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Introduction

Let g be a (finite-dimensional) complex simple Lie algebra (with the associated simply- -
connected complex algebraic group G) and let § be the corresponding affine Kac-Moody
Lie algebra. Fix a positive integer £. Let R,(G) be the free Abelian group generated by
the set of integrable highest weight irreducible §-modules of level (or central charge) £.
Then there is a fusion product ®® in R,(G) making it into a commutative and associa-
tive algebra. (The associativity of this algebra follows from the so called factorization
rule.) The definition of the product ®® is in terms of the dimension of a certain space
of vacua (cf. Definition 3.1). We give a new definition of a fusion product denoted @F
in ¢(G) in terms of the Euler-Poincaré characteristic of certain homogepeous vector
bundles on the generalised affine flag variety X (cf Definition 3.2). Our definition of
the product ®F is very simple and geometric in nature,

A comparison of the two fusion products led us to define a certain chain-complex F
whose terms are finite-dimensional G-modules {cf. (2.3)). The differentials of this
complex are highly non-trivial and are obtained by considering the BGG resolution for
the affine Kac-Moody algebra §. We have made a conjecture on the homology H.(F) of
this complex (cf. Conjecture 2.3 and Theorem 2.4). The homology H.(F') is isomorphic
to the Lie algebra homology H. (3™, L(V(v),£) ® V(ix; 1)), where the notation is as in
§1 and Definition 2.1. Recall that if we take 1 = 0, then H. (B~ V(). ) @ V(1))
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is completely determined by Kostant’s “n-homology result” for the affine Kac-Moody
algebra g (proved by Ga.rland-Lepowsky).

Validity of the above-mentioned Conjecture 2.3 will immediately imply that the
two products ®* and ®% in Ry(G) are the same. In fact, a much weaker result will
imply their equality (cf. Lemma 4.1). We prove this weaker result for all simple g of
type An, By, Cp, D, and G, (ef. Theorem 4.2). This provides an alternative (more
uniform) proof of a result of Faltings (cf. Remark 4.3(b); see also Remark 4.3(c)). So

far, we are able to determine the full homology H, (F) only for the group G = SL(2)
{cf. Proposition 4.4).

This is only an announcement of results without proofs.
1. Preliminaries and Notation

DEFINITION 1.1. Let g be a finite dimensional complex simple Lie algebra. (We also
fix 2 Borel subalgebra b and a Cartan subalgebra § ¢ b of 8.) Then the associated
offine Kac-Moody Lie algebre is by deﬁnition the space

§=g0cCit*'}oCK
together with the Lie bracket. (for X Y € gand P,Q e C[t21))

[X®PY®Q]=[X,Y]® PQ+ ({X, Y)l‘:l=eos(‘;—fQ))K, and
6. X} =0, '

where (-, -} is the Killing form on 8, normalized so that {6, 8) = 2 for the highest root ¢
of g.

The Lie algebra g sitsl as a Lie subalgebra of § as 8®1t° The Lie algebra § admits
a distinguished “parabolic” subalgebra

p=goCtacCkK.
We also define its “nil-radical” & {which is an ideal of §) by

=g,
and its “Levi component” (which is a Lie subalgebra of p)
. " =g0t0CK.
Clearly (as a vector space)
p=iap’

Also define i~ =g@t7'C[t~'} C §, and the Cartan subalgebra b = h ® 2 @ CK
of §. Let W (resp. W) be the Weyl group of g (resp. §). Then W acts on the dual
space H* by linear automorphisms. Let p € h* be half the sum of the positive roots
of g and define 5 € §* by fly = p and

P(K) =1+ {p,8") = dual Coxeter number of '8

where 6 (as earlier) is the highest root of g and 6V is the associated coroot. Define the
shifted action of W on b* by ws g = w(B+5)~ 5, for € B and w e W, Fix a
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positive integer £. Let P+ ¢ b be the set of dominant integral weights of g and let
FPfi={xe P*:{\6%) g £} be the fundamental alcove.

Define the loop algebra Q(g) := 8 ®c Clt*!] with Lie bracket XePYeqQ =

[X,Y]®PQ, for X,Y € gand P,Q € C[t*'). Then § can be viewed as a one-dimensional
central extension of 0(g):

0— CK — § 53 0)(g) —s 0, (1.1)
where the Lie algebra homomorphism = is defined by 7(X®P) = X®P and n(K)=0.

1.1. Irreducible Representations of 8 Fix an irreducible (fnite-dimensional) rep-
resentation V' of g and a number £ € C (to be called the leve! or central charge). Then
we define the associated generalized Verma module for § as

M(V, Q) = U(3) ®ug) L(V),

where the p-module I(V) has the same underlying vector space as V on which it acts
trivially, the central element K acts via the scalar £ and the action of g=g®1t%is via
the g-module structure on V.

In the case when £ is a positive integer (in fact, it suffices to assume that £ £ —h,

where 4 is the dual Coxeter number of g), M(V,8) has a unique irreducible quotient,
denoted L(V, £).

Remark 1.2. It is easy to see that any vector v € M(V,{) is contained in a finite-
dimensional g-submodule of M (Vi£). In particular, the same property holds for any
vector in L(V, £).

DEFINITION 1.3. Consider the Lie subalgebra t of § spanned by {Yoot,6v®1,
Xo®t71}, where Y (resp. Xo) is a non-zero root vector of g corresponding to the
root - (resp. #) and the coroot 8" is to be thought of as an element of §. Then the
Lie algebra 1° is isomorphic to sl(2).

A g-module W is said to be integrable if every vector v € W is contained in a
finite-dimensional g-submodule of W and also v is contained in a finite-dimensional
t%-submodule of W. _

Then it follows easily from the s! (2)-theory that the irreducible module L\V,t)is

integrable if and only if £ is an integer and ¢ > (\,8"), where ) is the highest weight
of V.

2. A Certain Complex and Lie Algebra Homology

DEFINITION 2.1 (DEFINITION OF A CoMPLEX). Fix a positive integer £ and a finite-
dimensiona] irreducible representation V = V(v) of g with highest weight v € P}
Recall the parabolic BGG resolution for Kac-Moody Lie algebras (cf. (13} and [10,
Theorem (3.27))): '

.'.._,FP_;..._;F,—;Fo—;L(V,l)qo, (21)

where B 1= @ ¢y stuyep MV (w0 * 6)l5),£), W denotes the set of those w ew
such that w is the smallest element in its coset Ww, £(w) denotes the length of w,
and », € b* is defined by vely = v, wy(K) = L. (Observe that (w * ve)ly € P* for
any w € W'.)
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Take any p € P+, realize V(#) as a module for Q(g) via evaluation at | and
consider it as a module for § (by letting K act trivially on V(i)) via the Lie al;;ebra
homomorphism # (cf. (1.1)). We denote V(p) with this §-module structure by V(u;1).

Tensoring (2.1) with V(u;1), we get a resolution:

BBV S5 R V(1) - LV e Vik1) - 0. (22)

Tensori.n.g the complex (2.2) with € over I/ (4”) and vsing the Hopf principle (cf. [7
Proposition 1.7]) we obtain a complex of g-modules and g-module maps: ,

b

é, 8
cr—3 P_'l)..._',

o

—0, (2.3)

where 13‘p = eweﬁ"’.l(w)=t’ [V((w v, ) ® V(I‘)]-

The maps 8, are quite non-trivial, e.g., the map 4, :
described as below:
. Fistofal Fy = V(v 4+ mg) @ V(p), where m = £ +1 — (v,6Y),
Fo=V{@)e V(). :

Fy = Fp can be explicitly

and of course

LEMI.HA 2.2.' The map 6,: V(v + m)OV(p) » V(v)® V(u) is the composite map
no(j ®I) given as follows: (observe that V/(8) is the adjoint representation of 8)

V(v +mb)® V(n) 5o V@R V() T V(v) @ V),

where j: V(v + mf) « V(1) ® 9%™ is the canonical inclusion ndnv®(z,®---®
Zm)®W) = V@ T -2yw, forv e Vv), we V(u) and z; € g.

Observe that, since M (V((w s ve)ly), £) ate (ii~)-free, H.(F) is isomorphic to the
Lie algebra homolog): H.(a, L(V(v),) ® V{n;1)). Moreover, if a g-module V(A) is
a component of Hy(F), then A € P}, :

We make the following conjecture.

CoNJEC’_{_URE 2.3. Assume that p ¢ B} (and of course v € P}). Then for any
A € P}, the g-module V()) does not occur as a component of the homology
Hy(i=, L(V(v),) ® V(u: 1)) = Hy(F) of the complez (2.3), for anyp > 1.

If we take g = 0, this conjecture follows immediately from Kostant’s result on
n-homology (for affine Kac-Moody Lie algebras, as proved by Ga.rland-Lepowsky [7)).

Assuming the validity of the above conjecture, and using the Hochschild-Serre
spectral sequence for the Lie algebra homology, we obtain the following:
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THEOREM 2.4. Let g be any (finite-dimensional simple) Lie algebra, for which Con-
jecture 2.3 is true. Decompose the Lie algebra homology (as g-modules)

Ho(i™, L(V(v),0) ® V(1;1)) = S mev(8),
eepP}
where mg = my(v, p) is the multiplicity of V(6) in the left-hand side.
Then for any i 2> 0 (and any such g, i.c., for which Conjecture 2.3 is truc),

Hi(i™, L(V(¥),0) ® V(i; 1)) =Y me 3 V(e 8)is),
[}

weWw’
e(w)=i

a5 g-modules.

3. A New Geometric Definition of Fusion Product

Fix a positive integer £. We first recall the definition of fusion product for positive
level representations.

DEFINITION 3.1. For any two A\, € P}, there is a fusion product
L(V(2), 8 ®° L(V(u),2),

which is again an integrable representation of § with the same central charge £. It is
given as:

LV, 08" L(V(e),8) = €D rau(v) LV(v), ),

ver;

where n ,(v) is the dimension of the space of vacua for the Riemann sphere P! with
three punctures 0, 1, oo and the representations V(A), V() and V(v)* attached to
them respectively (cf. [15]).

Let G be the affine Kac-Moody group associated to the Lie algebra § and Eit_g
parabolic subgroup (cotresponding to the Lie subalgebra p) (cf. [9, §1)). Thea X =G/P
is a projective ind-variety. Now, given a finite-dimensional algebraic representation V
of P, we can consider the associated homogeneous vector bundle V on X and the
corresponding Euler-Poincaré characteristic (which is a virtual G-module)

X(X, V)= Y (-1)'H(X,V).

Recall that H(X, V) is determined in [9, Corollary 3.11] (and also in [12]).
We give a new definition of a fusion product ®F in the following,

DEFINITION 3.2. For any positive integer £, and A,y € P}, define
[L(V(2).0 ®F L(V(n), ] = x(X,V),

as virtual G-modules, where the P-module V := (L(viy) @ V()" (cf. §1.1 for the
notation Jp).
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Let Ry(G) be the free Abelian group generated by {L(V(¥),8) : v € P} }. Then
®F gives rise to a product in Re(G).

Let G be the (simple) simply-connected complex algebraic group with Lie alge.
bra g, and let R(G) be its representation ring, ie., R(G) is the free Abelian group

generated by the G-modules {V(A):aep+ }, which is a ring under the usual tensor
product of G-modules. Define the Z-linear map

B: R(G) — R,(G)

by ﬁ(uf_)' = X(X,W"), where W is the homogeneous vector bundle on X associated
to the P-module I,(W) and W* is the dual vector bundle on X.

‘We have the following lemma.

LeMma 3.3. The kernel of § is an ideal of R(G). Moreover,
with respect to the product ®F in Ry(G).

In particular, R,(G) is an associative (and commulative) algebra under @F.

B is a homomorphism

4. Comparison of the Two Fusion Products

We denote R,(G) equipped with the fusion product ®* (resp. ®F ) by (Re(G), %)
(resp. (Re(G),®F)). Recall that the assoclativity of (Ry(G),®*) follows from the
factorization rule (cf. {15]) for P! with punctures,

Set (for A, i, v € P})

L‘
L= Id\im(Hom,(V(,\), H{&, L(V(s),0) @ V(i; ))- (&)
i>1

For any 1 € 1 < rank g, let w; € P* be the i-th fundamenta] weight corresponding
to g. We have the following lemma,
LEMMA 4.1. The products ®® and ®F in Ry(G) coincide if and only if for all A
P}, %) =0.

In fact, the products ®* and ®F in Re(G) coincide if and only if forall \,w;,v €
P, %lvwi) =0.

LY €

Asa conséquence of the above lemma, together with some results of {1, Corollary
4.3], (3] and some partial determination of Hy (5=, L(V(v),£) ® V(w;; 1)) for those w;
such that {u;,8") < 2, we obtain the following result.

THEOREM 4.2. For any simple (simply-connected) group G of type A,,, B,, Cn, Dy
or Gy, the products ®°® and ®F in Ry(G) coincide. In particular, for these groups, the
Z-linear map §: R(G) — Re(G) (cf. Definition 3.2) is an algedra homomorphism with
respect to the product @ in R,(G).

Remark 4.3. (a) Of course Xa(v, i) = 0, for all A, € P, if Conjecture 2.3 is
true. In particular, the validity of Conjecture 2.3 will imply that ®® and ®F coincide
in Rl( G)

(b) The “in particular statement of the above theorem is due to Falt;

Appendix], proved via case by case computation, In fact, this result of Falt
the main motivation behind our work,

ings [5,
ings was
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(c) It is likely that we can prove Ti:eorem 4.2 for all G and all'positive integer £
combining our proof of the above Theorem and some results of F inkelberg {6]. (Some
details in [6] are not clear to me as yet.) ]

Finall[y, we can prove the validity of Conjecture (2.3) for G = SL(2).

PROPOSITION 4.4. Conjecture 2.3 is true for the group G = SL(2). In pa.rticular,. Tl.ze-
orem 2.4 is true in this case. In fact, in this case, one has a rather precise dcscrfptzon
of Ho (™, L(V (v), ) ® V (15;1)) and hence of H; (=, L(V(v), ) @ V(g 1)) for alli > 0.
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