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Introduction

Let G be a semisimple simply-connected complex algebraic group and T C B
a maximal torus and a Borel subgroup respectively. Let § = Lie T be the
Cartan subalgebra of the Lie algebra Lie G, and W := N(T)/T the Weyl .
group associated to the pair (G, T), where N(T) is the normalizer of T in G.
We can view any element w = w mod T € W as the element (denoted by the
corresponding German character) w of G/B, defined as w = wB. For any w
€ W, there is associated the Schubert variety X, := BwB/B C G/B and the T-
fixed points of X,, (under the canonical left action) are precisely the elements
of L,:={v:veEW andv < w}.

We (together with B. Kostant) have defined a certain ring Qp(T) (which
is the smash product of the group algebra Z[W] with the . W-field O(T) of
rational functions on the torus 7') and certain elements y,, € Qw(T) (for any
w € W). Expressing the elements y,, in the {J,},cp basis: '

Yw = wa—l’u—léy ,

we get the matrix B = (b,~1 ,—1 )wew With entries in Q(T) (cf. Defini-
tion 2.1(d)). Analogously, we defined the nil Hecke ring Qp ( which is the
smash product of the group algebra Z[W] with the W-field O(h) of rational
functions on the Cartan subalgebra }) and certain elements x,, € Qy. Writing

Xy = D, €t y—10y

we get another matrix C = (¢,,-1 ,—1 )wvew With entries in O(h) (cf. Defini-
tion 3.1(b)). .

We prove that the formal T-character of the ring of functions on the scheme
theoretic tangent cone 7,(X,) (for any o € I,) is nothing but *b,,—1 ,—1 (cf.
Theorem 2.2), where * is the involution of Q(T) given by e* —— e~*. This
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sharpens a result due to Rossmann [R]. In fact this work of Rossmann, and
our own work with B. Kostant on the equivariant K-theory of flag varieties,
motivated our current work. The proof of Theorem (2.2) requires the Demazure
character formula, and occupies Sect. 2 of this paper. We use this theorem to
prove that b,,—1 ,—1 &0 if and only if v < w, and in this case it has a pole of
order exactly equal to #(w). Similarly ¢ ~1=%=0 if and only if v £ w (cf.
Corollaries 3.2).

We study the graded algebra structure on the space of functions gr(@, x,.)
of the scheme theoretic tangent cone 7,(X;,) in Sect.4. Our principal result in
this direction is Theorem (4.4), which roughly asserts that the graded algebra
Gr (0, x, ) arises from the natural filtration of the Demazure module v~ ¥,,(1)
induced from the standard filtration of the universal enveloping algebra U(u™),
where u™ is the nil-radical of the opposite Borel subalgebra and V(1) is
defined in Sect. . We use this theorem to derive a result due to Carrell-
Peterson asserting that for simply-laced G, a point b € X, is rationally smooth
if and only if the reduced tangent cone Tj¢(X,,) is an affine space for all
v =<8 = w(cf. Corollary 4.11).

The mam result of our paper is a necessary and sufficient condition for a
point » € X,, to be smooth, in terms of the matrix entry ¢, ,—1 (cf. Theorem
5.5 (b)). This result asserts that for any v < w € W, the point v € X, is
smooth <

w",v

= (-1 )/(w)—[(u) H 'B—I ,
pesSw—1,0—H

Cy=1, p=1
where S(w™lv™') :== {& € 44 : vy £ w7}, and #, is the reflection
corresponding to the root «. ’

There is a very similar criterion for a point o € X,, to be rationally smooth
(cf. Theorem 5.5(a)). This criterion of rational smoothness can be easily de-
duced by combining some resuits of Dyer and Carrell-Peterson, but we give a
different geometric proof as that proof is used crucially to prove our criterion
of smoothness mentioned above ( i.e. Theorem 5.5(b)).

It should be mentioned that the elements ¢,,—1 ,—1 (as well as b, ,
defined combinatorially and admit closed expressions (cf. Lemma 3.5).

The nil Hecke ring approach to singularity, developed in this paper, is ap-
plied to some specific examples discussed in Sects. 6 and 7. In Sect. 6, we de-
termine the precise singular locus of any Schubert variety in any rank-2 group
(cf. Proposition 6.1). I believe this result should be well known, but I did not
find it explicifly written down in the literature. In Sect. 7, we use our Theo-
rem (5.5) to study the smoothness (and rational smoothness) of codimension
one Schubert varieties X; in any G/B. Proposition (7.5) (resp. Corollary 7.8)
gives a criterion for a point v € X; to be smooth (resp. rationally smooth).
This criterion is applied to give a complete list of codimension one smooth (as
well as rationally smooth) Schubert varieties in any G/B (cf. Proposition 7.10).

Finally in Sect. 8, we extend our main result giving the criterion of
simoothness to arbitrary (not even symmetrizable) Kac-Moody groups (cf.
Theorem 8.9). We also extend our result determining the formal character of
the ring of functions on the scheme theoretic tangent cone at any b € X, to

—1) are
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arbitrary Kac—Moody groups (cf. Theorem 8.6). The proofs in the Kac-Moody
case are similar to the finite case, and hence we have been brief and outlined
only the necessary changes.

There are other criteria for smoothness, due to Lakshmibai—Seshadri (for
classical groups) [LS] [L], Ryan (for SL(n)) [Ry], Wolper (again for SL(n))
[W1] [W2],...; and for rational smoothness due to Jantzen [J], Kazhdan—Lusztig
[KL], Carrell-Peterson [C1],...; and by works of Deodhar and Peterson rational
smoothness implies smoothness for simply-laced groups. It may be mentioned
that our criterion for smoothness (as in Theorem 5.5(b)) is applicable to all
G uniformly, in contrast to the above mentioned criteria for smoothness. We
refer the reader to two survey articles, one by Carrell [C2], and the other by -
Deodhar [D2].

The main results of this paper were announced in [Ku2].

1. Notation

For a complex vector space ¥ (possibly infinite dimensional), ¥* denotes its
full vector space dual. For a finite set S, #S denotes its cardinality. Unless
otherwise stated, we take the base field to be the field of complex numbers.

Let G be a semisimple simply-connected (in particular connected) complex
algebraic group, and let B be a fixed Borel subgroup and 7 C B a maxi-
mal torus. Let B~ be the (opposite) Borel subgroup such that B~ NB = T.
We denote by U (resp. U~) the unipotent radical of B (resp. B~). Let
8,6,b 7,u,u™,}h be the Lie algebras of the groups G,B,B~,U,U~, T respec-
tively. Let 4 C bh* (resp. 4.) denote the set of roots for the pair (G, T) (resp.
(B,T)). Let {ay,...,0,} be the set of simple roots in 4, and let {a),..., 0
be the corresponding (simple) coroots (where n = rank G).

_ Let W := N(T')/T be the Weyl group (where N(T) is the normalizer of T

in G) of G. Then W is a Coxeter group, generated by the simple reflections
{r1,...,7a} (where #; is the reflection corresponding to the simple root ;). In
particular, we can talk of the length #(w) of any element w € . We denote
the identity element of W by e.

Let b} = {1 €b*: Ao') € Z, for all i} be the set of integral weights and
D:={leby: AaY) =0, for all i} (resp. D° := {A € b} : A’) > 0, for
all i}) the set of dominant (resp. dominant regular) integral weights. For any
A€ D and w € W, we denote by V(1) the irreducible representation of G with
highest weight A, and V(1) is the smallest B-submodule of ¥ (1) containing
the extremal weight vector e,,; (of weight wi). Let R(T) := Z[X(T)] be the
group algebra of the character group X(T) of the torus 7. Then {el}gel,z
are precisely the elements of X (7). Let O(T) be the quotient field of R(T).
Clearly W acts on O(T) and moreover O(T) admits an involution * (i.e. a
field automorphism of order 2) taking e* ~ e™%.

For any w € W, the Schubert variety X, is by definition the closure BwB/B
of BwB/B in G/B under the Zariski topology (where the notation BwB/B means
BwB/B for any representative w of w in N(T')). Then X, is an irreducible
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(projective) subvariety of G/B of dimension /(w). We can view any element
w = wmodT € W as the element (denoted by the corresponding German
character) w of G/B, defined as w = wB. By the Bruhat decomposition, any
v such that v = w belongs to X, where < is the Bruhat (or Chevalley)
partial order in W. The Schubert variety X, is clearly B-stable (in particular
T-stable) under the left multiplication of B on G/B. The T-fixed points of
X, are precisely [, := {v : v € W and v £ w}. For any variety X over
€, we denote by CLX] the ring of global regular functions X — C. For any
A € bz, let €, be the 1-dimensional representation of B given by the character
¢* and let £(A) be the line bundle on G/B associated to the principal B-bundle
G — G/B via the representation C_, of B.

2. Character of the ring of functions on the tangent cones of X,,

We follow the notation as in Sect. 1.

(2.1) Definitions. (a) For any local ring R with maximal ideal m, define the
graded R[m-algebra:
— Z ]TI"/TH”+1 .

nz0

Let X be a scheme of finite type over an algebraically closed field and
let x be a closed point of X. Then the tangent cone T(X) of X at x is, by
definition (cf. [M, Chapter 3, Sect. 3]), Spec (gr @), where Oy = O, x is the
local ring at x xeX.

(b) Let R(T ) be the set of all the formal sums ), ex(r) n;e*, with ar-
bitrary n €L (we allow infinitely many of the n;’s to be non-zero). Even
though R(T) is not g ring, it has a canonical R(T) -module structure (got ot by
the multiplication). We define the Q(T)-module Q(T ) as O(T) ®R(T) R(T)
Since Q(T) is a flat R(T)-module, Q(T) canonically embeds in Q(T ).

(c) A T-module M is said to be a weight module if M = EBe/ieX(T)Mb
where My = {m € M : tm = e*(t)m} is the )-th weight space. A weight
module M is said to be an admissible T-module if dim M; < oo, for all
et e X(T).

For any admissible T-module M, one can define its formal character
ch M := Ze,eXm (dim M;) €* as an element of R(T).

(d) The ring Q(T)W ([KXK2, Section 2]): Let Q(T)w be the smash product
of the W-field Q(Lxwith the group algebra Z{W1, i.e., Q(T)w is a free right
o(T)- module ith basis {0, }wew and the multiplication is given by:

(1) (5W|q1) (51"2472) - 5W1Wz(w2 6,71)‘]2, for q1:42 € Q(T)
and wi,w, € W .
For aﬁy simple reflection r;,1 =i S n, define the element y,, € O(T)w by:
1

v = (0 + O
@) yr = et b) T s -
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Now, for any w € W, define y,, € Q(T)y by
(3) Yw = Ve Yri s

where w = r;, ---ri, is a reduced decomposition. By [KK2, Proposition 2.4],
yw is well defined. Write

(4) ywzzbw_l,y—lava
v
Sfor some (unique) b1 ,—1 € (T). It can be easily seen that b,,-1 ,—1 =0
unless v < w (cf. [KK2, Proposition 2.6)).
The ring OQ(T)w has a canonical representation in Q(T) defined by

=1y

(%) (Owq1) - @2 = wlq1q2) -

It is easy to see that for any r;, yr, - R(T) C R(T), in particular, y,, - R(T) C
R(T) for any w € W.

Since v € X, is fixed under the action of T (cf. Sect. 1), the local ring
O,,x, at v € X,, is canonically a T-module.

(2.2) Theorem. Take any v < w € W. Then gr 0, y, is an admissible T-
module and moreover
ch(gr @D,Xw) = "‘bw—l,v"1 »

as elements of Q’(\f), where ch (which is an element of RTf)) is to be thought
of as the element 1 ® ch of Q(T) := O(T) Qrcry R(T).
In particular, ch(gr 0, x,) € O(T).

Before we come to the proof of Theorem (2.2), we need the following
preparation.
We recall the following simple lemma without proof.

(2.3) Lemma. Let Y be an irreducible projective variety with an ample line
bundle & on Y, together with a non-zero ¢ € H(Y,8). Define the variety
Y° .= Y\Z(0), where Z(o) is the zero-set of 6. Then Y° is affine and moreover
Jor any f € C[Y?), there exists some n > O (depending upon f) such that
the section f - 6" (of H(Y°,2%")) extends to an element of H'(Y, 2%").

(2.4) Lemma. Given any f € C[U™), there exists a large enough 2 € D (i.e.
Mo Y>>0, for all the simple coroots ) and 6 € V(A)* such that

f(g)=(b,ges), forgeU™,

where e, is a non-zero highest weight vector of V(1).
Moreover, for any v £ we W,

f vanishes on (v"'BwBYN U™ < 0 € (V(A)v 'V (A))".

Proof. The first part is due to Andersen and also Cline—Parshall-Scott [CPS,
Sect. 5]. However, for completeness, we give a proof.
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By the Borel-Weil theorem (for any 4 € D), there is an isomorphism of G-
modules y : V(A)* = H%G/B, 2(1)), where for any ¢ € V(A)*, x(¢) is given
by the section y(¢)(gB) = (g, (g’ldJ),Q;) mod B. (Observe that Ce; C V()
is a one-dimensional representation of B corresponding to the character e* and
hence (Ce;)* corresponds to the character e=*.) Let ¢, € V(1)* be the element
defined by ¢;(e;) = 1 and ¢;(v) = 0, for any weight vector v € V(1) of
weight =4 A. Consider U~ =~ U~ - ¢ C G/B as an open subset and take any
(ample) line bundle £ (4,) on G/B for A, € D°. Taking the section ¢ = x(¢;,,)
of £(4,) and applying Lemma (2.3), we get the first part of the lemma for
A = nd, (for some n > 0). (Observe that Z(¢) = G/B\ U~ - e, since 4, is
regular.)

Let f : G — € be the extension of f given by f(g) = {8,ge;). Then,
since v~ !BWwAB is an irreducible subvariety of G, and by Bruhat decomposition
v~ 'BWwB N U™B is non-empty open subset of v~'Bw5,

f vanishes on v !BWBN U~ & ]7 vanishes on v~ 'BwB N (U™ B)
& f vanishes on v~ 'BWwB
& f vanishes on v~ 'BwB
& (6, v Bwe)) =0
e (6, vI7,A)) =0.
This proves the lemma. O
For any A € D, define the map
@ V(A ®Cy— ClUT]
by 01(0 ® e1)(g) = (6,ge)), for 8 € V(1)*, g € U™ and e, € C€;; where
C; C V(A) is identified as the highest weight space.
(2.5) Lemma. The map ¢; is T-equivariant with respect to the adjoint action
of T on U™, and is injective.
Proof. For any t € T,
@0 ® te; )(g) = (16, gtey)
= (6,17 1 gte;)
= (1 - (pi(0®er))Xy) -

This proves the T-equivariance of @;.

To prove the injectivity of ¢,, take 0 ® e; & ker ¢;, i.e., (0,ge;) = 0, for
all g € U™. Hence (0,gbe;) =0 for all g € U™ and b € B. In particular, by
the density of U~ B in G and the frreducibility of V' (1), we get (8, V(1)) =0,
i.e., 8 =0, proving the injectivity of ¢;. O

§ (2.6) For any y € D, let us choose a highest weight vector e, € ¥V (y), and
define (for any A, u € D)

YO+ vy e V) SE vy e ¢,



The nil Hecke ring and singularity of Schubert varieties 477

where iy, is the unique G-module map taking e;, = e; ®e,, Id is the identity
map and 7, : V(u) — C, is the T-equivariant projection onto the highest
weight space €, = Ce, C V(1). We denote the composite map (Id®@mn,)oi; , -
V(A4 p) > V(A QC, by 5/ « Dualizing the above, we get the map

S1u VA @Cy = V(A+ 1),
and hence the map
610 =01, ®Id V(A @C, ~ V(1) ® C—y @ Capp = V(A + 1) ® Crpy.

It is easy to see that &,, is injective. Moreover, the following diagram is
commutative: .

52, {
YAFreC, S VA4 )@ Cuy
P, \ / Podp
Cciu-] .

By virtue of Lemma (2.4), for any A € D and v < w € W, we get the injective
map
@i(v,w) : (171 Vu(A)* @ C; — Clv™ ' BwB)N U],
by restricting the map ¢;. '
(2.7) Lemma. For L, pe D andv S we W, 5,1,ﬂ(v‘1Vw(l +w) = v V(d)

®C,. In particular, there exists a unique map 6,,,(v,w) making the following
diagram commutative:

e, — () eC

l 5;_,# l 5;_,#(0,w)

V(j' + /-t)* ® (E}.+u _—}, (v_l Vw(l + /-t))* ® (E}.+,u,
where the horizontal maps are the canonical restriction maps. Moreover,
03, u(0, W) is injective. '
Proof. For b € B,
(1) 51, (0 by, ) = 5 bve; @ [ bwe, ),

where [x], denotes the component of x € V' (u) in the u™ weight space, and 7 is
a representative of v in N(T'). Define the closed subvariety Y C Bby ¥ = {b €
B: [13_1bWe!,]u = 0}. Then Y + B, for otherwise e, ¢ vV, (1), which is a con-
tradiction (since v < w by assumption). Now for b € B\Y, 5,1, u(0 _lbWeHﬂ) =
17_1bWe,1®eﬂ, up to a non-zero scalar. But since 5,1,“(1;_‘ V(A4 1)) is a (closed)
linear subspace and B\Y is dense in B,

V() ® €, C 81 (v V(A + 1) -

The inverse inclusion is clear from (1). This proves the first part of the lemma.
The ‘in particular’ statement follows immediately from dualizing the map

n

Ony V(A ) — 0T (DR T,

o= V(A )

The injectivity of 6, (v, w) follows from the surjectivity of 5, o, . g
. o~ M p(24p)
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By virtue of the above lemma, we get the following commutative diagram:

6,;,‘1(0,\1/)
—

(U_l V(W)Y ® C, (U_l Vo(A+p))* ® 0:/1+,u

@i(ow) N\ s plow)
Clv'BwBNU"].

(2.8) Definition. Define a partial order < in D as follows:
A<uspu—ieD.
Taking the limit of thelmaps @,(v,w), we get the T-equivariant map
q}(v, w): lgrenDit (")) e Cy) — C[v—lmﬂ U-].
(2.9) Proposition. The above map o(v,w) is an i_somorphism, Sfor all
vEweW.

Proof. Injectivity of the map @(v,w) is clear from the injectivity of the maps
@2(v, w). Surjectivity of @(v,w) follows from Lemma (2.4). O

(2.10) Definition. For any directed set A and any sequence 0 : A — R:(ZF),
given as 0(a) = 3 ey (ryna(@)e? with ny(a) € Z, we say that lirenjt B(a) =

S nzet, if for any e* € X(T), there exists ay € A such that ny(a) = n; for
all o = o;. Of course limjt O(o) may not exist in general.
€

Observe that if limjt O(a) exists, then so is lirenjt (pO(a)), for any fixed
ae o
p € R(T). Moreover

) limit (pb(a)) = .p limit O(a) .
€A aeA

(2.11) Corollary. ch Clv™'BwB N U] = limit (5,1 - (€ % (3 - €))).

Proof. By the previous proposition and the Demazure character. formula (cf.
[A], [Jo2], [Ra2, Remarks 4.4], [Se], [Kul, Theorem 3.4], [Ma]),

¢h Clv™'BwBNU ] = limit (8,1 - (e"*ch (V(1)*)))
€
= limit (-1 - (€ % (3 - €))).
AED .

Observe that the existence of the above limit is guaranteed by Proposi-
tion (2.9) and the fact that C[v~'BwBN U] is an admissible T-module (being
quotient of C[U™]). _ O

Finally we come to the proof of Theorem (2.2).
8 (2.12) Proof of Theorem (2.2). Write (cf. (4) of Sect. 2.1)

Yw= 2 by 18y .

u=sw
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Then
(1) &k (- €)= 2 (kb 1) €4
1
= )kbw"l,v—I + Z (*bw—l,u‘l)ev;._“;‘ :
gy

For any (regular) weight A, € D°, v, —ud, +0 for u=v. From the definition of

b,-1 -1, it is easy to see that there exist positive roots {fi,...,,} depending
on w (possibly with repetitions) such that
2) Pxb, ., €R(T) forallu<w,

N

where P = [Io_,(1 —e ) .
Fix 4, € D°. Then the subset {nl,},>1 C D being cofinal in D under < ,

(3) limit (e % (p, - €1)) = limit ("% % (yy, - €")).
€ n—oo
Then by (1) of Definition (2.10) and (1)-(3) as above, we get
Plimit (" % (p, - €*)) = limit (P(e™™ * (y,, - €"*)))
€D r—00

= limit (P % b1 yo1 + 3 (P# byt 1) " Whom4h0)y

n—oc uFv

=Pxb,1 -1 + HZ*:U(P %Dy, 1) limit (e"(vho—ulo)y
=Px bw-—l,v—l . i

So, we get (in the Q(7T)-module Q’(\T/ )]

4) | @ limit (€% (yw €M) = b1 o1

So, by Corollary (2.11) and Identity (4), we get
chClo 'BwBN U] = 6,1 * (*b,—~1 ,-1).

But the variety v~!BwB N U~ provides an affine open neighborhood of the
point ¢ € v~1X,,. In particular,

grl, 1y, ZgrClv 'BwBNU].

The theorem now follows from the complete reducibility of the T-module
Clv~!BwB N U™}, by translating the variety v~'X,, under . O

(2.13) Remarks. (1) This theorem was obtained by the author in 1987 and
privately circulated in the preprint “A connection of equivariant K-theory with
the singularity of Schubert varieties”.

(2) A different proof of the theorem was subsequently given by Bressler.
M. Brion mentioned to me that he also obtained a proof of this theorem (un-
published), by using some results of Baum~Fulton—Quart.
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3. Some consequences of Theorem (2.2)

After the following definitions, we give some of the corollaries of Theo-
rem (2.2).

(3.1) Definitions. (a) For any £ € Z, :={0,1,2,...} and any a = > n e’ ¢
R(T), denote by (a); = S n;(X)£) € S(B*), where S(h*) is the space of
homogeneous polynomials of degree { on Y. Further, denote by [a] = (a)y,
where £y is the smallest element of Z. such that (a)s, +0. (If a itself is 0,
we define [a] = 0.) Now for ¢ = § € Q(T), where a,b € R(T), we define
lq] = % € Q(h) (the quotient field of the symmetric algebra S(H*)). Clearly
[q] is well defined. '

When q+0 and deg [a] < deg [b], we say that q has a pole (at the
identity e) of order = deg [b]—deg [a]. It is easy to see that b, ,—1 (cf.
(4) of Sect.2.1), when non-zero, has a pole of order < £(w).

(b) The nil Hecke ring Qw ([KK1, Sect.4]): Let Qw be the smash product
of the W-field Q(h) with the group algebra Z[W], with the product given
by the same formula (1) in Sect. 2.1. For any simple reflection r;, 1 < i
< n, define x,, € Qw by

1
Xy, = = (8 + Oe)—.
o

Now, for any w € W, define x,, = Xy Xy s where w = r;; ...r;, is a reduced
decomposition. The element x, is well defined by [KK1, Proposition 4.2].
Write, as in [KK1, Proposition 4.3},

Xy = ) Cy—1,~1 Oy, for some (unique) c,—1,-1 € O(h).
v

3.2 Corollaries (of Theorem 2.2). For any v,w € W

(@) by—1,-1%0 if and only if v £ w; and in this case it has a pole of
order exactly equal to {(w). Further,

1) < IT Q —eﬂ)> by-1 -1 €R(T).

pedy

(b) [*byy-1 ,-11 = ¢=1 ,—1; and hence for any v < w,

[ch(gr O x,)1 = 1,1,
as elements of Q(h).
In particular, c,,-1 ,~1 #0 if and only if v < w.
Further

(2) ( IT ﬁ) €1 -1 € S(HY).

pedy

(For a strenghthening of (1) and (2), see Remark 3.4(3) and Lemma 5.4.)

Proof. As observed in Sect. 2.1(d), b,-1,-1 = O unless v < w. So let us
assume that v < w. Set &* = vU~e C G/B . Since &’ N KX, is a closed
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subvariety of the affine space 7", Tor‘g["/ U]((C[.SZ//U NX,],C) is a finite dimen-
sional vector space over C (cf. proof of Lemma 5.4) for any p and moreover
(«/® being smooth) is 0 for large enough p. Set

F = Y(=1)? ch(TorS"I(Cl” N X,],€)) € R(T) .
pr
Then from the Koszul complex we get,

3 ( IT (- e”’g)) ch Cl’NX,] =F, as elements of RTf).
\redt

It can be easily seen that the coefficient of €® in the left side of the above
identity is non-zero, in particular, £ #0. From (3) we obtain

4

1®chCle’NX,]=F [] (1 —e*)!
fedy

:F( 11 (—e7)> IT Q —ef)™!, as elements of Q’(\f).

yEAL MoA_ Bedy
From (4) it is clear that 1® chCl«/’ N X,,}+=0 as an element of Q’(\f).
Moreover, since &/’ N.X, is an affine neighborhood of v in X,,, we get
) ) chCle’ NX,] =ch(grl,x,) -

But then by (5) and Theorem (2.2), we get that b1 ,—1 0. The assertion that
b,,—1,-1 has a pole of order exactly equal to /(w) (whenever v < w) follows
from a lemma of Joseph [Jol, Sect. 2.3]. This proves the first part of Corol-
lary (a). Assertion (1) of part (a) follows immediately from (4), (5) (and
Theorem 2.2).

To prove part (b), in view of Theorem (2.2), we only need to show that

(6) b1 p-1] = 01y

By induction (on £(w)) we assume the validity of (6) for any w with
Z(w) £ k and any v € W, and take w’ = wr; of length & + 1, where #; is a
simple reflection such that Z(w') > £(w). (The case w = e is obviously true.)

By Definition 2.1 (d),

Yw! = Yw¥r

= (Xu:bw—l,u—léu> (e + 6r,) (I_—ie‘—’-’">

Z bw——l)v—l + bw—l’r’m—l
v

] —e %%
This gives, for any v € W,

I

5, .

by—1 -1 + bw—l,,.'_u—l

w— o=l = 1 — g—v%

(7) b
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Exactly the same way, using the definitions from Sect. 3.1(b), we obtain:

Chp=t p=t T o=t 1

(8) Crow—=1,0—1 = — vy

By (7) and part (a) of the corollary we get:
[*bw_l,v_'] + [*bw‘l,r,-u—l]

—U0;

[*br,-w_l,v‘l] =

Hence by the induction hypothesis (using (8)), (6) follows for w' = wr;.
This completes the proof of Corollaries (3.2). O

(3.3) Deﬁ;lition. For any v £ w € W, define S(w,v) = {a € 44 1 vry, £ w},
where v, € W is the reflection defined by ry(A) = 2 — (A, aV)o. Then as is
easy to see #S(w,v) = #S(w~1,v71).

(3.4) Remarks. (1) The (b)-part of the above corollaries (3.2) is due to Ross-
mann [R, Sect.3.2]. In fact, this motivated our Theorem (2.2).

(2) The assertions (1) and (2) as in corollaries (3.2) can be derived purely
algebraically (cf. [KK2, Corollary 4.18 and Remark 4.17(b)]).

(3) (due to Referee) The assertion (in the first sentence of 3.2(a) and its
generalization to the Kac-Moody case as in Theorem 8.6(b)) that ‘b,,—1 ,—1 +0
if and only if v < w and in this case it has a pole of order exactly equal to
Z(w),” and also the assertion ‘[*b,-1 ,—1] = cw—l’v;l (in 3.2(b) and 8.6(c))’
follows easily by induction using (3.2) (7)—(8) and [Dy, Proposition (1)].
Further, it follows from loc. cit. that (for any v < w)

( H ﬁ) Cp=1 p—1 € S(b*) P
peS(w—Lp—1)

thereby strengthening 3.2(2). Also, essentially the same proof as for [Dy,
Proposition (1)] can be used to obtain the following strengthening of 3.2(1)
(including in the Kac—Moody case):

( 1 « —eﬁ)>bw_x’v—x € R(T).
peSw—1,0=1)
(See Sect. 5.4 for a geometric proof of this.)

The following lemma gives an expression for b,, (and c,,) and can be
easily proved by using the definitions.

(3.5) Lemma. Fix any v £ w € W, and take a reduced decomposition w =
Fiy e Tipe Then

—rlg -2, =Py 1
: bw—l,u—lzz((l—e 1Ty (1—e 12 2)e(I—e it i P))
Similarly

£ £ £ -1
Cy—=1,0—1 = (-1* E((rillah )(rillrfzzaiz)' e (rfll o 'ri:aip)) >



The nil Hecke ring and singularity of Schubert varieties - . 483

where both the sums run over all those (e,...,&,) € {0,1}7 satisfying

& . . .
rh v, = v. (The notation Y means the identity element.)

4. Ring of functions on the tangent cone—the graded algebra structure

§ (4.1) For any 4 € D, the (finite dimensional) G-module V(1) admits a
filtration {%(4)}pz0 as follows:

Let {Uy(u~)}p,20 be the standard filtration of the universal enveloping
algebra U(u™), where we recall that U,(u™) is the span of the monomials
Xi... X for X; € u” and m £ p. Now set

Fo(A) =Up(u7) - e,

where ¢; is any non-zero highest weight vector in V' (4).

Fix Ae D,v S we W, 8 V(A)*, and a highest weight vector e; € V(4).
Recall the definition of the function ¢, from Sect. 2.4. We abbreviate ¢;(0®e;)
by @°. Thus ¢ : U~ — C is the function

¢’(9) = (8,ge), for ge U™
By Lemma (2.4), @Y vanishes on v='BwBNU™ & (6,07'V,,(1)) = 0. Identify
U~ with the affine space u™ under the exponential map. This gives rise to a

gradation on C{U~]. Now let (pf}, be the dth graded component of ¢? (for any
d = 0), ie.,

(%) (PS(X) = EIT(Q,Xde;), for X e u™ .

The following lemma follows immediately from (*), if we use the fact that
for any vector space V, its pth symmetric power SP(V) is spanned by {v?},¢p.

(4.2) Lemma. Fix p = 1. Then for any 8 as above (i.e. (8,v7'V,,(1)) =0),
@5 =0 for all 0 < d < pif and only if (6,07 'V, (A) + F_1(A)) =0.

For any p = 0 and any closed subvariety 0 € ¥ C A", let 4(Y) denote
the set of degree pth components of all those functions f in the ideal #(Y)
of ¥ C A", such that the dth homogeneous component f; of f is O for all
d<p.

As an immediate consequence of the above lemma, we get the following.

(4.3) Corollary. For any p = 0, the map 0 Q@ e; — (@9.(0 Q@ e;)), induces a
T-equivariant injective map

v+ () \T foloawid) 1—s
—“BwBNU™
(rl Vo) + z‘«;_l(x)> G HOTBWENUT),

where C,; C V(A) is the highest weight subspace, and % _ (1) is defined to
be 0.

It is easy to see that under the map 5,1,# V(A+p)—V(A)eC, (of Sect.
2.6), the image 5,1,#(5*;,(/1 + 1)) = %(1) ® C,. Moreover, by Lemma (2.7),

Sl, ,u(v_l Vw(/l + #)) =p! Vw('{) oY (C[.z-
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In particular, 5";,‘;, gives rise to a T-module map 9, ,(v,w; p) making the
following diagram commutative (for any Lu €D, v S we W and p = 0):

( b= V(2) + Fo(A) ) . ;p>< T V(A4 1) + FHO+ )

)+ Fa (W) 7t 1)+ Ty (Gt m) B

j;,(v,w;}.)\ j_/,',(v,w;}.+;z)
S ' BWBNUT) .

v~ V(D) + F(A) ) .
{<v—%<z)+%_l<z> M"}'

LED

Thus

forms a directed system of 7-modules and there is an induced T-module map

v+ Z(A) T -
- limit _ w C; 7 —lB ).
Jolow) gyt ((v—%uw%—l(x)) ® ")H p(e BN UT)

By the injectivity of the map fp(v,w; A), we see that 6, ,(v,w; p) is injéctive.

(4.4) Theorem. The above map Jo(v,w) is a T-equivariant isomorphism for
all p =2 0 and all v £ w € W. In particular, there is a T-equivariant
isomorphism

e ((THWNED V'
0w =i (i) ©%)

where gr,(0, 1y ) is the pth graded component of gr(Oy 1y, ).

Proof. Since fp(v,w; L) is injective for all A € D, f,(v,w) is clearly injective.
The surjectivity of f,(v,w) follows from Lemma (2.4) and Lemma (4.2).
We now come to the proof of (1): Observe first that by [Ha, Lecture 20],

2) g,(0 1x,) ~ SP(0™))/ S BwBNUT),

where S¥ is the pth symmetric power.
Now for any (fixed) p, if we take 4 to be sufficiently large, then the map

U(u ) ® C; — F(A) given by X ® e; — Xe; ,

fore; € C; C V(Z), is a T-module isomorphism. In particular, by the Poincaré—
Birkhoff-Witt theorem,

(3) Fp(A)Fp—1(A) = SP(u”)® C; (for large enough 4).
Consider the exact sequence R

CIRINFZD) | FHD) v V) + FHA)
DN Tyt (D) Tyt () 0 TuA) + Ty ()

—0.
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Dualizing this sequence and using (3) we get (for large enough 1)

oo ( RAONEAD)

SR ) BT S

v V() + FHA) T
C 0.
<u—1VW(A)+97,,_1(A)> et
Now the isomorphism (1) is established from (2) and the isomorphism
(v, w). O

§ (4.5) For any variety X and a closed point x € X, let Z,(X) denote the Zariski
tangent space of X at x. For any closed subvariety ¥ C G/B containing the
base point ¢, we get the induced inclusion Z(Y) «— Z.(G/B). But Z,(G/B) can
be canonically identified with u™ (since U™ is an open neighborhood around
¢ in G/B), in particular, Z,(Y ) can be canonically viewed as a subspace of u™.

The following result is due to Polo [P, Theorem 3.2]. It may be recalled
that a different description of the Zariski tangent space in the case of classical
groups was given by Lakshmibai—Seshadri (cf. [LS] [L]). Observe that by virtue
of the automorphism of G/B, given by gB — tgB (for g € G), Z.(v™'X,,) is
isomorphic with Z,(X,,). ,

The first part of the following result follows immediately from
Theorem (4.4) and the second part follows from the fact that X, C G/B is
defined by linear equations. :

(4.6) Corollary. For any v < w,
(1) Z,(v7'X,) = {X € u” : Xe; € v~V (1), for all A€ D},

where e; is a non-zero highest weight vector of V(A).
In fact (fixing any regular A, € D°)

(2) : Z.(w7'X,) = {X € u” : Xey, € vV, (Ao)}.
Proof. The identity (1) follows from Theorem (4.4) immediately, since
Zv'X,) = gr1(0, 1y, )" However, we give the following direct proof:
Fix A € D and take 8 € (V(1)/v~'V,,(1))*, and consider the corresponding
function @% : U~ — € defined by
@’(expX) = (,(expX)e;) = (0, Xe;) + order two and higher terms.

(Observe that (0,e;) = 0 by assumption.) So the linear part L(¢’) € (u™)*
(under the identification exp : u~ — U~) of ¢’ is given by

3) : Lo X = (0, Xe;), for X e u”.



486 ' S. Kumar

Let £(v~'BwBNU™) denote the ideal of the closed subvariety v™'BwB N
U~ of U~. Then, by the definition of the Zariski tangent space, '

Z.(v X)) = {X eu 1 L(f)X =0, for all f € £ 'BwBNU )},
={X eu :Xe; € v 'V, (1), for all 1€ D},
by (3) and Lemma (2.4).

This proves (1).

We now prove (2): The tensor product of sections gives rise to an algebra
structure on the space R := EBmon °(G/B,ﬁ(m10)). Let K, be the kemel of
the restriction map H(G/B, 8(mA,)) — H(X,,, € (mi,)|x, ). Then, by a result
of Ramanathan [Ra2, Theorem 3.11], the kemnel K := } (K, of the sur-
jective map EB,,,>0H0(G/B L2(mAy)) — EB,">0H°(XW,53(m/1 )x.) is generated
(as an ideal in the ring R ) by K (i.e. X,, is linearly defined in G/B with respect
to £(1,)). This, in particular, implies (by translating via 7' and using Le-
mma 2.3) that the ideal #(v"'BwBNU™) is generated by the functions {¢?},
where 0 ranges over (¥ (4,)/v™ V(4 ))*. Now by an argument identical to the
proof of (1), we get (2). ' O

(4.7) Lemma. Let g be simply-laced. Assume that there exist integers p, pi, -
., Pk = 1 and roots B, B1,...,Bk € A4 such that

k
(1) pB= 21 pibj
j=
and .
(2) Y Ep

Then pj=8, forall 1 £ j £k

Proof. We can assume without loss of generality that no fj = . Now by (1)
we get

®) BB = ilpjwj,m |

But g being simply-laced, {8, 8Y) < 1 (since fj+f), and hence by (2) and
(3) we get

k
PEY PSP
j=1
This contradiction proves the lemma. O

(4.8) Proposition. Ler g be simply-laced. Fix v < w € W. Then for any
o€ Ay such that w¢S(w,v) but E_, € Z, (v‘lX ) there exists a non-zero
element 0, € gr (0, 14, ) of weight o satisfying 0 ) = 0 as an element of
85,0y (O v-1, ) where E_, is a non-zero root vector of g corresponding to
the negative root —a, S(w,v) is as in- Definition (3.3), and p is the half sum
of positive roots. In particular, the tangent cone T.(v™'X,,) is non-reduced in
this case.
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Proof. By Lemma (4.7), the weight space of U,(u™) corresponding to the
weight —po (for any p = 1) is one dimensional, and is spanned by E’,.
Since gr1(0,,y) is canonically isomorphic with the dual space Z,(Y)* (for any
variety ¥ and closed point y € Y), and E_, € Z.(v7'X,), there exists a
non-zero element 0, € gri(0,,-1y,) of weight a. Under the embedding
Ze(v™'X,) — u~ (cf. Sect. 4.5), we can identify the element 6§, with the
element of (u™)* defined by 0,(E_g) = d.p, for all f € 4.

By virtue of Theorem (4.4), to prove that 65 = 0 (where p := {p,a")), it

suffices to show that (for all large enough A € D)
p —0-

. Ayt W NFp(a) T

Since 6% is of weight pa and the weight space of Up,(u™) corresponding to
the weight — po is spanned by E”, it suffices to show that E” ,e; ¢ v~ V(1)
(for all large enough A € D):

For otherwise, assume. that £” e;, € v 'V,,(4o) (for some p < Ag). Then
by Lemma (2.7), E? je, € v™'V,,(p). But since 7,e, = E” ,e, (up to a non-zero
scalar multiple), 7ue, € v ~1¥,(p) and hence by [BGG, Theorem 2.9] vr, < w,
which contradicts the assumption and proves the proposition. O

(4.9) Remarks. (a) The ‘in particular’ statement of the above Proposition can
also be deduced from [C1, Theorem G(2)].

(b) Lakshmibai had earlier given an example (private communication) to
show that in the group Spin (8), a certain tangent cone is non-reduced.

For a closed point x of a scheme X, recall the definition of the tangent cone
Ty(X) as Spec (gr ) from Sect.2.1. Define the reduced tangent cone T™(X)
as Spec (gr™d0,), where gr¢@, = (gr ¢,)/N and N is the 1dea1 consisting of
all the nilpotent elements in gr @,.

. We recall the definition of a rationally smooth point in a variety ¥ (cf.
[KL, Appendix]).

(4.10) Definition. An irreducible variety Y of dimd is said to be rationally
smooth if for all y € Y, the singular cohomology H'(Y,Y\y,Q) =0 if i+2d
and H?(Y,Y\y, Q) is one-dimensional. A point yo € Y is said to be rationally
smooth if there exists an open (in the Zariski topology) rationally smooth
neighborhood of yg € Y.

A smooth point yg € Y is clearly rationally smooth.

The following result is due to Carrell-Peterson [C1, Theorem EG], proved
by different methods.

(4.11) Corollary (of Proposition 4.8). Let g be an arbitrary semisimple Lie
algebra and fix v £ w € W. Assume that T*(67'X,,) is an affine space for
all v £ 6 £ w. Then the point v € X,, is rationally smooth.

Conversely, in the case when g is simply-laced, if the point v € X,, is
rationally smooth, then TY(67'X,) is an affine space for all v £ 6 < w.

Proof. As follows from Corollary (4.6) (cf. also [C1, Theorem F], [P, Proposi-
tion 4.2]), for any « € S(w,0), E—q € Z: (07'X,) = gr,(0, g-1y,)". Choose a
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non-zero element 6, of weight @ in gr (€, y-1 ). Then 67 +0 in gr (O p-1x.)
(for any p = 1): To prove this, it suffices to show that £” e; € 6='V,,(4),
for any A € D such that p £ (4,«") (cf. proof of Proposition 4.8):

By the s/(2)-theory, E(_};“V)e,-_ = r,e; (up to non-zero scalar multiples). If
0o € A_, clearly E je; € 07'V,()). So assume that x.€ A,. Then (up to
non-zero scalar multiples)

Efe; = Eé;_,»,,‘/)_pE(_);aV)e}' = B PR,e; € 671 V,(A),

thereby proving the claim.

We come to the proof of the first part of the corollary. Since the dimension
of the tangent cone is the same as the local dimension of the variety at that
point (cf. [Ha, Lecture 20]), and (by assumption). 7r(8~'X,,) is an affine
space, dim 7/°4(07'X,,) = £(w) = #S(w, 6). But, by Deodhar’s conjecture (see
Theorem 5.1), £(w) £ #S(w, 0). Hence £(w) = #S(w,0), forall v £ 8 < w.
So the first part of the corollary follows from [C1, Theorem E]. (Observe that
for any 8 € W, #{a € 4, : 1,0 < 6} = £(0).)

In the simply-laced case, by Proposition (4.8) and the above argument,

ey dim(gr (O p-1,)) = #S(w, 0) = £(w),

since b € X,, is assumed to be rationally smooth. But since gr® is gen-
erated (as an algebra) by gr}ed, we get a surjective map y : S(grged((OL_’o_l )]
- gr™4(0, g-1x,) (where S is the symmetric algebra). But since 77°4(6~'X,,)
is of dim /(w), surjectivity of y and (1) force y to be an isomorphism. This
proves the corollary. O

red

(4.12) Remark. The converse statement of the above corollary is not true in
general for non simply-laced g. Take, e.g., g to be of type C; or G, and
w = rirr,v = e. Since g is of rank 2 (as is well known; and can also
be proved by using Lemma 6.2 and Theorem 5.5 (a)), e € X, is rationally
smooth. But it can be easily seen that 7/°4(X,,) is not an affine space.

5. Smoothness criterion of Schubert varieties

For any v £ w € W, recall the definition of S(w,v) from Definition (3.3). We
recall the following very interesting conjecture of Deodhar [D1], which was
proved by Carrell-Peterson [C1], Dyer [Dy], and Polo [P].

(5.1) Theorem. For any v < w € W, #S(w,v) = £(w).

Even though the following proposition follows immediately by combining
our Corollary 3.2(b) with [Dy, Proposition, Sect. 3], we give a different (geo-
metric) proof (as that proof is crucially used in the proof of Theorem 5.5(b)).

(5.2) Proposition. Let v < w & W. Then

#S(W_l,l)—l) - /(W) o [Ch (gf COU,XH- )] - d(_l)/(\l‘)—f(v) H /))—l ,
pesow—1,0=1)

for some d € C.
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Proof. By Corollary 3.2 (b), [ch(gr Oy, x,)] = ¢,—1 ,—1 %0 and, moreover, it
can be easily seen from the definition of ¢,,—i ,—1 that deg c,,—1 ,—1 = —£(w),
where deg% = deg P —deg Q for non-zero P,Q € S(h*). Hence the implication
‘=" of the above proposition follows.

Now we come to the implication ‘="

Let exp : u=-3U~ be the exponential map, where u~ is the Lie algebra of
U~. (Observe that U~ being a unipotent group, exp is an algebraic morphism.)
Let ¥ := exp~{(U"e Nv~'X,) be the closed irreducible subvariety of u~,
where we identify U~ with U~ e . Fix non-zero root vectors £_z (correspond-
ing to the negative root —f) for f € 4. For any « € d4, let f, :u™ - C
be the linear map defined by > pea, 1pE—p > 1y, and let £ be the restriction

of f, to Y.! Define the closed subvariety (with the reduced structure) of Y
Zs={xeY: fY(x)=0, for all a €S := S(w,v)}.

Clearly 0 € Zg. We claim that any irreducible component Z¢ of Zg through 0
is O-dimensional:

The varieties Z C Zg are clearly T-stable under the adjoint action of the max-
imal torus T on u~. Further, Z¢ does not contain any I-dimensional T-stable
closed irreducible subvariety R: It is easy to see that any 1-dimensional T-stable
closed irreducible subvariety of u™ is of the form CE_pg, for some § € 4. In
particular, R = CE_g, (for some By € 4. ). This gives that exp(CE_,g,)0 C
X,. Now if —vfy € 44, then by [BGG, Corollary 2.3] vrg, < v < w, so
Bo € S. If vfy € 45, then clearly exp(CEyp, ) exp(CE_,5,)0 C X,,. In particu-
lar, for the subgroup &, ,—1 C G generated by exp(CE_,3,) and exp(TE,,),

: vrg, v
by density &, ,-10 C X,. Again this gives (since &, ,-1 contains some

I'ﬂov Ul'pol)

representative of the Weyl group element urﬂou_l) that fo € S. So, in either
case, R = CE_g,, for some fp € S. But, by the definition of Zs, such a R is
not contained in Zs. This contradiction establishes the claim that Z¢ does not
contain any 1-dimensional T-stable closed irreducible subvariety.

Embed i : u~ «— G/B via the map X — (exp X)e . The map i is clearly T-
equivariant open immersion. Take the Zariski closure Zg of i(Z2) in G/B. Now
applying [C1, Lemma of Sect. 2] to the T-stable projective variety Z2 C G/B,
we get that dimZ2 = 0 (since Z2 does not contain any 1-dimensional T-stable
closed irreducible subvarieties). Since any irreducible component of Zg is T-
stable (and closed) in u~ and any closed T-stable subset of u~ contains 0,
we get that any irreducible component of Zg passes through 0. In particular,
Zs = {0}.

View fyy as elements of the local ring g,y and let [ be the ideal gen-
erated by {f;};es (inside the local ring 0o, y). Then there exists an integer
d > 0suchthat m* cIC m , where m C Opy is the maximal ideal (since
Zs = {0}). Since the variety X, is Cohen-Macaulay (cf. [Ral],[Kul,

INote added at the time of revision: Polo informed me that he considered a different set (than our
£ of functions on ¥ and proved that they generate a primary ideal and this was crucially used
in his proof of Deodhar’s conjecture [P, Sect. 2].
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Theorem 2.23], [Ma]), the variety ¥ is Cohen-Macaulay. Assume now that
#S(w=h o) = #S(w,v) = £(w) = dim Y, and enumerate the elements of
S(w,v) as {y1,...,ys}, where £ = £/(w). By [F, Lemma (a), Sect. 2.4] (since
dim Zs = 0), the elements { f’/’ }1<j<¢ form a regular sequence in ¢ y. More-
over, by [F, Lemma (b), Sect. 2.4], the canonical ring homomorphism

0 ~
O,Y[Xl,Xz,...,X/] —_— Z[IH/[);H—] ,

I mz0

(1)

which takes X to the image of fyif in I/I%, is an isomorphism. In particular,

(2) " ch(gr (0, ,-1x,)) = ch(gr(Go,y))
=ch(C[Y]) (Y being affine)

=ch I Im+1
(ng() / )

4
= ch(@o,y/l)Hl(l — )7, by (1).
j=

But since @ v/l corresponds to the O-dimensional variety, it is finite dimen-
sional vector space over € and hence-

(3) [ch (Oo,y/D)] = dim(0Oo,y/T) -

By (2) and (3) we get
’
(4) [eh (g (01, = (=1Yd 1T
_ =
where d := dim(@y,y/I'). Thus

' ’
(5) [ch (gr (Oo,x, )] = (—1)" dﬂl(v“/j)_I
=

_ (_1)/.d(_1)#{yj:u“ijA_} n ﬁ_l
pesw=1o=T)
= (g T g
gesw—1p=1)

This proves the proposition. O

(5.3) Remark. When the equivalent condition as in the above Proposition (5.2)
is satisfied, d in fact is an integer > O (as is clear from the above proof).
Moreover, if G does not contain any factors of type G, using [C3, Theorem 1]
and [Wh, Theorems 4D and 7P, Chapter 7], it can be seen that d is the
multiplicity of the point v € X,,.

As mentioned in Remark 3.4(3), the following result was pointed out by
the referee. We give below a geometric proof of the result.
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(5.4) Lemma. For any v S wew,

(1) ( II (l—e"'))bw_l,v-]eR(T).

7ES(w— 1o 1)

In particular,

(2) < 11 y) Cy—1 -1 € S(H*).
yesSw=1, 0~ 1)

Proof. We wil] freely use the notation (without explanation) from the proof
of Proposition (5.2). Enumerate the elements of S(w,v) as {y1,...,m} and.
define the C-algebra homomorphism § : R — C[Y] by X; — fyf , Where
R = C[X1,...,X,] is the polynomial ring. Let m, (resp. my) be the maximal
ideal of R (resp. €[Y]) consisting of polynomials with zero constant term (resp.
regular functions on ¥ vanishing at 0). Then clearly 8(1,) C my. By the proof
of Proposition (5.2), since Zs = {0}, the ideal I’ of C[Y] generated by 8(m,)
satisfies

(3) m§ cI' Cmy,

for some d > 0. Consider € as an R-module under the evaluation at 0 and
C[Y] as an R-module under the §. Then Tor{f((C[Y ], €) is finite dimensional
over € for any p: (I thank H. Bass for the following simple argument of this
assertion. ) o

Considering a finitely generated R-free resolution of € and tensoring
this resolution with C[Y] over R, we see that the R-module structure of
Tor ﬁ(C[Y 1, €) comes from a C[Y]-module structure and moreover (from the
noetherian property of €[Y]) Tor ﬁ((D[Y 1, €©) is finitely generated €[Y}-module.
Further,. since € is annihilated by m,, Tor ﬁ((C[Y 1, ©) (as a C[Y]-module) is
annihilated by the ideal /', i.e., Tor 5((]3[1’ 1,C) is a finitely generated C[Y /I’
-module. But C[Y]/I’ is finite dimensional over € (by (3)), in particular,
Tor :}((E[Y ], €) is finite dimensional over C.

Now by the same argument as in the proof of Corollary 3.2(a), we get that
(HYGS(W’U)(I —e"))chC[Y] € R(T). Hence (HyES(w,u)(l —e))ch(Cl’ NXy]) €
R(T) , ie, (HyGS(w—l,u—l)(l —e"))ch(gr 0, x,) € R(T). So (1) follows from
Theorem (2.2) and (2) follows from (1) and Corollary 3.2(b). |

The (b)-part of the following theorem is the main result of this paper.

(5.5) Theorem. Fix v S we W.
(a) The point v € X,, is rationally smooth &
For all v £ 0 £ w, we have

(1) Cymt g1 = dp(—1)/=CO T g
pesSw—!,8-1)

Jfor some constants dy € €.
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(b) The point v € X,, is smooth <

2 Cpp=1 =1 = (_I)Z(W)—/(u) H ﬁ_l E

ﬂES(W"],v—l)

Proof. (a) By [Cl, Theorem E], v € X, is rationally smooth if and only if for
all v £ 8 < w, #S(w™1,071) = £(w). By Proposition (5.2), this is equivalent
to the requirement that for all v £ 8 < w,

[ch(gr (Og,x,))] = dp(—1)/™=40 1] p~!,
pesw—t,0-1)

for some dy € €. Now the (a)-part follows from Corollary 3.2(b).

(b) The point » € X,, is smooth if and only if the graded algebra gr(&,, x,,)
is isomorphic with the symmetric algebra S(gr (0, x,)). We first prove the
‘=" implication: So assume that v € X, is smooth. Then

ch(gr (O, x,)) = ch(S(gry(0s,x,))) = I;IS(I -)!,
Y

if ch(gr;(Op,x,)) = zyES ¢'. Tt is easy to see that § C v4, and moreover all
the weight spaces of gr,(0,,x, ) are one-dimensional. In particular,

(3) Cy—1,p—1 = [ch (gr((ﬁ,,,xw))] = H (—?)_1 .
yESCvdy

But since o € X, is smooth, in particular, it is rationally smooth. So by the
(a)-part of the theorem, :

4) Cpt o1 = (=10, T g7,
' BeS(w—1,0=1)

for some positive integer d, (see Remark 5.6(2)).
Equating (3) and (4), we get

(5) dlly== 11 B.

yES pesw—1=1)

Let QO C b* be the root lattice and let O, := IF, ®z Q be the reduction
mod p (for any prime p) of O, where IF, is the prime field of order p. Reducing
the equation (5) mod p (for any prime divisor p of d,) and observing that no
root mod p is 0 in O,, we get that d, = 1. This proves the implication ‘=’
of the (b)-part. .

Conversely, assume that ¢, ,~1 = (=1~ [T, o 1 1 B~ By
Corollary 3.2 (b), this gives

(6) [ch(gr (Go,x, )] = (=1)™~ [T p~".
BES(W—L,v—1)
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By (5) of the proof of Proposition (5.2), we get that

(7 [ch(gr (Os )] = (-1Y" =@ a [T B,
pesw—1,1)

where d = dim (@g,y/I) (the notation is as in the proof of Proposition 5.2).
By comparing (6) and (7), we get that d = 1, i.e., / is the maximal ideal
of Opy. In particular, by (1) of the proof of Proposition (5.2), gr(¥,y) is
graded isomorphic with the polynomial ring C[X),...,X,]. So we get that the
point 0 € ¥ is smooth, and hence the point v € X, is smooth. This proves the
theorem complgtely. O

(5.6) Remarks. (1) The (a)-part of the above theorem can also be proved im-
mediately by combining a result of Dyer [Dy, Proposition, Sect.3] with a result
of Carrell-Peterson [C1, Theorem EJ, i.e., we can avoid the use of Proposi-
tion (5.2) and Corollary 3.2(b). But our geometric proof has the advantage
that a similar argument (as seen above) gives. our criterion for smoothness as
in the (b)-part of the above theorem.

(2) In the case (a) as above (i.e. if v € X, is rationally smooth), the
constants dy are positive integers for any v £ 6 < w and in fact dy is the
multiplicity of the point 0 € X,, if G does not contain any factors of type G,
(cf. Remark 5.3). ' _

(3) There are some examples of b € X,, (where X, is even a codimen-
sion one Schubert variety in G/B) such that c -1 ,—1 satisfies condition (1)
of the above theorem, but v is not a rationally smooth point of X, (cf.
Remark 7.11(a)). In particular, to check the rational smoothness of a point
v € X, it is not sufficient (in general) to check the validity of condition (1)
only for 8 = v. '

(4) It is a result of V.V. Deodhar [D1] that any rationally smooth Schubert
variety is in fact smooth for G = SL(n). This result has recently been extended
for any simply-laced G by D. Peterson. As is well known, this result is false
in general for non simply-laced G.

6. Singular locus of Schubert varieties in rank-2 groups

As an immediate corollary of Theorem (5.5), we obtain the following result
determining the singular locus of all the Schubert varieties in the case of any
rank two group. I believe it should be well known, but I did not find it
explicitly written down in the literature. We follow the indexing convention
as in Bourbaki [B].

(6.1) Proposition. The following is a complete description of the singular locus
of the Schubert varieties in the case of rank two simple groups:

Case I. G of type 4, : In this case all the six Schubert varieties are smooth.
Case II. G of type Cy: There are, in all, eight Schubert varieties. Out of

these only X.,.,., is singular and it has singular locus = X;,.
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Case III. G of type G,: There are, in all, tw)elve Schubert varieties. Following
is the complete list of singular ones and their singular loci:

Singular locus

M) Xy - Xy
@) Xnnn 2o X,
(G) Ky - Krany
(4) Xl‘l ranry T X"l rar
) Xy = Xy

Proof. As is well known, for any rank-2 group G, any o € X,, is rationally
smooth. (This can also be obtained from Theorem 5.5(a) and the following
Lemma 6.2.) In particular, c,-1,-1 satisfies identity (1) of Theorem (5.5).
Now the proposition follows immediately by combining Theorem (5.5)(b) and
the following lemma. ’ O

The following lemma can be easily proved by a straightforward calcula-
tion using the definition of the elements x,, in the nil Hecke ring Qp (cf.
Definition 3.1(b)). ‘

(6.2) Lemma. For any group G and any simple reflections r\,r, € W, we have
the following (as elements of Qw):

@ = (i(ée ~6m) = el - %)) |
) i =a (205, b+ s =)
Tt O =)
(©)
Ky X Ty = ail (E(Z'%)(lrz—al)(ée _6,) - gz(rmez)_(r{iz—al)(a,.l )
1
 (na)(riru)(rirn 0‘2)(5’.”42'.' = Onran )>

@

s (e
Qomee) ;5

op{(ri00 Y(rao )(rar02)



The nil Hecke ring and singularity of Schubert varieties 495
(m —~2)oa(a))
aa(rio )(rir20 )(r1rarica)
1
a2 (r200 )(rar102 J(rar k21 )

1
( ripariy T 5r1r2r1r2r1 ) >

— o
(r102 X(riro Y(rirari o )(rimar 720t )

ryrg T 5I'|I'2)'1 )

(51'2r11‘2 - 51'21'11‘21'1 )

where m := o (o Yoo (at)).

7. Singularity‘of codimension one Schubert varieties in G/B

Let wy be the longest element of the Weyl group W (of G). As is well known
and easy to see, the codimension one Schubert varieties in G/B are precisely of

~ the form X,,, where w = wyr; for a simple reflection ;. In particular, the number
of such Schubert varieties in G/B is equal to # := rank G. We denote the
Schubert variety X,,,,(1 < i < n) by Xi.. Let y; € bz be the ith (1 £ i < n)
fundamental weight, defined by x(«) = 6; .

(7.1) Proposition. Fix any 1 <i < n. Then for any v € W such that v < wor;,

1
HﬂeA_,_ﬂ

(l) c}','Wo,U_l = [Ch(gT (DD,X,' )] = (—l)d-)—_l(l’) (W()X[ — UXI') s

where [ ] is as in Sect. 3.1(a).

Proof. Consider the ith fundamental representation V(y;) (with highest weight
;) and define the function '
©=qiy: 1" = Chy o(X) = (expX - exi,ﬁ_le:‘voxi), for X e u™;

where U is a representative of v in N(T), e, (1esp. e,y) is a non-zero
vector in V(y;) of weight x; (resp. wox;) and ey , € V(x;)* is defined by
o) = 1 and e}, (v,) = 0, for any weight vector v, € V(y) of
weight p=+woy. Let ¥ be the closed subvariety of the affine space u~ de-
fined as ¥ = exp (U~ e Nv~'X;) (cf. proof of Proposition 5.2). It is easy to
see that ¥ € u~ is defined set-theoretically by the vanishing of the function
@ : u~ — C (use Lemma 7.2). Moreover, ¢ is obtained by restricting the sec-
tion (0 _Ie:,oz’_) € H%G/B,2(y;)) to U™e (and using the identification exp:
u- — U~e C G/B ), where y is the Borel-Weil homomorphism (cf. Proof of
Lemma 2.4). But the line bundle £(y;) on G/B corresponds to the irreducible
divisor X; € G/B with multiplicity 1 (use, e.g., the Chern class calculation
for. the line bundle £(y;)). This, in particular, implies that the ideal I of the
irreducible hypersurface ¥ € u~ (with the reduced structure) is generated by
the function ¢ ( cf. also [C2, Proposition 4.6]). This gives that (as graded
T-algebras),

2) g1 (0, 1x) = S/ ([el)
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where (as earlier) S(u‘*) is the symmetric algebra of u~" and {[¢]) denotes
the (homogeneous) ideal generated by the least degree non-zero homogeneous
component (@] of ¢. From the definition of ¢, it is easy to see that [¢] is a
weight vector for the adjoint action of T on u~ with weight y; — v 'wgy:. So
by (2),

oh(gr O, y1z) = (1 — =¥ ™oy T (1—efy!,

Bedy.
and hence
_l . A
3) [eh(gr O, pony,)] = (—1yar L0 — 1)
‘ , HﬂeA+ﬁ

(Observe that by Lemma (7.2), v"'wox; — y; %0, since by assumption v =<
wor;.) By applying v to (3) we get

(eh(gr O 1)) = (1)@ (L)
s A H[J‘EA+B
This proves the second equality of (1). First equality of (1) of course follows
from Corollary 3.2(b). O

(7.2) Lemma. For any simple reflection v; and any v € W, v < wyr; if and
only if yi+v " woy;.

Proof. Let Z C G be the zero set of the function ¢ : G — € given by ¢(g) =
(geyi> €y (Where ey, and €oy; are as in the proof of Proposition 7.1). Then
clearly Z is B-stable under the left as well as right multiplication. In particular,
Z/B = UX;, where j runs over some subset S C {l,...,n}. Clearly i € S,
whereas for j=i, j4S, and hence Z/B = X;. Hence v < wyr; & p € X; =
Z & vy Fwoli- : a

(7.3) Remark (due to Referee). A purely algebraic proof of Proposition (7.1)
(assuming Corollary 3.2(b)) can be obtained by using the recurrence formula

ri(cw, o) — Cw,v S, .
—— e = Cuy,y, If WK > W
&

=0, otherwise .

Similarly, Lemma (7.2) can be derived on noting that v < wyr; if and only if
r; < v"'wy. But we have retained our more geometric proofs of these.

(7.4) Lemma. dssume that v < wori. Then y; — v 'woy; is multiple of a root
B if and only if £vf & S(riwg,v™1). In particular, y; — v wyy; is multiple of
a root if and only if #S(rwg,v™") =N — 1, where N := #4,.

'Proof.. If +vB ¢ S(r;wo,v™"), then by the above Lemma (7.2), rso~" ' woy; = x:.
In particular, y; — v~ 'wpy; is a multiple of f.
Conversely, assume that

ey 21— v woxi =np,
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for some number n and f € 4 . By Lemma (7.2), n+0. To prove that
0B ¢ S(r;wo,v™"), it suffices to show (again by Lemma 7.2) that rgo~'woy; =
%2 By (1),

) (i — v 'woyi, BY) = 2n,  and

(3) (v wornBY) = — (i + v o i — v woys) = 0.
(/3 B)
Combining (2) and (3) we get (—v™'wox;, B¥) = n; and hence rpo~'woy; :=
v woxs — (v 'woxi BY)B = v woyi + 1B = i (by (1)).
The ‘in particular’ statement of the lemma follows from Deodhar’s conjec-
ture (cf. Theorem 5.1). O

By virtue of Proposition (7.1), Lemma (7.4), and Theorem 5.5(b), we
get the following characterization of the smooth points in the Schubert varie-
ties X;.

(7.5) Proposition. Let X; (1 < i £ n) be a codimension one Schubert variety.
Then, for any v < wor; € W, the following are equivalent:

(a)) v € X; is smooth.

(al) cr,—wo,v_I = (_1)N—l—[(v)ﬁ
Bn—1} (where N = dim G/B).

(a3) x — v~ 'woy: is a root.

e — Sfor some positive roots {B,...,

In particular, X; is smooth if and only if i — woy is a root.

(7.6) Remark. If v € X; is smooth, then the set {B1,...,By-1}, as in (az)
above, coincides with the set S(r;wg,v™!) (by Theorem 5.5 (b)).

(1.7) Proof (of Proposition 7.5). As follows from Theorem 5.5(b), (3, )=(a;).
The implication (a;)=>(a3) follows from Propos1t10n (7.1). So we come to the
proof of (az) = (a;):

By Theorem 5.5(b), we need to show that

(1) o (_'I)N—l_[w) II ﬁ_l .

BeS(riwg,v~1)

By (a3), y := vy — woy; is a root (and in fact is positive since v < wy).
In particular, by Proposition (7.1),

—i— Y
(2) C/'iw vl = (_ 1 )N 1=
¢ Hﬂ64+ﬁ

But by Lemma (7.4), S(riwo,v™') = 44\{y}, and hence (1) follows from (2).
This proves the implication (a3) =(a;). '

The ‘in particular’ statement of the proposition follows from the equivalence
of (a;) and (a3) (since X; is smooth if and only if e € X; is smooth). O

By the same proof as above for the implication (as3)=-(a;) (alternatively,
by using Lemma (7.4) with [C1, Theorem E]) we obtain the following:
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(7.8) Corollary. With the notation as in Proposition (7.5), v € X; is rationally
smooth if and only if for all v < 0 < wor,, 3 — 0" 'woy; is multiple of a root
Bo (depending upon 6).

We follow the indexing convention of simple roots as in [B, Planches I-
IX]. The following lemma follows easily from the explicit knowledge of roots,
coroots, fundamental weights etc. as given in loc. cit.. Recall that wg is the
longest element of the Weyl group.

(7.9) Lemma. Let g be a simple Lie algebra. Then for any fundamental weight
(1 =i=n)

(a) xi — woyx: is a (positive) root precisely in the following cases (A4, etc.
denotes the type of g):

(a1) 4, (n21) @ i=1Ln
(@) C (nz2) @ i=1.

(b) x; — woy: is multiple of a root but not a root itself, precisely in the
Jollowing cases: ‘
(b)) B, (n=23) : i=1,2
) C rz2) @ i=2
b3y D, (nz4) @ i=2

(ba) Es oi=2
(bs) E7 oi=1
(bs) Ejs : i=8
(b7) Fu T i=1,4
(bs) &2  i=12.

As a consequence of the above lemma, we get the following complete list
of codimension-1 Schubert varieties which are smooth or rationally smooth.
We assume that G is a simple group in the following proposition.

(7.10) Proposition. (c) The following is a complete list of codimension one
Schubert varieties X; which are smooth:

(c1) 4, (n2z2z1) : i=1,n
) ¢ nz2) @ i=1.

(d) The following is a complete list of codimension one Schubert varieties
X; which are rationally smooth but not smooth:

d) G : i=2
() & Doi=1,2
(d3) B, (n=3) : i=1.

Proof. The (c)-part follows immediately by combining Proposition (7.5) with
‘Lemma (7.9).

To prove the (d)-part, in view of Corollary (7.8) and Lemma (7.9), it
suffices to show that in all the cases covered by (b) of Lemma (7.9) but not in
the list (d) above, there exists a 6 € W such that y; —0~'wpy; is not a multiple
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of any root (by Lemma 7.2, such a 8 will automatically satisfy 8 < wyr;),
whereas in the cases covered by (d), x; — 6~ 'wopy; is indeed multiple of a root
for any 6 € W

We freely use the notation without explanation from [B, Planches I-IX]. In
the cases (Byz3; i =2), (Cyz3; i =2), and (D,4; i = 2) take any 6 € WV sat-
isfying 0(e;) = &1, 0(e3) = &;. Then y; — 0~ 'wpy; is not a multiple of any root.

In the cases (Eg; { = 2), (E7; i = 1), and (£3; i = 8), y; is the highest
root ¢p. In these cases, take any 0 € W satisfying 6(c;;) = oy (observe that
—wpop = 0l and the W-orbit Way consists of all the roots). Then y; — 6~ 'woy;
is not a multiple of any root.

In the caseé (Fy; i = 1) (resp. (Fq; i = 4)), x1 (resp. y4) is the highest
(resp. a short) root, in particular, Wy, consists of all the long (resp. short)
roots. Take any 0 € W satisfying (e, + &3) = 1 (resp. 0 (‘91—“2;“—231”‘4) = 1),
then y; — 6 'wgy; is not a multiple of any root.

For (Cz; i = 2) and (Gy; i = 1,2), it is easy to see that y; — 87 wpy; is
multiple of a root for all 8 € W.

So finally we come to (B,>3; { = 1): In this case, —wp = 1d.,, 11 = ¢
(a short root), and hence Wy = {Ze;}1<i<n. In particular, y; — 0 wpy is
multiple of a root for all 6 € W. This finishes the proof of the (d)-part of the
proposition. _ O

(7.11) Remarks. (a) In all the cases covered by Lemma 7.9(b) but not con-
tained in Proposition 7.10(d), identity (1) of Theorem 5.5(a) is satisfied for
w = wyr; and 8 = e but is violated for some ¢ < 8 < w (use Proposition 7.1,
Lemma 7.4 and Theorem 5.5(a)). .

(b) I am informed that the (c)-part of the above proposition, as well as the
equivalence of (a;) and (a3) in Proposition (7.5) for v = e was contained in
an earlier longer version of [C1] (cf. [C2, Sect. 4]). Of course (d;), (dp) are
very well known, and example (d;) was known to be rationally smooth due to
Boe [Bo].

8. Extension of results to the Kac—Moody case

(8.1) Notation. We will follow the notation (often without explaining) from
[Kul, Sect. 1]. In particular, throughout this section G = G(4) denotes the
complex Kac—Moody group associated to an arbitrary n x n generalized Cartan
matrix 4 (we do not put symmetrizability restriction on A4), with the standard
Borel subgroup B, and the standard maximal torus T C B. There is the Weyl
group W =~ N(T)/T associated to the pair (G, T) (where N(T') is the normalizer
-of T in G). The Weyl group W is a Coxeter group with the simple reflections
{ri}1<i<n as Coxeter generators (7; is nothing but the reflection corresponding
to the simple root «;). Hence, for any w € W, we can talk of its length /(w)
and also have Bruhat partial ordering < in W.

The Kac-Moody Lie algebra g = g(4) admits the root space decomposition:

g=b® > (6.®g4),
aedy Ch*
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where g, ;= {X € g: [ X] = a(h)X, for allh € b} is the a-th root space, §) :=
Lie T is the standard Cartan subalgebra of g, and A, :={a+0€ > | Z, o :
g.+0} is the set of positive roots. We set 4_ = —A; and 4 =4, UA_. The
Weyl group W preserves 4. The set of real roots 4 C A4 is defined to be
W{o,...,0,} and the set of 1mag1nary roots AM 1= MAA®. We set AT =
4. N A‘e (and 4™ = A4_ N 4™); A‘m and A™ have similar meanings. Recall
that the real root spaces are of dlmensmn one.

The group G (in particular, the torus T ) acts on G/B by the left multi-
plication. For any w € W, the Schubert variety X, is by definition the closure
of BwB/B in G/B, where w is a preimage of w in N(T') and G/B is endowed
with the Zariski topology as in [S]. Of course, X,, is T-stable. By the Bruhat
decomposition, X,, = U,<,B9B/B. In particular, for any v £ w, v = 0B € X,,
and it is a 7-fixed point. We will always endow X, with the stable variety
structure as given in [Kul, Sect. 1]. With this structure JX,, is an irreducible
projective variety of dim £(w).

For any real root f, there exists a unique additive one-parameter subgroup
Up and a homomorphism up : € — G satisfying u3(C) = Uy and such that

tup(z)t ™! = up(eP(1)z),

for any z € €, and ¢ € 7. Furthermore, for any w € ¥, WU/;W“l = Unp.

Now let U~ be the subgroup of G generated by the one-parameter sub-
groups {Up}gegre . Then the map U™ — G/B, taking g  ge , is injective and
moreover /e C G/B is an open subset. '

For any A € by, recall the definition of the line bundle £ (1) := GxpC_; —
G/B from [Kul, Sect.2.2] (where it is denoted by .#(4)). For dominant A € b,
let ¥™*(1) be the maximal integrable highest weight g-module with highest
weight A (cf. [Kul, Sect. 1.5], where it is denoted by L™*(1)). Define

HG/B,2(1)) = Inv Limit H(X, 8(A)1y,,) -

The highest weight space C; := V™ (1) of V™*(1) is one dimensional.
Define the map

X =2 V(A" — HY(G/B,2(1))

by x(f)gB) = (9,(97" F)ic, )mod B, for f € V™*(1)*, and g € G.
The following result is due to Kumar [Kul, Theorem 2.16] (and also
Mathieu [Mal).

(8.2) Theorem. The map y; as above is an isomorphism. Moreover, for any
v £ we W, it induces an isomorphism

Low) s T TP S BT, LAy, )
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making the following diagram commutative:

X

preay S, HOGB,2(D)

! !

yZCAL)

T o BT )

where V.)%*(A) C V™*(R) is the B-submodule gemnerated by the extremal
weight space V™ (L)) of weight wi, and the vertical maps are the canon-
ical restriction maps.

For any n(;n-zero e; € C,, define e € V™*(1)* as ej(e;) = 1 and
ej(y) = 0, for any weight-vector y of weight u+ 1. Now define the section
Se; € HY(G/B, £()) by s, = ya(e}).

The following lemma follows immediately from the Birkhoff decomposition
[KP, §. 3].

(8.3) Lemma. The zero set of s.,,Z(s.;) = G/B\(U™e ), if L € D°, where (as
in Sect. 1) D° is the set of dominant regular weights.

The line bundle £(4), _, ~on the projective variety v~LX,, is ample for
any v £ w € W and A € D° In particular, by Lemmas (2.3) and (8.3),

U~enNuv~lX,, is an affine open subset of v~1X,.
Define the T-equivariant map (cf. Sect.2.6)

10, w) 1 (0TI @ C; — C[U e Nv™'X,] by

(@20, w)(f ® en))(x)se;(¥) = (xalv, W) f)x) ,

for f € (vVI™(A))*, e;+0 € C; and x € U~e Nv~LX,,. (We set @;(v,w)
(f ®0) = 0.) By Lemma (8.3), the map ¢@;(v,w) is well defined, and is
injective by Theorem (8.2). Moreover, as in Sect. 2.7, for any 4 € D° and
i € D, the following diagram is commutative:

5;“ “(U,W)
H

VI e C; TP+ 1) ® Cray

p0m\, [ 00

CU e nv X1,

where the map J;,(v,w) is defined as in Lemma (2.7) (and is injective since
©,(v,w) is injective). Taking the limit of the maps ¢;(v,w), we get the T-
equivariant map

o w) : limit (0™ V3™ (A)* ® C1) = CLU”e No™'X] .
ie Do

The following proposition follows easily from Lemma (2.3) and Theorem (8.2).

(8.4) Proposition. The above map @(v,w) is an isomorphism for any
pEweW.
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Define the Lie subalgebra u™ = P, , g, of g and (for any m > 0) the
ideal u,; of u™ by

w, = D 6,
2€4 _
jalzm

where for a root a = > ma;, |af =D my.

The quotient algebra F,(u~) := u~/u,, is a finite dimensional nilpotent al-
gebra. Let F,,(U ™) be the associated unipotent complex algebraic group. Corre-
sponding to the Lie algebra homomorphism u™ — F,(u™), there is associated
a group homomorphism 6,, : U~ — F,(U™). We state the following simple
lemma without proof.

(8.5) Lemma. Fix v £ w € W. Then there exists a positivé number mgy(v, w)
such that

B(v,w) : U erw™' X, — E,(U7)

(got by restricting the map 0y) is a closed immersion for all m = mo(v,w).

By an argument identical to the proof of Theorem (2.2) (as given in
Sect. 2.12), Corollaries (3.2), and Lemma (5.4) (using Proposition 8.4,
Lemma 8.5, and [Kul, Theorem 3.4]), we get the following analog of Theo-
rem (2.2), Corollaries (3.2), and Lemma (5.4) for an arbitrary Kac-Moody
group G. For v < w € W, define S(w,v) = {a € 4% : vr, < w}.

(8.6) Theorem. Let G be an arbitrary Kac—Moody group.

(a) For any v £ w e W, gr 0, x, is an admissible T-module and moreover
ch(gr Op,x,) = *bw—l,v—I >

as elements of Q’(\f) .
(b) For any v,w € W, b,,—1,-1%+0 if and only if v £ w, and in this case
it has a pole of order exactly equal to {(w). Further, '

I (1- e”)) b1, € R(T).
yeS(w=1o~1)
(c) [*¥by-1,-1] = cy-1,-1; and hence for any v < w, [ch(gr Oy x,)]

=C,—1,-1, as elements of O().
In particular, ¢, ,—1 +0 if and only if v £ w, and

< H '}’) Cy—1 y—1 € S(b*) .

yES(Ww— 1o~ 1)

We extend Proposition (5.2) to the Kac—-Moody case.
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(8.7) Proposition. Let G be an arbitrary Kac-Moody group and let v £ w
€ W. Then

#S(w=' vy = £(w) & [ch(gr Oy x,)] = d(—1YI=/@ Hl B,
pesS(w—1lo—1)

for some d € C .

Proof. The proof is very similar to the proof of Proposition (5.2). But we need
to make the following modifications: ,

Define Y/ = U”en v~'X,,. Fix any (regular) 1 € D° and a non-zero
highest weight vector ¢; € V™*(1), and consider the element e} € V™*(1)*
as in Sect. 8.2. For any root o € AT, choose a non-zero root vector X, € gy
and define the map 8, : U~ — C by 8.(g9) = ej(Xage;), for g € U™. We
claim that 8,(g)=+0, for any g+ec U_,:

Write ¢ = exp(zX_,), for some z+0 € € , where X_, is the root
vector corresponding to the (real) root —a such that [X,, X_,] = «V (cf. [K,
Exercise 5.1]). Then

0.(9) = €3 (Xx exp(z X_o)ez)
= ej(z X, X_qe1)
= e} (z[ Xy, X_a]er)
=z (aY)
+0, since A is regular .

Identifying U~ =~ U~e, we can (and do) consider 8, as a function on Y’
Now define _
Zg={x€ Y :0,(x)=0, for all & € S :=S(w,v)}.

Rest of the argument to prove the proposition is similar to the proof of
Proposition (5.2) provided we replace u™ by U~ and use the following

(8.8) Lemma. For any v < w € W, one dimensional T-orbits in U~eNv~\X,,
are precisely of the form (U_g\e)e , where B ranges over (positive real) roots
€ S(w,v). ‘

Proof. By the Bruhat decomposition

X, = U Ube = |J 8(0~'UNU e ,

0w 0w

onedimensional 7T-orbits contained in v~'X;, are precisely of the form Ipp =
v™10(U-p\ e)e, where § < w and f € 4, NO~'4_. (We are using the fact
that any root in A, NO~'A_ is a real oot and moreover for any real root ,
dp is not a root for any d > 1.) If 8 = v, clearly Jyp C U™ e ; and moreover
fpedinvd. & B € A% and vrg < v (by [BGG, Corollary 2.3]). So,
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assume that 6=v. By the Bruhat decomposition for SL(2), we get
(U_pe)U{r/,-e } = BrgB/B C G/B,

where the closure is taken with respect to the (inductive limit) Zariski topology
on G/B. In particular,

Tog\log = {v™"e L0 Orgel

By Lemma (8.5), it is easy to see that any closed 7-stable subset of U e
(under the induced subspace topology on U~e C G/B) contains e . Hence (if
f+v)

. hpCU e &¢ Emﬁv"lﬂrﬂe =e ,

i.e., v = Org. Again, by the Bruhat decomposition for SL(2), it is easy to see
that in this case (i.e. v = 0rp) v'0(U_p\ e)e =(U_p\e)e.
But by [BGG, Corollary 2.3],

{Bede:Be(rgv'4_) and vrp < w}={B € S(w,v):v < vrg}.

This proves the lemma. O

Now by an argument identical to the proof of Theorem (5.5), we obtain
the following.

(8.9) Theorem. Theorem (5.5) is true for an arbitrary Kac—Moody group.

(8.10) Remarks. Even though we have taken the base field to be the field €
of complex numbers, all the results of the paper carry over (with the same
proofs) to an arbitrary algebraically closed field of char. 0.

Also, by a result of Polo [P, Sect.4.1], the dimension of the Zariski tangent
space Z,(X,) is independent of the char. of the field. In particular, a point
v € X, is smooth in char. 0 if and only if it is smooth in any char. p. So our
smoothness criterion (as in Theorem 5.5(b)) works in arbitrary char. p.

Note added in proof. I would like to ask the following questions:
(1) For any A € D and w € W, define the g-character chy(¥,,(1)) of ¥,,(1) as follows:

B ) Vw(A) N Fp(A)
chy¥(4) = > ch <7m) 7

p=0

where the notation is as in §4.

It will be very interesting to determine the g-character ch,(¥,,(4)). (This will of course
provide a g-version of Demazure character formula.)

2. Take v £ w € W and assume that there exist prositive roots {y;,---,7,} such that
Cy—lp=t = (=1Y"—/® Hyi_'. (By Lemma (54), 7;’s will automatically be distinct and
moreover will lie in S(w~',0!).) Is it true that, in this case, the point v € X;, is smooth?
(This is a weaker requirement than our Theorem 5.5(b).)

A similar question for rational smoothness.

3. Understand the local fundamental group of a rationally smooth point v € X,. In
particular, is it true that it is always finite?



The nil Hecke ring and singularity of Schubert varieties 505

Acknowledgements. 1 am grateful to W. Rossmann, D. Peterson, and J.B. Carrell for ex-
plaining to me their (then partly unpublished) works. 1 also thank A.J. Parameswaran, M.
Schlessinger and J. Wahl for some helpful conversations, and the referee for some useful
comments. This work was partially supported by the NSF grant no. DMS-9203660.

References

[A] Andersen, H.H.: Schubert varieties and Demazure’s character formula. Invent. Math.
79 (1985) 611-618

[BGG] Bermstein, IN., Gel’fand, I.M., Gel’fand, S.I.: Schubert cells and cohomology of the
spaces G/P. Russian Math. Surveys 28 (1973) 1-26

[Bo] Boe, B.D;: Kazhdan-Lusztig polynomials for hermitian symmetric spaces. Trans.
AM.S. 309 (1988) 279-294

[B] Bourbaki, N.: Groupes et Algebres de Lie, Chaps. [V-VL Hermann Paris 1968

[C1] Carrell, J.B.: The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and
rational smoothness of Schubert varieties. Proc. Symp. Pure Math. 56 (1994) (edited
by W. J. Haboush and B.J. Parshall) 53-61

[C2] Carrell, J.B.: On the singular locus of a Schubert variety: A survey. (1994) Preprmt

[C3] Carrell, J.B.: The span of the tangent cone of a Schubert variety. (1995) Preprint

[CPS] Cline, E., Parshall, B., Scott, L.: Cohomology, hyperalgebras and representations.
J. Algebra 63 (1980) 98-123

[D1]  Deodhar, V.V.: Local Poincaré duality and non-singularity of Schubert varieties.
Comm. Algebra 13 (1985) 1379-1388

[D2] | Deodhar, V.V.: A brief survey of Kazhdan-Lusztig theory and related topics, Proc.
Symp. Pure Math. 56 (1994) (edited by W.J. Haboush and B.J. Parshall) 105-124

[Dy] Dyer, M.J.: The nil Hecke ring and Deodhar’s conjecture on Bruhat intervals. Invent.
Math. 111 (1993) 571-574

[F] Fulton, W.: Introduction to Intersection Theory in Algebraic Geometry. CBMS re-
gional conference series in Mathematics no. 54 (1984) Am. Math. Soc.

(Ha]  Harris, J.: Algebraic Geometry. Springer, Berlin Heidelberg New York 1992

[H] Hartshorne, R.: Algebraic Geometry. Springer, Berlin Heidelberg New York 1977

[ Jantzen, J.C.: Moduln mit einem hochsten Gewicht. LNM vol. 750, Springer, Berlin
Heidelberg New York 1979

[Jol] Joseph, A.: On the variety of a highest weight module. J. Algebra 88 (1984) 238-278

[Jo2] Joseph, A.: On the Demazure character formula. Ann. Sci. Ec. Norm. Sup. 18 (1985)
389-419

K] Kac, V.G.: Infinite Dimensional Lie Algebras. Third edition, Cambridge University
Press 1990

[KP] Kac, V.G, Peterson, D.H.: Regular functions on certain infinite-dimensional groups.
In: Arithmetic and Geometry-II, M. Artin, J. Tate (eds.), Birkhduser (1983) 141-166

[KL] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras.
Invent. Math. 53 (1979) 165-184

[KK1] Kostant, B., Kumar, S.: The nil Hecke ring and cohomology of G/P for a Kac—
Moody group G. Adv. Math. 62 (1986) 187-237

[KK2] Kostant, B., Kumar, S.: T-equivariant K-theory of generalized flag varieties. J. Differ.
Geom. 32 (1990) 549-603

[Kul] Kumar, S.: Demazure character formula in arbitrary Kac—Moody setting. Invent.
Math. 89 (1987) 395-423

[Ku2] Kumar, S.: The nil Hecke ring and singularity of Schubert varieties. In: Lie Theory
and Geometry (in honor of Bertram Kostant), J.-L. Brylinski et. al. (eds.), Progress
in Math. vol. 123, Birkhduser (1994).497-507

[L] Lakshmibai, V.: Singular loci of Schubert varieties for classical groups. Bull. A.M.S.
16 (1987) 83-90

[LS] Lakshmibai, V., Seshadri C.S.: Singular locus of a Schubert variety. Bull. A.M.S.
11 (1984) 363-366



506

(Ma]
(M]
[P]
[Ral]
[Ra2]
R]
[Ry]

[Se]
(S}

(wi]
(W2]

(Wh]

S. Kumar

Mathieu, O.: Formules de caractéres pour les algébres de Kac-Moody générales.
Astérisque no. 159-160 (1988) 1-267

Mumford, D.: The Red Book of Varieties and Schemes. LNM vol. 1358, Springer,
Berlin Heidelberg New York (1988)

Polo, P.: On Zariski tangent spaces of Schubert varieties, and a proof of a conjecture
of Deodhar, Indag. Math., n.s., 5 (1994) 483-493 ‘

Ramanathan, A.: Schubert varieties are arithmetically Cohen—Macaulay. Invent. Math.
80 (1985) 283-294

Ramanathan, A.: Equations defining Schubert varieties and Frobenius splitting of
diagonals. Publ Math. IHES no. 65 (1987) 61-90

Rossmann, W.: Equivariant multiplicities on complex varieties. Astérisque no. 173
174 (1989) 313-330 :

Ryan, K.M.: On Schubert varieties in the flag manifold of SL(n, C). Math. Ann. 276
(1987) 205224

Seshadri, C.S.: Line bundles on Schubert varieties. In: Vector Bundles on Algebraic
Varieties, Tata Institute of Fundamental Research, Bombay Colloquium, Oxford Uni-
versity Press (1987) 499-528

Slodowy, P.: On the geometry of Schubert varieties attached to Kac-Moody Lie-
algebras. Can. Math. Soc. Conf. Proc. on ‘Algebraic Geometry” (Vancouver) vol. 6
(1984) 405-442 - .

Wolper, J.S.: A combinatorial approach to the singularities of Schubert varieties.
Adv. Maths. 76 (1989) 184-193

Wolper, J.S.: The Riccati flow and singularities of Schubert varieties. Proceedings
of the AMS 123 (1995) 703-709

Whitney, H.: Complex Analytic Varieties. Addison-Wesley Publishing Company
1972



