for all α ∈ S). For p ≥ h − 1 and all
components ofG classical orG2 they proved the vanishing theorem forλ
dominant ([1], Proposition 5.4). Actually the conditionλ+ ρ dominant in
([1], Proposition 5.4) is not sufficient for vanishing as noticed by Graham
and Broer – this is also revealed using Lemma 6 in §3.2 coupled with Bott’s
theorem. Letπ : T∗(G/B)→ G/B denote the projection.

Theorem 2. Let chark be a good prime forG and suppose thatλ ∈ C.
Then

Hi (T∗(G/B), π∗L(λ)) = Hi (G/B, Su∗ ⊗ λ) = 0

wheni > 0.

Remark 2.By the semicontinuity theorem our result implies the same van-
ishing theorem over fields of characteristic zero.

3.1. The Koszul resolution. Let

0→ V ′ → V → V ′′ → 0

be a short exact sequence of vector spaces. For anyn > 0 one obtains
a functorial exact sequence (called theKoszul resolution, ([9], II.12.12))

· · · → Sn−i V ⊗∧i V ′ → · · · → Sn−1V ⊗ V ′ → SnV → SnV ′′ → 0.

3.2. A simple lemma. Let Pα be the minimal parabolic subgroup corres-
ponding to a simple rootα. If λ ∈ X(T) is a weight with〈λ, α∨〉 = −1 and
V a Pα-module, then

Hi (G/B,V ⊗ λ) = 0

for i ≥ 0. This result is the simple key lemma in Demazure’s very simple
proof of the Borel–Bott–Weil theorem [6]. It has the following consequence
(a similar approach has been used by Broer in [5]).

Lemma 6. Suppose thatλ ∈ C and〈λ, α∨〉 = −1 for a simple rootα. Then
sα(λ) ∈ C and

Hi
(
G/B, Snu∗ ⊗ λ) ∼= Hi

(
G/B, Sn−1u∗ ⊗ sα(λ)

)
for i ≥ 0 andn > 0.

Proof. As sα permutesR+ \ {α} and mapsα to−α, we get thatsα(λ) ∈ C.
The isomorphism follows by applying §3.1 to the short exact sequence of
B-modules

0→ α→ u∗ → u∗Pα → 0,

and then tensoring withλ. ut
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3.3. Large dominant weights. This section contains a proof of a lemma
enabling us to turn Frobenius splitting into vanishing for weights, which
are not necessarily regular. The key lies in filtering differentials using the
fibrationG/B→ G/P for a suitable parabolic subgroupP ⊃ B.

Lemma 7. Letλ be a dominant weight. Then

Hi
(

G/B,Ω j
G/B⊗L(mλ)

)
= 0

for i > j and all m sufficiently big.

Proof. If λ = 0, we are done by the fact thatHi (G/B,Ω j
G/B) = 0 for

i 6= j ([9], II.6.18). This is usually referred to as diagonality of Hodge
cohomology. Ifλ 6= 0, there exists a (unique) parabolic subgroupP 6= G,
such thatλ is a (P-regular) character ofP and the induced line bundleL(λ)
is ample onG/P. Let f denote the smooth(P/B)-fibrationG/B→ G/P.
Using Lemma 3, we see that it is enough to prove that the cohomology
groups

Hi
(

G/B, f ∗Ωr
G/P ⊗Ω j−r

(G/B)/(G/P)⊗L(mλ)
)

vanish for all sufficiently bigm, where 0≤ r ≤ j . The E2-terms in the
Leray spectral sequence forf are (using the projection formula)

Epq
2 = Hp

(
G/P,L(mλ)⊗Ωr

G/P ⊗ Rq f∗Ω
j−r
(G/B)/(G/P)

)
= Hp

(
G/P,L(mλ)⊗Ωr

G/P ⊗L
(

Hq
(

P/B,Ω j−r
P/B

)))
.

For all m sufficiently big we getEpq
2 = 0 for p > 0 by Serre vanishing.

Diagonality of Hodge cohomology forP/B gives thatEpq
2 = 0 unless

q = j − r . In particular, form sufficiently big, combining the two, we get
Epq

2 = 0 unlessp= 0 andq = j − r . Now the result follows by the Leray
spectral sequence, sincei > j by assumption. ut

3.4. Proof of Theorem 2.The first isomorphism follows sinceπ : T∗(G/B)
→ G/B is an affine morphism andπ∗OT∗(G/B) = L(Su∗). To prove the
vanishing part we may assume thatλ is dominant, because of the follow-
ing argument: Assume by induction onn thatHi (G/B, Sju∗ ⊗ λ) = 0 for
j < n, i > 0 andλ ∈ C. We wish to prove the same result forj = n.
Take a non dominant weightλ ∈ C. Then there is a simple rootα such that
〈λ, α∨〉 = −1. By Lemma 6,sα(λ) ∈ C and

Hi
(
G/B, Snu∗ ⊗ λ) = Hi

(
G/B, Sn−1u∗ ⊗ sα(λ)

)
,

where the latter group vanishes by induction.
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So assume thatλ is dominant. Since(b/u)∗ is a trivial B-module, it
follows from §3.1 (applied to the sequence 0→ (b/u)∗ → b∗ → u∗
→ 0, and breaking the resulting Koszul resolution up into short exact
sequences) that the vanishing ofHi (G/B, Sb∗⊗λ) implies the vanishing of
Hi (G/B, Su∗ ⊗ λ) for i > 0. Again using §3.1 for the short exact sequence
0→ (g/b)∗ → g∗ → b∗ → 0 we get forn ≥ 1 an exact sequence

· · · → ∧1(g/b)∗ ⊗ Sn−1g∗ ⊗ λ→ Sng∗ ⊗ λ→ Snb∗ ⊗ λ→ 0

after tensoring withλ. By breaking this up into short exact sequences, we
see that the vanishingHi (G/B, Sb∗ ⊗ λ) = 0 for any fixedi > 0 follows
from the vanishing

Hi+ j
(
G/B,∧ j (g/b)∗ ⊗ λ) = 0

for all j ≥ 0. TheB-representation∧ j (g/b)∗ induces the bundle ofj -forms
Ω

j
G/B on G/B. By Lemma 7, we get for all large enoughr that Hi+ j (G/B,
∧ j (g/b)∗ ⊗ (prλ)) = 0 for j ≥ 0 and henceHi (G/B, Su∗ ⊗ (prλ)) = 0
for i > 0. But by Corollary 2 and Lemma 2, we have an injection of abelian
groups

Hi (T∗(G/B), π∗L(λ)) ↪→ Hi (T∗(G/B), π∗L(prλ))

which translates into an injectionHi (G/B, Su∗ ⊗ λ) ↪→ Hi (G/B, Su∗ ⊗
(prλ)) for anyr > 0 (this is where the assumption thatp is good forG is
used). This proves the theorem.

3.5. Dolbeault vanishing. Theorem 2 is in fact equivalent to the following
(Dolbeault) vanishing (see [4] for results in characteristic zero and the
parabolic case).

Theorem 3. Let chark be a good prime forG andλ ∈ C. Then

Hi
(

G/B,Ω j
G/B⊗L(λ)

)
= 0

for i > j .

Proof. Theorem 2 implies thatHi (G/B, Snb∗ ⊗ λ) = 0 for i > 0, using
induction onn in the Koszul resolution (tensored withλ) coming from the
short exact sequence 0→ (b/u)∗ → b∗ → u∗ → 0. This vanishing now
fits in a similar induction onn in the Koszul resolution (tensored withλ)
coming from the short exact sequence 0→ (g/b)∗ → g∗ → b∗ → 0. This
gives the desired vanishing. ut

4. The parabolic case

In this section we prove that the cotangent bundle ofG/P, where P is
a parabolic subgroup, is Frobenius split whenchark is a good prime forG.
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4.1. Frobenius splitting of G ×P UP. Let P = PI ⊃ B be the parabolic
subgroup given by a subsetI ⊂ S. Let RI denote the root system generated
by I . The space of functionsk[(UP)1] on the Frobenius kernel ofUP is
a finite dimensionalP-representation with all weights≤ (p− 1)δP, where
δP := ∑α∈R+\R+I α ∈ X(P). Observe that−δP is the weight inducing the

canonical line bundle ofG/P. The canonical line bundle ofG ×P UP is
trivial by Lemma 4. The space of global functionsk[G ×P UP] can be
identified withH0(G/P, k[UP]). As in the case of a Borel subgroupB ⊂ P,
we have a naturalP-equivariant mapϕP : St⊗ St→ k[UP]. The natural
map

H0(G/P, k[UP])→ H0(G/P, k[(UP)1])→ H0(G/P, (p− 1)δP),

(where the last map is induced by theP-module mapk[(UP)1] → (p−1)δP)
composed withH0(G/P, ϕP) gives theG-eqivariant mapµP : St⊗ St→
H0(G/P, (p− 1)δP).

Theorem 4. Let v = ∑
i vi ⊗ wi be an element ofSt⊗ St. The function

f = H0(G/P, ϕP)(v) Frobenius splitsG ×P UP if and only ifµP(v) is
a splitting section ofω1−p

G/P.
The functionf = f P

v : G×P UP→ k given by

f P
v (g,u) =

∑
i

〈
vi , gug−1wi

〉
for g ∈ G, u ∈ UP, Frobenius splitsG×P UP if and only ifχ(v) is nonzero.

Proof. It follows by analogous weight considerations for the restriction of
f to U+P ×UP as in theB-case, thatf = H0(G/P, ϕP)(v) Frobenius splits
G ×P UP if and only if µP(v) is a splitting section ofG/P (since any
α ∈ R+ \ R+I contains a simple root outsideI with nonzero coefficient
when written as a sum of simple roots and(p−1)δP+∑βi∈R+\R+I niβi can
not be a weight ofSt⊗ St for ni ≥ 0 unless eachni is 0).

In order to prove the last part of the theorem, we need to exhibit an
elementw ∈ St⊗Stsuch thatH0(ϕP)(w)Frobenius splitsG×P UP (because
this implies thatµP(w) is a Frobenius splitting ofG/P, so thatµP followed
by theG-equivariant “evaluation” map [12]H0(G/P, (p− 1)δP) → k is
a non-zeroG-homomorphismSt⊗ St → k and hence equalsχ up to
a non-zero scalar multiple).

As proved in Theorem 1, the functionf(g,u) = 〈v−, gug−1v+〉, Frobe-
nius splitsG ×B U. The restriction of this function toU+ × U therefore
Frobenius splitsU+ ×U. Observe that this restriction is given by

f(g,u) = 〈v−, guv+〉, g ∈ U+,u ∈ U.

Let w′0 be the longest element of the Weyl group ofRP and letv+0 =
w′0v+, v

−
0 = w′0v−. Index the set of positive roots{α1, . . . , αN} in such
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a manner that the firstn := |R+I | roots are the positive roots ofRP. Let yi :
k→ U (resp.xi : k→ U+) be the root homomorphism corresponding to the
root−αi (resp.αi ). Write u = yN(tN) . . . y1(t1) andg= x1(s1) . . . xN(sN).
Then

uv+ = yN(tN) . . . yn+1(tn+1)

∑
l 6=p−1

cl t
ln
n . . . t

ll
1vl + ctp−1

n . . . t p−1
1 v+0

 ,
for somec, cl ∈ k andvl weight vectors inSt, wherel = (l1, . . . , ln).

As f Frobenius splitsU+ × U, we see that the coefficient oft p−1
n+1 . . .

t p−1
N sp−1

N . . . sp−1
n+1 in〈
v−0 , xn+1(sn+1) . . . xN(sN)yN(tN) . . . yn+1(tn+1)v

+
0

〉
is nonzero. By weight considerations, it therefore easily follows that the
function

f ′ : U+P ×UP→ k, f ′(g,u) = 〈v−0 , guv+0
〉

Frobenius splitsU+P × UP. But f ′ extends to the function (again denoted
by) f ′ : G ×P UP → k given by(g,u) 7→ 〈v−0 , gug−1v+0 〉. (To see this, it
suffices to observe thatU+P fixesv+0 .) Hence f ′ Frobenius splitsG×P UP.ut
Corollary 3. Let chark be a good prime forG. Then the cotangent bundle
T∗(G/P) of G/P is Frobenius split.

Proof. This follows from Theorem 4 and Proposition 3. ut
Theorem 5. Assume thatchark is a good prime forG. Let λ ∈ X(P) be
a P-regular weight. Then

Hi (T∗(G/P), π∗L(λ)) = Hi
(
G/P, Su∗P⊗ λ

) = 0

for i > 0, whereπ = πP : T∗(G/P)→ G/P is the projection.

Proof. The proof follows §3.4. One applies the Koszul resolution for the
short exact sequence ofP-modules 0→ (g/uP)

∗ → g∗ → u∗P → 0. We
get forn ≥ 1 an exact sequence

· · · → Sn−1
g
∗ ⊗ ∧1(g/uP)

∗ ⊗ λ→ Sn
g
∗ ⊗ λ→ Sn

u
∗
P ⊗ λ→ 0

after tensoring withλ. Again the vanishingHi (G/P, Su∗P⊗ λ) = 0 for any
fixed i > 0 follows from the vanishing

Hi+ j (G/P,∧ j (g/uP)
∗ ⊗ λ) = 0

for all j ≥ 0. Sinceλ induces an ample line bundle onG/P this vanishing
follows whenλ is replaced bynλ for all sufficiently largen. In particular,
we get the vanishing ofHi (T∗(G/P), π∗L(prλ)) = Hi (G/P, Su∗P ⊗ prλ)
for any i > 0 and all sufficiently larger . Now the result follows from
Corollary 3 and Lemma 2. ut
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5. The subregular nilpotent variety

Throughout this section we assume thatG is simple (and simply connected)
and thatchark is good forG.

Let U be the unipotent variety inG, i.e., the closed subvariety ofG
consisting of all the unipotent elements. Then the map

ϕ : G×B U → U

mapping(g,u) to gug−1 is a resolution of singularities ([8], Theorem 6.3)
for all prime characteristics. IfP = Pα is the minimal parabolic subgroup
associated with a short simple rootα, thenϕ restricted toG×B UP factors
through

ϕα : G×P UP→ U.

Lemma 8. The map
ϕα : G×P UP→ S

is birational onto its imageS, which consists of the closed subvariety of
irregular elements (called the subregular unipotent variety).

Proof. It follows by an argument of Tits thatϕα has connected fibres
(see [3], Proposition 4.2), so we need to show thatϕα is separable (since
dim G×P UP = dim S). By Richardson’s theorem ([17], I 5.1-5.6) the orbit
maps for the conjugation action ofG on itself are separable for very good
primes. This implies the separability ofϕα for good primes, whenG is not
of type A. In typeA the separability ofϕα follows from theGLn-case, where
the orbit maps for the conjugation action are separable for all primes.ut

By ([2], Corollary 9.3.4) there is a (Springer)G-isomorphism between
the unipotent varietyU and the nilpotent coneN , i. e., the closed subvariety
of g consisting of all the nilpotent elements. In particular, we get thatN is
normal by the normality ofU ([8], Theorem 4.24(iii)). As in the unipotent
case, the Springer resolution

ϕ̃ : G×B u→ N , (g, X) 7→ Ad g(X),

is a resolution of singularities, which gives a resolution (Lemma 8)

ϕ̃α : G×P
uP→ S

of singularities of the subregular nilpotent varietyS, whereuP is the nilpo-
tent radical of the Lie algebra ofP. Moreover, all the morphismsϕ, ϕ̃, ϕα, ϕ̃α
are projective morphisms. Letπ : T∗(G/B)→ G/B denote the projection.

Theorem 6. The subregular nilpotent varietyS is a normal Gorenstein
variety with rational singularities.



618 S. Kumar, N. Lauritzen, J. F. Thomsen

Proof. The characteristic zero proof ([3], Theorem 4.4) carries over: The
closed subvarietyG ×B uP of the cotangent bundleG ×B u is the zero
scheme of a section of the pull backπ∗L(−α). So we get an exact sequence

0→ π∗L(α)→ OG×B
u
→ OG×B

uP
→ 0.

By Theorem 2 (sinceα ∈ C) and the normality ofN , we get a short exact
sequence

0→ H0(T∗(G/B), π∗L(α))→ k[N ] → k
[
G×P

uP
]→ 0.

Let S̃ denote the normalization ofS. The surjectionk[N ] → k[G ×P uP]
factors through the injectionk[S] → k[S̃] (followed by the mapk[S̃] →
k[G×P uP] induced by the normalization) via the restriction mapk[N ] →
k[S]. This proves thatk[S] = k[S̃] so thatS is normal. By Theorem 2
the higher cohomologies ofOG×B

u
and π∗L(α) vanish. It follows that

Hi (G ×B uP,OG×B
uP
) = Hi (G ×P uP,OG×P

uP
) = 0 for i > 0, giving

thatS has rational singularities (sincẽϕα is birational by Lemma 8). As the
canonical line bundle ofG×P uP is trivial, S is Gorenstein ([11], p. 49–50).ut

6. Good filtrations

Let X be a smoothB-variety. A splitting section (or Frobenius splitting)
σ ∈ H0(X, ω1−p

X ) is calledcanonical[13], ([10], Definition 4.3.5) ifσ is
T-invariant and for allα ∈ Sandt ∈ k

xα(t).σ =
p−1∑
i=0

tiσi,α

for suitableσi,α ∈ H0(X, ω1−p
X ) (of weight i α), wherexα : k → B is the

root homomorphism corresponding to the root−α.
Recall that a filtration 0= V0 ⊂ V1 ⊂ . . . of a G-moduleV is called

a good filtration if V is the union of theG-submodulesV0,V1, . . . and
Vi/Vi−1

∼= H0(G/B, λi) for λi dominant. We have the following weaker
version of a result due to Mathieu ([10], Lemma 4.4.2) sufficient for our
purposes.

Lemma 9. Let X be a smoothB-variety andL a G-equivariant line bundle
on G ×B X. Assume thatG ×B X admits a canonical splitting, then the
G-moduleH0(G×B X,L) has a good filtration.

For good primes there is aG-equivariant map

ϕ′ : St⊗ St→ H0
(
T∗(G/B),OT∗(G/B)

)
such thatϕ′(a⊗b) is a splitting section ifχ(a⊗b) 6= 0 ( whereϕ′ := H0(ϕ),
cf. §2). Consider the splitting section of the cotangent bundleT∗(G/B)given
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by ϕ′(v+ ⊗ v−). It is easy to see thatϕ′(v+ ⊗ v−) is a canonical Frobenius
splitting of T∗(G/B) = G ×B u, since the definition can be checked for
v+ ⊗ v− ∈ St⊗ St.

Theorem 7. Suppose thatchark is a good prime forG. Letλ ∈ X(T) be
a weight (not necessarily dominant). Then

H0(G/B, Sn
u
∗ ⊗ λ)

has a good filtration forn ≥ 0.

Proof. By the aboveT∗(G/B) = G ×B u admits a canonical Frobenius
splitting. Hence

H0(T∗(G/B), π∗L(λ)) = H0(G/B, Su∗ ⊗ λ)
has a good filtration by Lemma 9, whereπ : T∗(G/B)→ G/B denotes the
projection. ut
Remark 3.Using Theorem 4 it follows in the same way that the cotangent
bundleT∗(G/P) = G×PuP of G/P admits a canonical Frobenius splitting
for any parabolic subgroupP ⊃ B. Mathieu has informed us thatH0(X,L)
has a good filtration ifX is a smoothG-variety with a canonical Frobenius
splitting andL aG-equivariant line bundle onX. In our case one can prove
directly thatG ×B (G ×P uP) ∼= G/B × (G ×P uP) admits a canonical
Frobenius splitting, so that Lemma 9 implies thatH0(G/P, Su∗P ⊗ λ) has
a good filtration for (arbitrary) weightsλ ∈ X(P).

Theorem 8. Suppose thatp> h and letλ be a dominant weight. Then we
have an isomorphism for anyw ∈ W such thatw · 0+ pλ is dominant

Hi
(
G1,H

0(G/B, w · 0+ pλ)
)[−1] ∼={

H0
(
G/B, S(i−`(w))/2u∗ ⊗ λ) if i ≡ `(w) mod 2,

0 otherwise,

where()[−1] denotes Frobenius (un)twist of a representation. In particular,
Hi (G1, H0(G/B, w · 0+ pλ))[−1] admits a good filtration.

Proof. The key ingredient in the proof (in [1], §3.3) of the isomorphism is
the vanishing Theorem 2, which makes the spectral sequence ([1], 3.3(2))
degenerate. The good filtrations follow from Theorem 7. ut
Remark 4.Andersen and Jantzen proved Theorem 8 for groups not having
any components of typesE and F([1], §5). For arbitraryG they proved
Theorem 8 under the assumption thatλ is strongly dominant ([1], Corol-
lary 3.7(b)).

Remark 5.It follows from the linkage principle that the only dominantµ
with

H•
(
G1,H

0(G/B, µ)
) 6= 0

are of the formw · 0+ pλ for someλ dominant andw ∈ W.
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7. Homogeneous Frobenius splittings

We assume that chark is a good prime forG. The space of functions
(k[G] ⊗ k[uP])P = (k[G] ⊗ Su∗P)P on the cotangent bundleT∗(G/P) has
a natural grading. Letπd : (k[G] ⊗ Su∗P)

P → (k[G] ⊗ Sdu∗P)
P be the

projection on thed-th homogeneous factor. LetNP denote the dimension of
G/P. Then a functionf Frobenius splitsT∗(G/P) implies thatπNP(p−1)( f)
Frobenius splitsT∗(G/P). A homogeneous splitting function (of degree
NP(p− 1)) descends to give a Frobenius splitting of the projectivization
P(T∗(G/P)) (lines in T∗(G/P)) of the cotangent bundle. These splittings
are in some sense better behaved than the splittings coming directly from
St⊗ St via Corollaries 2 and 3.

7.1. The An-case. In type An (G = SLn+1(k)) we have theB-equivariant
isomorphismσ : A 7→ I+Abetween the upper triangular nilpotent matrices
u and the upper triangular unipotent matricesU. In this way we see that the
elementv+ ⊗ v− in St⊗ St maps to the (splitting) functionf

(g, A) 7→ 〈
v+, g(A+ I)g−1v−

〉
on the cotangent bundleT∗(G/B) = G×B u via H0(ϕ) andσ . The function
g 7→ 〈v+, gv−〉 is a highest weight vector inSt and equals the(p− 1)-st
power of the highest weight functionfρ : g 7→ 〈w+, gw−〉, wherew+ and
w− are highest and lowest weight vectors inH0(G/B, ρ). The function fρ
is a product of certain highest weight functionsfω1, . . . , fωn, with weight
of fωi = ωi , whereωi denotes thei -th fundamental dominant weight. Let
A = (ai, j )1≤i, j≤n+1 be a matrix inG, then it is well known that

fωs(A) = det
(
(ai, j )1≤i, j≤s

)
for 1 ≤ s ≤ n. In this way the (magical) splitting function of Mehta
and van der Kallen [14] onT∗(G/B) is exactlyπN(p−1)( f), whereN =
n(n+ 1)/2. One interesting aspect of the Mehta–van der Kallen splitting is
that it compatibly splits allG ×B uP, for any parabolic subgroupP ⊇ B.
Finding a suitable splitting in this context for the other groups would be
very interesting.
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