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0. Introduction

Let g be a (finite dimensional) complex semi-simple Lie algebra, and let
U(g) be its universal enveloping algebra. Fix a prime £ . To g, there is
associated (via Chevalley basis) a (semi-simple) simply-connected algebaic
group G over the field K (where K is the algebraic closure of the prime field
Fy). Also there is an integral form U z(g) of U(g) (which is a Hopf sub-
algebra), in particular, we get the Hopf algebra (called the Hyper algebra)
Uk(g) == K ® z U z(g). As is known, the category of rational G-modules
over K is the same as the category of locally finite Uk (g) -modules. Fur-
ther, there i3 a finite dimensional Hopf subalgebra ux(g) (known as the
restricted enveloping algebra) of Uk(g), such that the study of irreducible
Uk (a) -modules reduces (by Steinberg’s tensor product theorem) to that of
irreducible ug(g)-modules. We refer to this as the modular case.

Drinfeld and Jimbo have independently defined a Hopf algebra, the quan-
tized universal enveloping algebra U over the field of rational functions in
one variable @(v), which is a certain Hopf algebra deformation of U/ (g). Let
A = Z[v,v7'] C €(v) be the subring of Laurent polynomials. Analogous
to the integral form U z(g) of U (8), Lusztig has defined an A-form U A of
U (which is a Hopf subalgebra). Thus, for any commutative ,A-algebra B,
one gets the Hopf algebra Us := B ®4 U4. Now fix an odd integer £ >
1 (assume, in addition, (8,€) = 1, if Gy i3 a factor of @), and a primitive
{-th 100t of unity ¢. If we take for B the cyclotomic field @, viewed as
an A-algebra (where v acts via the multiplication with £), we get the Hopf
algebra U, := UQ:'
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As shown by Lusztig, Us admits a certain finite dimensional Hopf sub-
algebra ug and a certain quotient ug of ug (see §1.3). The algebra u¢ is a
‘quantization’ of the restricted enveloping algebra ux(g) (in the case of £
prime), and is called the quantized restricted enveloping algebra. By an
analogue of Steinberg tensor product theorem (proved by Lusztig), to un-
derstand the irreducible representations of U , it suffices to understand the
irreducible representations of u,.

The aim of this paper is to study some aspects of the representation
theory of u := ug, in particular, we extend some of the results known for
the restricted enveloping algebra ux(g) to that for the quantized restricted
enveloping algebra u,.

In more detail; we prove that the algebra u is symmetric ( Theorem 2.2)
in the sense of Nesbitt [N], in particular, the Cartan matrix C associated to
the algebra u (cf. §3.2) is symmetric. The notion of Verma modules easily
carries over to u, and moreover (as in the modular case) any projective u-
module admits a Verma filtration ( Proposition 5.16). Let B (resp. D)
be the matrix, obtained from the multiplicity of Verma (resp. irreducible)
modules in projective (resp. Verma) modules. We show that C = BD, D is
a block matrix with blocks parametrized by the linkage classes and having
same row vectors, and moreover we prove the reciprocity : B = D* (where
Dt is the transpose of D) ( Theorem 3.9 and Corollary 5.17). As in the
modular case, the Steinberg module St for u is projective ( Proposition 4.1);
in particular, for any u-module V, St ® V is projective. As an immediate
consequence of this we get Corollary (4.2). We give certain expressions
for the decomposition of St¢ ® V in Propositions (4.5) and (4.10). The
concept of “(u,T)-modules” (introduced by Jantzen) can be easily extended
to the quantum. case; by considering the representations of u, which are
also modules ( in a compatible manner) for U (where Ug is as defined in
§5.1). We show that the irreducible as well as projective modules of u have
such a structure ( Lemma 5.7 and Proposition 5.16). This concept is used,
as in [J], to prove that any projective u-module admits a Verma filtration
( Proposition 5.16), and also to prove the reciprocity B = D! mentioned
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earlier ( Corollary 5.17).

An informed reader will readily see that many ideas from [H1], [H2], and
[/] have been used in the paper. Also various results due to Lusztig [L;1— Ly4),
a commutation relation due to Levendorskii-Soibelman (cf. Proposition 2.4),
and the structure of Gr U due to DeConcini-Kac (cf. Proposition 2.6) have
repeatedly been used in the proofs.

This is a shortened version of an earlier preprint (with the same title)
distributed in March, 1991. Subsequently I received an Aarhus preprint
“ Injective modules for quantum algebras”, by Andersen-Polo-Wen, which
has some overlap with §5 of our paper (which we retain for the sake of
completeness). I also have received the preprint “Representations of finite
dimensional Hopf algebras arising from quantum groups”, by Xi Nanhua.
But this preprint has several gaps, e.g., his proof of Lusztig’s conjecture as
well as his proof of symmetry of u is not complete. He subsequently sent
me (in response to my letter dated 15th May, 1992 to him) a revised version
of his paper fixing the gap in his proof of symmetry of u. This paper of
Nanhua also has some overlap with our §5.

Acknowledgements. I sincerely thank D.N. Verma for teaching me what-
ever modular representation theory I know, an area in which his ideas have
led to several basic results. My thanks are also due to J.E. Humphreys for
some references and clarifications, and the Referee for some suggestions on
the exposition. This work was done while the author was a member of Tata
Institute of Fundamental Research, Bombay.

1. Quantized Enveloping Algebras - Preliminaries and Notation

The general reference for this introductory section is Lusztig’s papers
(L3 ], [L4].

(1.1) Quantized enveloping algebra: Let us fix a Cartan matrix of
finite type 4 = (a:;)1<i,j<n. Then there is a unique diagonal matrix D with
positive integral diagonal entries (dy, - - - ,dn) such that g.c.d. (dy,---,dy) =
1 and D4 is symmetric and positive definite.
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It is a well known result that, in fact, d; € {1,2, 3}.

Let g = g(A) be the semi-simple (finite dimensional) Lie algebra over ¢,
associated to the Cartan matrix A. Recall that g is defined by generators
and relations. We denote the standard Cartan subalgebra of g by b, and
the (standard) simple roots by {ai,---,as}. The set (resp. number) of
positive roots is denoted by A (resp. N). The associated Weyl group
W C Autg(h*) (where b* : = Homg(h, €)) is a Coxeter group generated
by the simple reflections {s;,---,3,} (where the reflection s; corresponds
to the simple root a;). There is a (unique) W-invariant non-degenerate
symmetric bilinear form, denoted <, >, on h* satisfying

(1)--- < ai,a; >=dia;j, for all 1<4,j<n.

Denote by A = Z[v,v~!] the ring of Laurent polynomials over Z, and
@(v) its quotient field. Following Drinfeld and Jimbo one associates an
associative @v)-algebra U = U(A) to A (called the quantized universal
enveloping algebra), defined by the generators E;, F;, K;, K7} (1 < i < n),
subject to the relations (2 — 6):

2)--- KiK;= K;K;, K;K;'=K'K;=1, foral i,j
7 2 t t
8)-- KiE;K;'=v<®>E; K F;K;'=y=<e%>F. forall i, j
7 J J
K; - K[! L.
(4)--- E;F; — F;E; = 5ijm , forall i,j
l—a;;
(5)- S (—mEl TN TMEE™ 20, if i#4 and
m=0
l—a;;
(6)--- ST (-)mEEHTNEE =0, if i # j; where
m=0
(M- B™ = B /imlly, F™ = F™/lm)ly,, for any m > 0,
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(8) - [mla := (o™ —v=4") /(¥ —v=%) , and

(9)--- [m)lg := [mlg[m - 1]q-- - [1)a (we set [0]lg = 1).

Then U is a Hopf algebra with comultiplication A, antipode § and counit
¢ defined by
(10)---
A(E)=E;®1+ K;Q E;,A(F;)=F;® K7' +1® F;, A(K;) = K; ® K;

(11)--- S(E;)=~K'E;, S(F))=-FK;, S(K:) = K;*

(12)--. €(E;) = ¢(F;) =0, e(K;) = 1.

The @-algebra U admits the following antiautomorphisms Q and @ (of
order 2) defined by

(13)--- QE;) = F;, F) = B, Q(K;) = K71, Qv) = v?

(14) - U(E:) = B;, 9(F;) = F, W(K) = K7, % (v) = .

(1.2) The algebra U4. Following Lusztig [Lq; §1.3], define U4 to be the A
-subalgebra of U generated by the elements

{Ei(’n))Fi(m))Ki:Ki_l}:lS’:S" and 0<m-

Then, by loc. cit., Uy is a Hopf subalgebra of U.
Given any commutative A-algebra B, by change of base, we get the Hopf
algebra

(1)--- . Ug:=Bes Ua

In particular, fix an integer £ > 1 and ¢ a primitive £—th root of umnity.
Let @, denote the corresponding cyclotomic field. Then @, is an A-algebra
via A — @, v+ £. So we get the Hopf algebra Up := U g,
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(1.3) Quantized restricted enveloping algebra. We put the following

restriction on £ :
(*)  £>11san odd integer and is coprime to 8 if Gz is a component of
a(4).

Let ug be the @, -subalgebra of Ue generated by {E;, F;, K;, Ki‘l} (1<
i <n). Then

(1)--- Ef = [Z]!d,.Ei(l) =0 in wu,.

Similarly, F = 0. Moreover, by (3) of §1.1, it follows that Kf—1is
central in ug (in fact in Ug ). Let ug be the quotient algebra of u¢ divided by
the (two-sided) ideal generated by {K! - 1}1<i<n. The algebra ug is called
the Quantized Restricted Enveloping Algebra. 1t is easy to see that the
comultiplication, defined in (10) of §1.1, induces a Hopf algebra structure
on ug.

Let us recall from [Ly; Theorem 3.2] and [Lg; Proposition 1.7] that, for
any w € W, there is an automorphism T, of U which keeps the subalgebra
U4 stable, and commutes with 2.

From now on, we fix one reduced decomposition of the longest element
w, of the Weyl group W :

2)--- Wo = 8; =+ iy , Where (asin §1.1) N :=| A, |.
This gives rise to an enumeration of the set of positive roots A,:
(3)--- Ay ={61,0s,---,0n},

where §; := (s;, e+ 8i;_y)a; ,for any 1< j< N,
For any ¢ = (¢1,---,9n) € ZY (where Z, is the set of non-negative
integers), define (cf. [L4;§ 4, and the Appendix] and [L3; §§ 1, 6])

N
v _ ¥i
(4)-- EY =[] B}, where
j=1
(5) cee Eﬂi = ij—l (Ea"i ), (wj_l =8 -8, )

q
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Similarly we define

(6) - Fp,

7

= Tu,_, (Fai,) = Q(Ep))

(1) = q(mY),

where (2 is given by (13) of §1.1.
We also define, for any t = (t1,---,tn) € 27,

(8):-- : KtzﬁKf-‘,
=1

The elements E¥, F¥, and K'* may be viewed as elements of any of U, Uy,
or more generally Ug for any A algebra B. The algebra to which they belong
will be clear from the context.

Now we recall the following result due to Lusztig:

(1.4) Theorem [Lg; §6.5]. The algebra ue defined above has the following
as a basis over Qez
t
{F?K E¢}¢,¢e Zy te 73

where Zy = {0,1,---,£ -1} C Z,.

2. Quantized Restricted Enveloping Algebra is Symmetric

(2.1) Definition [N]. Let % be a finite dimensional associative algebra over
a field k. Then 2 is called Frobenius, if there exists a non-degenerate bilinear
form f:2 x A — k, which is associative in the sense that

f(ab,¢) = f(a,be) , for a,b,c € 2.

A Frobenius algebra 2 is called Symmetric if f is a symmetric form.
Equivalently, a finite dimensional associative algebra 2 over k is symmetric
if there exists a non-zero linear form ) : 21 — k, such that
(1) A(ab) = A(ba), for a,be 2, and



194

(2) ker A does not contain any non-zero right ideal of 9.

The main result of this section is the following:

(2.2) Theorem. Let ¢ be a primitive £-th root of unity , where £ satisfies
the condition (*) of §1.3. Then the quantized restricted enveloping algebra
u¢ (defined in §1.3) is symmetric.

In particular, ue is unimodular (cf. [Hy; Theorem 2]).

We begin with some preparation towards its proof.

(2.3) Definition. Let U° (resp. U”) denote the @(v)-subalgebra (resp.
@v,v~1]-subalgebra) of U, generated by {KF Yicicn (tesp. {K:, (K{‘O) 1<
i < n}), where (K;:O) = (Ki — K7V /(0% — o).
For any ¢, ¢ € Z¥, following [DK;$§1.7], define
1).-.
deg(p,¥) := (‘PN,‘PN—I,"',¢1:'¢1,'¢2)"'»'¢\N’|| el + 11y ) e Z3N+,

where p = (Solryl:SON)y TP = (’?1)"'7¢N)7 “ 14 ”:= Z‘Pz ” ,Hi ”: and for
any 100t @ = Y miai, |l a =Y [mi].
i=1 =1
Further we define the degree, denoted d(z) € ZN*! | of any non-zero

element z € FYU°EY C U by

(2)- - d(z) := deg(p, ).
Since, by {L4; Proposition 4.2],

(3)--- U=8,ycznFPUEY,

d(z) is well defined.

For any z € U and pair (g, %), by (¢, %)-th component T,y of T, we
mean the component of z in the space FPU°E¥ under the decomposition
(3).

Following [DK], Z}"** is viewed as a totally ordered semigroup (under
addition) with the lexicographic order <.
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Define an increasing filtration {Ur}.c ZNH of U by

Z FYU°EY.
deg(p,$)<r

(4)--- Ur =

We recall the following result due to Levendorskii and Soibelman [LS].
(2.4) Proposition. For any ¢, ¢", ¥/, 9" € Zf
> FYU°EY.

deg(p$)< deg(p'+o" ' +4")

(FET°EY)(F¢"T°EY") C
In particuiar, for any 1,y € ZiN"‘l, Ur,Ur, C Ury4r,, te., U isa
filtered algebra over Q(v) with respect to the filtration {Ur}c ZENH-
(2.5) Corollary. Define U = O, ye ZY FeU’EY. ThenT is a Qv,v-1]-
subalgebra of U.

In view of the above proposition, we can define the corresponding graded
algebra

(1) GrU =

Z (Ur/z Ur’)-

re Z°3NH! r'<r
Recall the definition of Eg;, Fg; from (5) and (6) of §1.3. The following
result due to DeConcini-Kac gives the structure of GrU.

(2.6) Proposition [DK; Proposition 1.7). GrU is an associative algebra
over §(v) generated by Eg;, Fg,(1 < j < N), and K¥'(1 < i < n); subject
to the following relations:

(Ry)--- KiKj=K;Ki, K;K[' =1, for 1<4,j<n
(Rz)'-- EﬂjFﬂk:FﬂkEﬂj ) forlﬁj,kSN
(Rs) L. KiEﬂ,-Ki_l — U<ﬂj’ai>Eﬂ,~,KiFﬂ,-K,-_1 — ,U—<ﬂj,a.'>FﬂJ_’

for1<i<n,1<j<N,and

(Re)--- EgEp; = v<Pfi> By By, Fp Fp = v<PP5>Fy. Fg. | fori> j.
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(2.7) Definition. Let ug C u; be the @,-subalgebra generated by {Ki}1<icn.
Then u? has {K'}ic z» as a @,-basis, where K* is defined by (8) of §1.3.
By the t-th component x; (for t € Z7) of any x ¢ ug, we mean the
coefficient of K* in the expansion of x in the above basis.
Clearly, for any non-zero x € ug, there exists a x’ € ug such that the
On-th component of xx’ is non-zero, where 0,, = On,¢ :=(0,0,---,0) € Zp.

(2.8) Definition. An element z € U is said to be of weight a € > Za,
=1
if

(1)--- KizK' = y<oei>g forall1<i<n.

By (3) of §1.1, E; (resp. F;) is of weight a; (resp. —aj), for any
1 <j < n. From [L4; Theorem 3.1}, it is clear that Eg; (resp. Fg;), for any
1 <j < N,is of weight §; (resp. —f;). In particular, E¥ (resp. F¥), for
N N
cany ¢ = (p1,--,N) € Z_ﬁ’, is of weight Ecpjﬂ_.,- (resp. — E(p,-ﬂj).
j=1 =1
(2.9) Lemma. Forany1<i< n, E.-E]]N = E]LNE,- =0, as elements of ug,
where 1y =Iys:=(£~-1,£~-1,---,4 - 1) e Z_*IY
Proof. Recall the definition of U from Corollary (2.5). By virtue of Propo-
sition (2.4), we can write

(1)--- EEw =" g9,

as elements of U, where the sum ranges over deg(0,9) < deg(O,IlN+'5n(,')) ,1(2)
is the index such that Bn(i) = i, and

En(,-) = (0,---0,1,0,---,0) € zf,

where 1 is put in the n(%)-th place. Considering the weights of both the
sides in (1), we see that any 9 such that c¢¥ # 0 satisfies ; > £ for
some 1 < j < N. In particular, taking the image of (1) under the Q-
algebra homomorphism § : U — ug (taking Ep; v Eg;, Fp; — Fg,, for any
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1<j<N;K; - K;, (K{;O) - (Ki"o), for any 1 < i < m; and v = ¢), and
using (1) of §1.3, we get the lemma. O

With these preparations we come to the proof of Theorem (2.2).
(2.10) Proof of Theorem (2.2). By Theorem (1.4), the elements
{FeK EYY(p,9 € Z) and t € Z7)

form a @-basis of u;. We define a @, -linear form A : u; — @, by setting
A(z) to be the coefficient of ¢, := FI¥ EIv in the decomposition of z with
respect to the above bagis.
Assertion I. ker X does not contain any non-zero right ideal:

Let us fix any non-zero element z € ker ) and write

z= E Cotp(2)FPKCEY, for some (unique) ¢, 1,y € Q.
L AR
We set for any ¢,
Loy = Z c,,,,t,,p(z)F“’KtE’p.
i te Z7}

Let us choose any lifts z,,¢,4(z) € @v,v™"] of ¢,y under the @-algebra
homomorphism Q[v,v~] —» @, (taking v ~ ¢). (If ¢4, = 0, we choose
E,P,t’,p = O) Set

T = Y T,y€U, where
A
To = Z Cotu(2)FPK EY.

t
Let (9o, %o) be the (unique) pair such that Zpo . # 0and d(T,, ., ) is largest
with this property. We now consider the element

g = ’fF']I-N—‘PaE]JV"’ﬁa € F.

Then, by Propositions (2.4) and (2.6), (Iv,Iv)—th component 7, of 7 (under
the decomposition of Corollary 2.5) is non-zero. As in §2.3, for any ¢, 9 €
Zﬁ’, we denote the (p,%)-th component of 7 by Yoy Put

y=0(%), yo =6(7,) and Yoo = e(yzp,zﬁ)’
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where 6 is the -algebra homomorphism U — u, defined in the proof of
Lemma (2.9). Then, by (1) of §1.3, if p; or 4; > £ for some 1 < J< N,
then y, 4 = 0. In particular,

Yy=% + Z Yo »

where the sum ranges over ¢, € Z} and (p, %) # (Ly,1y).

By Proposition (2.6), it is easy to see that y, # 0. Clearly F‘Pu°E¢ (cf.
Definition 2.7) is stable, for any fixed p,% € ZY, under the left (as well
as right) multiplication by ug. Write y, = F]lNIcE]lN for some k # 0 € ug
There exists an element &’ € ug such that k&’ has 0,-th component non-
zero (cf. Definition 2.7). But Flvgp gl — yolc' for some k' € ug. Hence
A(yk') # 0. This proves Assertion 1. O

Assertion II. X(ab) = A(ba), for all a,b € u, :

Clearly, it suffices to prove the above for the algebra generators b =
Ei, F;, K (1 <4< n) of ug and the @,-basis elements a = FYKtEY (o, €
zZy, and t € Z3}):

Case I. b=K,

Clearly K;FYWEYK;' = FPu2E¥ (for any o,4),
and moreover K;FIWK'EWK; 1 = FIvgtElv (of. Definition 2.8). This
proves this case, i.e., A(aK;) = M(Kia), for any a € u,.

Case II. b=
We first cla.lm that unless ¢ =1y and ¢ = Iy — 6,,(,) (where 6,,(,) is as
defined in the proof of Lemma 2.9), we have

(1)--- AME;FPK'E¥) =0, and also

2)--- A(F¢KtE¢Ei)=0 , for é,nytEZZ‘:

By Proposition (2.4), considered as elements of T,

Z ¢ EN,

deg(0,) <deg (0,%+8ni))

(3)--- EYE; = cE¥ o) 4
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for some ¢,¢” € Qv,v~1). If v # 0 we get, from the weight considerations
(cf. Definition 2.8), that ¢ =1y — ,(;). This proves (2).
Similarly, by Proposition (2.4), again as elements of U, we get

E;FYTU°EY ¢ Z F¢ T° EY.

deg(y' ') Sdeg(ip+8a(i))
So, if A(E;FPwEY) # 0, deg(ly,Ly) < deg(p, 9 + 6n))- In particular,
only two possibilities can occur:
(m) ¢ =1y - b,;), for some simple root a;, and 9 =1y, or

(p2) p=1y,and ¢ =1y — 8r(k)» for some simple root ay.

Comparing the weights again, we deduce that the possibility (p;) can
not occur and, moreover in the possibility (ps), ay = a;. This proves (1).

+ 50, to prove the result in case II, it suffices to show that (abbreviating
EW =8t by E)

(4)- . _ ANFW K EE) = \(EFNKE) :
In (3) if we take 9 =y — 8n(i), then by Proposition (2.6),

(5)--- MNFWKCER) = 1, if t=o0,

= 0, otherwise.
Now, as elements of U,
EK'E =y =<ete>gtp.p

where at 1= Y7 tia;. So

(6) - -- MEFWE'E) = MNFW E; Kt E), by Proposition (2.6)
_ {o , it #0,
|1, ift=o0,.

Now the validity of Assertion II in case IT (ie. b = E;) follows by
combining (5) and (6). The case III (i.e. b= F}) is exactly parallel to the
case II, and hence is left to the reader. So Assertion IT is established. m]
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Combining Assertions I and II, Theorem (2.2) follows from the definition
(2.1). m]
(2.11) Remarks. (a) A similar proof gives Theorem (2.2) with u; replaced
by ug (defined in §1.3).

(b) Theorem (2.2) was motivated by the corresponding result for the
restricted enveloping algebras (associated to semi-simple algebraic groups
over algebraically closed field of prime char. p) due to Schue [S] (see also

[H3]).

3. The Cartan matrix associated to Quantized Restricted
Enveloping Algebras

Let £,€,ue be as in §§1.2, 1.3. In particular, £ satisfies the restriction *)
of §1.3. From now on we shall abbreviate ug by u. Also recall the definition
of the subalgebra u® := ug C ug from §2.7. We define b (resp. 6~) as the @,
-subalgebra of u generated by {Ei, K;}1<icn (resp. {F, Ki}ticicn). Simi-
larly, let u* (resp. u~) be the @;- subalgebra of u generated by {E;}1<icn
(resp. {Fi}i1<i<n)- In the sequel, by an u-module we will always mean a left
representation of u in a finite dimensional vector space over Q.

(3.0) Definition. (Verma, Projective and Irreducible modules of u). Re-
call from § 1.1 that h Cg= g(A) is the Cartan subalgebra of the complex
semi-simple Lie algebra g . Define

(1)--- 0%z ={A € b” : X(a}) € Z,for all simple coroots )},
where b* := Homg(h, €). Put
(2)--- bz := (Z/(£)® 7 b7z

For any A € b7, we define the Verma module Z(X) for the algebra u by
(3)-- Z(A) = u®e@:(N),

where @()) is the one dimensional module of b over @ , such that E! s(1 <
i < n) act trivially and K;.z = £<*@i>g forz ¢ @ (A); where X is any lift in
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h*5 of the element X € bz, under the canonical map b*z — b;. It is easy to
see that {Qe()\)}Aeb; bijectively parametrizes the set of isomorphism classes
of one dimensional modules of b. (We are using the condition (*)of § 1.3.)

If we take A = (£ — 1)p (where p ¢ bz is defined by p(a¥) = 1, for
all the simple coroots ay), then the Verma module Z (A) will be called the
Steinberg module and denoted Ste.

It can be seen (cf. [L3; Proof of Proposition 5.11]) that any Z()) has a
unique proper maximal u-submodule and hence a unique srreducible quotient
(denoted by) M(X). Moreover, by loc. cit., any irreducible u-module is
isomorphic with precisely one M (}).

From [CR; Corollary 54.14], the set of isomorphism classes of principal
indecomposable modules (for short PIM) of u is bijectively parametrized
by h;. We choose the parametrization so that @()) is the PIM with the
unique irreducible quotient M(A) (cf. [CR; Theorem 54.11]). Observe that,
by [CR; Theorem 56.6 and the Remark at the end of its proof], {Q()\)},\E;,;
are precisely the isomorphism classes of indecomposable projective modules
of u.

We record the following lemma for its subsequent use.

(3.1) Lemma. The irreducible u—module M (A) (for any X € b}) remains
irreducible under field eztensions, i.e., for any field K O @, Mg(X) =
K@ @, M(}) is irreducible as a module Jor ug .= K® @ ¥

Proof. 1t is easy to see, by the same argument as in [L3; Proof of Proposi-
tion 5.11], that M (X) has a unique proper maximal ug submodule Sk ().
By going to a further extension, we assume w. 1. o. g. that K is al-
gebraically closed. Let § = Gx be the group of field automorphisms of
K over . Clearly G acts on Mg (X) by automorphisms (over the field
@), commuting with the action of u. In particular, Sk () is stable un-
der G and hence (by Hilbert’s theorem 90), Sk(A) is defined over @, ie.,
K® @, (Sx(X)nM(X) = Sk(}). But Sk(A) N M(X), being u-stable, is 0.
o

(3.2) Cartan Matrix. For any u-module M and irreducible u-module
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M(p), we denote the multiplicity of M(u) in M by (M : M()). In partic-
ular, taking M = Q(X) (for A € }), we get the matrix

(1) C = (caudauen; where ey, =, := (Q(A) : M(p)).

The matrix C is called the Cartan matriz associated to the algebra u. Sim-
ilarly, define the matrix

(2)--- D = (dau)apey; »where dy, =df , == (Z(A) : M(p)).
So, in the Grothendieck group of finite dimensional u-modules, we get

(3)--- Q) =) eruM(p) and

(4)--- ZOA) = dauM(p).

(3.3) Lemma. Any projective u=-module is Jree. The same statement is of
course true for ut as well,

Proof. Let I~ C u™ be the ideal spanned as a vector space over @, by the
elements { F¥}, where ¢ ranges over all the non-zero elements of ZY. Then,
by [L3; Lemma 5.10], I~ is a nilpotent ideal, i.e., there exists an integer m
such that (7)™ = 0. In particular, by [CR; Lemma 54.8], u~ is a complete-
ly primary ring. Now the lemma follows by [CR; Exercise 2 p. 383]. a

(3.4) Lemma. The left regular representation of b~ (onto itself) decompos-
€s as ®aep; Z(A), where the u-module Z()) is considered as ¢ b~ -module
by restriction. In particular, any Z () is a projective b—-module.

Moreover, {Z (A)}aen; s a complete set of non-isomorphic indecompos-
able projective b~ -modules. Fyrther, {@:(0)} Aeh; U5 a complete set of non-
tsomorphic irreducible b -modules, where @,(A) is the one dimensional b—-
module such that F; (1 <i<n)acts trivially and K; acts by the multipli-
cation with £<hei>

(8.5) Remark. Since u is b~-free (under left multiplication), any projective
u-module is also projective considered as a b~-module.
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(8.6) Proof of Lemma 3.4. Forany 1< i<nandj¢ Z[(£), define

-1

(1)--- kij= Z (EK)™ €.
m=0

Then

(2)--- Kikij =€ ki .

In particular, for fixed 4, {k;;};c /() is linearly independent over Q.
By dimension counting, {k; = ki ;, “+ Bnga bt edn) € Z/ () is a Qg-basis
for u®. This gives that

(3)--- b™ = ®je( 2/~ (v7k;).

It is clear from (2) that, for any j, u~k; is b~-stable. Define a bijection
9:0; — (Z/(6)",

by 0(A)=(-<Xa1>,--,— <dan>). (Observe that the assumption
(*) of § 1.3 on £ is being used here to show that  is bijective .) From (2), it
is clear that u~kg(y) is isomorphic with the b--module Z (A). This proves
the first part of the lemma.

We next show that Z()) is b~ -indecomposable : If M is a non-trivial
direct summand of Z(X), then M is b~ -projective and hence u~-projective
(note : b~ is u~—free). But then by Lemma (3.3), M is free as u~—module.
So, by dimension counting, M = Z()). This proves the assertion that Z (A)
is indecomposable.

Since the number of non-isomorphic irreducible representations of b~ is
2| b7 1=1 (Z/(£))™ | (as @¢()) are all non-isomorphic), and the number of
indecomposable components of b~ is equal to | (Z/(£))" | (by (3)), we obtain
by [CR; Corollary 54.14] that u~k; are all non-isomorphic b~ -modules and
the irreducible representations of b~ are precisely @e(X) (X € b). This,
together with [CR; Theorem 56.6], completes the proof of the Lemma. O

(3.7) Definitions. (a) The matriz B: The u- projective module Q) (he
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h7) is projective considered as a b~-module (cf. Remark 3.5). In particular,
by Lemma (3.4) and [CR; Theorem 56.6], we obtain the decomposition (as
b~-modules)

(1)-- Q)

We denote by, by (Q(A) : Z(p)), and define the matrix B = (b,\,,,),\,,,e,,l- .
(b) The linkage relation ~ : For \,p € b; call A linked to p, written
A ~ p, if there exist indecomposable u-modules Vi,-+-, Vi (for some k£ > 1)
and weights A, = A, A1, -+, Ax = p belonging to bz such that M(X;_;1) and
M(2;) are both subquotients of V; , for all 1 < i < k. Clearly ~ is an
equivalence relation. We denote the equivalence class of A by e(}).
We recall the following result due to Andersen - Polo - Wen.

N @uep; ban Z(n), for some (unique) bau € Z,.

(3.8) Theorem [APW; Corollary 8.2]. Let Ap€by. Then X ~ p if and
only if there exists a w € W such that p = w * )\ as elements of b;, where
wx A= w(A+p) —p and p is as defined in § 3.0.

We come to the following main result of this section. Recall the definition
of the matrices B, C, and D from (1) of §3.7, (1) of §3.2 and (2) of §3.2
Tespectively; and denote by D* the transpose of D.

(3.9) Theorem. The matriz C is a symmetric matriz, which admits the
following decompositions:

(1)-.- C=BD = D'D.
Further, for A~ X,

(2)--- Ay = dary (for any p € b;), and

(3)--- dry = 0 unless A ~p.
Moreover, for any X € b},

(- dim g, (Q(X)) = e(3) | dntY,

T
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where N =| A, | and dy :=dy» .

Remark. We prove in Section 5 that B = D* (cf. Corollary 5.17). In
particular, this gives a different proof of (4) and proves the symmetry of C
without using Theorem (2.2).

As a preparation for the proof of the above theorem, we give the follow-
ing.
(8.10) Definition. A u-module V is said to admit a Verma filtration, if

there exists a filtration of V by u-submodules :

Vo=0CWVC-CVn=V,

such that, for any 1 < j < m, V;/V;_1 is u-isomorphic with Z(A;) (for some
Aj € b7). Such a filtration is called a Verma filtration.

By virtue of Proposition (5.16), any projective u—module admits a Ver-
ma filtration.

(3.11) Lemma. Let Q be any projective u-module. Then (as u-modules),
1)--- Q= ®arep; n(N)Q(N),

where n(A) := dim @, (Hom,(Q, M(}))) = dim a, (Hom, (M (X), Q)).
We call n(}) as the multiplicity of Q(A) in Q and denote it by multg(y) Q.
Proof. By § 3.0

Q ~ @uep; m(p)Q(n) , for some m(p) € Z, .

For any A € by}

Q

Homu(Q, M(A)) @pebz m(ﬂ) Hom, (Q(ﬂ): M(A))

m(A)Hom,(Q(X), M())),

Q

since Q(x) has unique irreducible quotient M (&) (cf. §3.0). But, by Schur’s
lemma and Lemma, (3.1), Hom,(Q (), M(})) is one dimensional over Q. In

particular, m(}) = dim(Hom,(Q, M(}))).
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The other statement follows since socle Q(A) = M()\), asuis a symmetric
algebra by Theorem (2.2) (cf. [N] or [CR; Page 401 and Exercise 83.1]). O
With these preparations we come to the proof of Theorem (3.9).

(8.12) Proof of Theorem (3.9). Assertion 1. The mairiz C is symmetric :

This follows from Theorem (2.2) and [N; Theorem 8].

Asserfion II.C=BD:
By Proposition (5.16), Q(A) admits a (Verma) filtration

0=V CWViC---CVm=Q(N),

such that, for any 1 < j < m,V;/V;_; is u-isomorphic with Z(A;) (for some
A;j € by)- But since Z(};) are projective b—-modules (by Lemma 3.4), we
get the decomposition as b~-modules :

(1) QM) ~ OFL1Z();).
But clearly
(2)- Q) : M(w)) = Z (Z00) : M(p)).
Considering (1) and (2) the assertion II follows. O

Assertion III. dy, =dy, for A~ X :
(From the definition of ~ , it is clear that dxu = 0 unless A ~ p.)
In view of Theorem (3.8), we can assume that ) = s; * A, for some
simple reflection s;. Define u-module maps 6, : Z(X) — Z(A) and 6, :
Z()) — Z(X), determined by 8,(1® 1y) = 7+ @1, ang 65(1®
1,\) Fl'1 Aad) ® 1y, where 1, is any fixed non-zero vector of @ ()) and
A € ¥y is.the unique lift of A under the canonical map H*y, — b with
the requirement that 0 < )\(aV) < ¢ for all the simple coroots af. (It is
easy to see that 61(1®1y) and 02(1® 1) have restricted weights )\’ and A
respectively, and moreover both are annihilated by Ejforall1 < j < n by
[L4;86.5), and hence they extend uniquely to u-module maps; cf. §4.3 for the
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definition of restricted weight.) Clearly 616, = 626, = 0. So im 6; C ker 4,
(and im 8, C ker 6;), where im denotes the image. We claim, in fact, that
im#; =ker 8, :

. _ SAleY)+1 . .

Now im 6; = (u= F{"7'"7") @ 1. By a suitable choice of the reduced
decomposition of the longest element w,, we can assume that s = 1. This
gives that im 6, has basis {F¥ ® 1}, where ¢ = (p1,---,0n) Tanges over
ZY with 1 > X(aY) + 1. But ker 6, has the same basis, and thus

(3)-- im 6; = ker 6.
Exactly similar argument also gives that
4)- im 65 = ker 6,.

For any u € by}

(5)--- (Z(X) : M(p)) = (ker 61 : M(p)) + (im 61 : M(p)).
Similarly,
6)--- (Z(X) : M(p)) = (ker 63 : M(p)) + (im 62 : M(u)) .

Now putting (3)- (6) together, we get
(Z(A) : M(n)) = (Z(X) : M()) ,ice., day=dx, if A ~N. O

Assertion IV. dim Q(X) =| e()) | dye :

For any X € by, denote by B;(,\) the sum of all the PIM’s of u isomor-
phic to Q(u) (1 € e())). Then, from Lemma (3.4) and Definition (3.10),
it is clear that in the direct sum decomposition (as b~-module) of the pro-
jective module B,y , Z(u) occurs exactly £V times, for any 4 ~ X But
multg,,) B, = multg(,) u = dim Q)eM(p), by Lemma (3.11). These give
rise to two different expressions of dim Q’eBc( e

(7 dim B,y =} dim M(p) dim Q(u) ,and

pee(A)
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(8)--- dim B,y =| e()) | £2V.

Further, by Assertion III,

(®)  dmZQ)= Y dydmMpE) = Y d, dim M) .

ue€e(A) u€e(A)

By (1) of §3.7

(10) - - dim Q(X) = bx£¥, where b, := Z brg-
f€e(X)

But, by Assertion IT, if A ~

G = Y, brgdsy
f€e(X)
= (> bag)d, ,by Assertion III ,ie.,
fee(N)
(11).-- eap = bad,.

S0, by Assertion I, byd, = budy ie.,

b b, .
(12)-. - a1 FA~u

By (7) and (10), we get
dim Besy = (3 g dy dim M(n) )e¥

u€e(A)
B (dim ZO)EY | by (9), ie.,

: by paw
13)--. dim By, = 22
(13) W=7, £,
Combining (8) and (13), we get

(14)-. o) |= 2,
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and hence from (10), dim Q(A) =| e()) | dx£". This proves Assertion IV. O
Assertion V. C=DtD:
By (11),if XA ~pu,

Cap = b,\d;t

[ e(A) | dady , by (14)
= Z dg rdg, , by Assertion III.

Il

fce(A)
This proves Assertion V. a
Combining Assertions I - V, we get Theorem (3.9). O

(8.13) Remark. The analogues of most of the results (in particular, The-
orem 3.9) in this section for the modular case are due to Humphreys [ H].

4. Some consequences of Theorem (3.9)

We follow the notation and conventions as in the beginning of § 3.

The following result (at least in the case when £ is a power of a prime
number) is obtained by Andersen-Polo-Wen [APW; Corollary 7.6 and The-
orem 9.8], as a consequence of their linkage principle. Even though we do
not give the details, a simple and direct proof (for the assertion that Ste
is irreducible and projective u-module) can be given along the lines of the
proof of the corresponding classical result as in [H2;85.5]. Now St @ V is
a projective u-module, follows from a general fact about Hopf algebras (cf.,
e.g., [GL; Proposition 1.7 ff.]). Since u is a Frobenius algebra, any projective
u-module is injective (cf. [CR; Theorem 58.14]).

(4.1) Proposition. St; is an irreducible u-module, which is projective (and
hence injective), where St; is as defined in Definition (3.0).
In particular, for any u-module V, Ste® V is a projective (and injective )

u-module.
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As an immediate consequence of Theorem (3.9), we obtain the following:

(4.2) Corollary. For A ~ X € b} (c¢f. Definition 3.7 (b)),
Ste® Z(A) = Ste ® Z(\') as u — modules.
Proof. Since, by the previous proposition, St is a projective module,

(1) - Ste®2(\) ~ 3 druSte ® M(u) (a5 u — modules), by () of §..

u

But then the corollary follows from (2) of Theorem (3.9). O
(4.3) Definition. Recall the definition of the algebra u® C u from §2.7 and
the beginning of §3. It can be easily seen that the map

X : by — Spec(u®),

given by x(A)(K:) = <>, for A € b and 1 < 4 < n, is a bijection, where |
Spec(u®) denotes the set of all the algebra homomorphisms : u° — Q.. ]

For any u®-module V and ) ¢ b7, we define the A-th restricted weight
space

1 --- Vi =A{v eV : K = x(\)(K;) v}

Since u° is a semi-simple algebra, being the tensor product

QU@X/ < X -15),
=1

and u° is a direct sum of certain one dimensional ideals of u° (cf. §3.6), any
u®-module V' decomposes as the (direct) sum of its restricted weight spaces
(cf. [CR; Theorem 25.10] ) :

V= ZV(,\) .

Aeh;
We define its formal restricted character, denoted chy(V), by ‘
2) - h(V) = Y dim (V) €.
(2) ch(V) = 3 _dim (Vi) e |
|

Agh;
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Let b7 ... C h; be the subgroup generated by the image of the simple
roots {ai,--,an} in bj.

(4.4) Lemma. For any ) € b}

ch(Z(N) = (Y [#Biron)) € S &P

BED; roor
Proof. From the identity (2) of Theorem (3.9) (for any simple root «;)
chy(Z(0)) = chy(Z(—;)), since —a; ~ 0
e~ chy(Z(0)).

This gives chy(Z(0)) = ePchy(Z(0)), for any 8 € D7 root+ In particular,

che(Z(0)) = (" /#(iroat)) . €7 .

ﬁeb;,rool
This proves the lemma. _ O

(4.5) Proposition. For any u-module V, we have (as u-modules)

(1) -~ Ste®@Vw O pep; dim(Homg (@ ((£ ~ 1)p) ® V, M(r))) Q(n) ,
and also
(2) - 5t ® V' ~ ®ep; dim(Homy - (G (0) ® V, M(n))) Q(r)

where @¢(}) is as in §3.0 and Gg()) is as in Lemma (3.4).
In particular, (for any ) € h;)

(3)-- Ste®Z(N)~ ) dim (M(p)y,) Qk) -

HED;
Proof. By Proposition (4.1), Lemma (3.11), and [GL; Proposition 1.7]
St @V ~ @udim(Homu(St ® V, M(n))) Q(u)
®dim(Hom, (u @y (@((¢ - 1)p) ® V), M(1))) Q(r)
®dim(Homy(@((€ - 1)p) ® V, M (1)) Q(u), by [CE; Chap. II, §

Q

a2
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The proof of (2) is exactly the same.
To prove the “In particular” part, observe first that (using the definition
of A given in (10) of §1.1)

(4) --- @e(p) ® Z(N) ~ Z(A+ p), as b~ — modules.

Further, since Z(\ + p) is freely generated as an u~-module by the element
1®1x4p, it is easy to see that the restriction map Homy- (Z(A+p), M(p)) —
M(L)(rsp) > given by f - f(1® La+p), i8 an isomorphism. So (3) follows by
combining (2) and (4). O
(4.6) Definition. Following Bernshtein-Gel'fand-Gel’fand [BGG], define
for any X € b7,

I(X) = u®us (1),
where @ (), a b-module, is considered as an u°-module by restriction.

(4.7) Proposition. For any X € b7, I()) is a projective u-module. More-
over

1y --. I(X) = ®puen; dim(M (u)a) ) Q(p), as u — modules.

Proof. For any u-module V, the restriction map ¢ : Homy(I(A),V) — Vin
is clearly an isomorphism, where o(f) = f(1®1,), for f € Hom,(I(A),V).
This, in particular, implies (using the restricted weight space decomposi-
tion, cf. §4.3) that for any surjective u-module map f: V — W between
two u-modules, the induced map ;: Homy(I(2),V) — Homy(I(A), W) is
surjective. This proves that I (A) is u-projective.

Now (1) follows from Lemma (3.11), using the isomorphism ¢. O

(4.8) Remark. Combining (3) of Proposition (4.5) and (1) of Proposition
(4.7), it follows that for any \ ¢ b7 5 Ste® Z(A) = I(A+p) as u-modules.

(4.9) Let V be any u-module. For any A € by, decompose (as u-modules)
(1) - Q) BV ~ Buen; mau(V) Qu),

for some (unique) n,,(V) € 2, .
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By Lemma (3.11) and [APW; Proposition 1.18 (iii), and Remark (7.6)],
it is easy to see that

2 - N(e-1)pu (M(6)) = ne_1yp0 (M (1)), for any 1,9 € by.
(4.10) Proposition. For any A, p € b; and any u-module V

1 - dy Yy dim Viu_xy = Y dg nag(V),

Al O~p

where dy is as defined in Theorem (3.9).
In particular,

(2 - dim Vi,4,) = Z dg n—pe(V), and
f~p
R ZZN/#bzroot ) ZfA_ﬂ—p € bz,root
(3) - %d" dim(M (8)(+5)) { =0, otherwise.

Proof. As b~-modules

Q) eV~ P ban(Z2(N) 8 V),

Neby

by (1) of §3.7.

This gives, by Corollary (5.17) and Theorem (3.9),
(4)--- QM) eV~ d P (Zz(\)e V).

PP

Similarly (as b~-modules ),

w8

(6) --- Prars(V) Q) ~ Prars(V) do (@Z(#)) .
g g

Putting (4) and (5) in (1) of §4.9, and equating coefficients of Z(u) we

get
Z dg n,\,g(V) = d,\Zdim V(“_,\/) .

f~p o)
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This proves (1). The identity (2) follows by specializing (tor=—p,
since d_, = 1 and ) ~ —p if and only if X = —p (by Theorem 3.8). The
identity (8) follows from (2) by taking V' = Z()) and using (3) of Proposition
(4.5) and Lemma (4.4). O

5. Modules for the pair (u, 42)

We continue to use the same notation and conventions as in the beginning
of § 3.

(5.1) Definition. Let UY be the A-subalgebra of U, (cf. §1.2) generated
by {I{iil, (K;;C)} (1<i<n,ce Zte Z,),and set

@ - U¢ = Qe®.AUY,

where @ is an A-algebra as in §1.2, and

) K,';C t Kivd,'(c-a+1) _ K_—-I,U—d,'(c—a+1)
(2)--- ( ) = H L .

t vd.'a _ v—d.‘a

8=1

By [L4; Theorem 6.7], the canonical map : UQ — U, is injective, where
Ue := U g, (cf. (1) of §1.2). Let % be the @ -subalgebra of U, generated by
U and ug (cf. §1.3). By [Ls; §6.5], Kf — 1 is central in U, (in particular
in %). Let ¥ (resp. 12) be the quotient algebra of % (resp. UQ) divided by
the (two sided) ideal generated by {Kf — 1hcicn . It is easy to see that
the comultiplication A (cf. ( 10) of §1.1) defines a Hopf algebra structure on
%,10,U2, and 4Q. We denote by 5 the subalgebra of U generated by Ei(1 <
¢ < n) and UQ. By [Ly;§ 6.5], the multiplication map : u, ® U — % is
surjective.

Let Spec(ﬂ?) be the set of all the @,-algebra homomorphisms 5.12 —
@, and let Spec z(4) C Spec(42) be the subset consisting of those f €

Spec(ﬂ?) such that f (KZ;O) € Z,for all 1 < { < n. Define 3 map

X : 0"z — Spec z(1Q) by
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® - XO)(EH) = 54> ang
i A) Y ¢
@ - X (7)< (P’
t t i
forany/\eb*z,lgiSn,ceZ,andt€Z+;whereform€Zand
E i{(m—s —d;{m—3s
neEZ,, ™ is by definition JJ7_ vl J;%z“’_:‘.(, +1), evaluated
+ n s=1 ydis _y—d;
di

at v = ¢£.

It is easy to see, from the relations [L4;§ 6.4] and [L3 ;§ 4.1(e)], that X(A)
indeed extends (uniquely ) to an algebra homomorphism, and moreover by
[La; Corollary 3.3(a)], %(A) (K;;O) € Z.

(5-2) Lemma. The map X : H*yp — Spec z(ﬂg), defined above, is a bijec-
tion.

(We denote by @8(’\) the one dimensional ilg-module given by the char-
acter x(2A).)

Proof. Injectivity of ¥ follows from evaluating ¥(\) at K; and ( Kj‘o) (for
all 1 < i < n), and using [Ly; Proposition 3.2(a)]. (Observe that we are -
using the condition () of § 1.3.)

To prove surjectivity; given f € Spec z(4g), define A = A(f) € b*y by

K;; 0

‘ ),foranylsign,

(1 --- </\,a,y>=m,~+£f(
where 0 < m; < £ is the unique integer such that f(K;) = (¢%)™i. (Since
Kf =1, f(K;)is a £ -th root of unity, and d; is coprime to £ by (%) of § 1.3.)

The elements { K, (Kfo)}K.( generate the algebra 5.1? over @, as
follows from [Lg; §2.3, Identity g_.;)—;.nd g-10] and [Ly4; §6.4, Identity (b3)].
In particular, using [Ly; Proposition 3.2(a)], it is easy to see that X(A) = f.
This proves the lemma. ]

(5.3) Remark. There is an algebra isomorphism

QE[XI:""XH)},I:"':Yn]/<X]l,_la"'valt_l>L’ug’
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given by X; — K;, and V; (KE‘O) . To prove this, use [Lg; § 2.3, relations
(85)-(g10)]-

In particular, Spec (110) is a proper subset of Spec (110) .
(5.4) Definitions. (a) Let V be any representation (over @) of the algebra
2. Then, for any X € h*,,, the A-th weight space Vi of V is defined by

() --- Vw={veV:zv=%)z.v, forall z € ilg},

where () is as defined in §5.1.
Clearly the sum Z V3 is direct. We call the representation V a weight
AEH*
module if
V= Baenry, V.

We define the formal character ch of a finite dimensional weight module
V as

(2) --- chV = Z (dimVy) €.
Aeh*y,

It is easy to see that any submodule (as well as a quotient module) of
a weight module is a weight module. It follows by [L4;§ 6.5 that for any
u-module V, any 9 € Z}', and X € b*y,

N
(3) --- EY.V,CVy (where X' := X\ + Z¢kﬁk ), and
k=1
N
(4) --- F¥.V) C Vo (where X" := X — D kb ),
k=1

where E¥, F¥ are as defined by (4) and (7) of §1.3.

(b) Let F be the full category of T-modules V in finite dimensional vector
spaces over @, such that V is a weight module for il?.

The following lemma is “essentially” [APW; Lemma 1.1].
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(5.5) Lemma. For any A\, p € h* '+ the tensor product ilf-module 605()\) ®
Qf(,u) (cf. Lemma 5.2) has weight A + L.

(5.6) Definition. Just as in §3.0, we define the Verma module Z(\) (A e
b*p) for il by
Z(2) = igy@(),
where ilg-module structure on @5()\) is extended to a b-module structure by
demanding E;’s (1 < i < n) to act by 0.
It is easy to see that Z()) € F. Further, by (4) of §5.4, all the we1ghts pof

Z(X) satisfy i < A (where the notation 4 < A means that A—p € ZZ+a,)

i=1

In particular, Z (A) has a umque proper maximal submodule, and hence a
unique irreducible quotient M()).

It can be easily seen that the map \ — M (A) defines a bijection between

z and the set of isomorphism classes of simple &i-modules in the category

F. As in § 3.2, for any V € F, by (V : M()\)) we mean the multiplicity of
M(\)in V.

It follows from [L,; Proposition 7.2(a)] that for any X € b*,,, M (A isa
one dimensional module, such that the augmentation ideal of u acts trivially.
Further, for any A, u € h*,,, as T-modules (by Lemma 5.5)

(1) - Z(A\+tp) ~ Z()) @ M(tp), and

2 - MO+ tp) ~ MO\ @ M(2p) .

(5.7) Lemma. For X € b*,, M (A) considered as a u-module (via restric-
tion) is isomorphic with M(X) (cf. § 3.0), where X is the image of X under
the canonical map b*y — b}

Proof. Clearly Z()\) = Z(X), as u-modules. So, it suffices to show that the
maximal proper u-submodule X()) of Z()) is stable under 2 as well :

By [L4;§ 6.5), 412- K(X) C Z()) is stable under u. Further, since K () C
M (cf. [L3, Proof of Proposition 5.11]; the notation M is as in loc. cit. )
and 42 - M c M, we see that 42 - K() is properly contained in Z()). In
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particular, by maximality of K(A), K () =
o

2.-K(X),ie., K()) is Ud-stable.

Analogous to Definition (4.6), we define (for any A E'b"*z) the U-module
1 - 1) = Uy @ (1) -

It is easy to see that T(\) € F, and moreover
(2 -- I(A) =~ I(X), considered as u — modules.

The following holds by the same argument as Proposition (4.7).

(5.8) Lemma. For any U-module V and \ € h*y, the restriction map
@ : Homy(I(),V) — Vy , given by &(f) = f(1® 1,), is an isomorphism.
In particular, (A) is a projective module in the category F.

(5.9) Corollary. For any ) € h*z, there erists a unique (upto an isomor-
phzsm) indecomposable projective module Q(A) in the category F , such that

Q) has M M()) as quotient. Moreover, Q()\) has a unigue proper mazimal
submodule, and any indecomposable projective module € F is isomorphic
with ezactly one @(A).

Proof. Since I()) is projective, and the canonical map I(A) — M (A) is
surjective, there exists an indecomposable summand of I| (A) which maps
surjectivily onto the irreducible module M (A).

We now come to the uniqueness statements !

Let § be any indecomposable projective module € F with a surjective
i-module map f: § — M (A). We first claim that any proper submodule
of § is contained in ker f (in particular, § has a unique proper maximal
submodule) : Let V be any submodule of § such that f(V) # 0, and choose
a minimal such. (This is possible since § is finite dimensional. ) Since § is
projective, there exists a map f: § — V such that flv of = f. Since fiv
is surjective and V is minimal with this property, (V) V. But then, by

T thank R. Parthasarathy for this argument.
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dimension counting, ﬁv :V — V is an isomorphism. Now the map ( f,v)‘l
provides a splitting for the exact sequence

0—>kerf—->@i>V—>0.

But Q being indecomposable, this is possible only if V = Q. This proves
the assertion that any proper submodule of  is contained in ker f

Now let @1 M(A) and @2 M()\) be two indecomposable projec-
tive covers € F. This gives rise to a commutative diagram :

él ﬁ é2 ﬁ él
N 12 /A
M())

But, from the previous assertion, 1 and ¢ are both surjective. This proves
that ¢, is an isomorphism. Now the corollary follows, since {M (N}, are
precisely the simple objects € F. |

(5.10) Lemma. (a) For any A, p € h*y, (as T-modules)
QA+ tp) ~ Q(N) @ M(2p).
(b) For any module V € F, and X € b
(V: M(X)) = dim g, (Homg(@(2), V).

Proof. By [GL; Proposition 171 ], Q(\) ® M(£y) is a pro Jjective module.
Further Q()) ~ §()\) ® M(fp) ®M( £p) (cf. Lemma 5.5 and §5.6). Hence,
Q(/\) being indecomposable, Q(\)® M (£,u) is indecomposable. In particular,
(a) follows from (2) of §5.6 and Corollary (5.9).

(b) For any exact sequence in F :

0-VM->V-1,-0,

we clearly have (V : M(X)) = (Vi : M(X)) + (Va : B())). Purther, §())

being projective,

(1)
dim(Homg(Q (), V) = dim(Homg(G()), 1)) + dim(Homy(G()), V2)).
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So, to prove the (b) part, it suffices to prove it (by induction on the
length of V) for V = M, (#) (for any p € p* %) But this follows from the
above Corollary (5.9). O

(5.11) Definition. Exactly parallel to the notion of Verma filtration for

a u-module ( Definition 3.10), one has the notion of Verma filtration for U-

modules (where we demand the successive quotients be isomorphic to Z(;)).
For a i-module V € F admitting a Verma filtration

%ZOCWC...CVm:-_V’

and A € h*,, we define
(1 - (V:Z() = #{1<j <m:Vy/Vj_y ~ O}

From ch V, it is easy to see that (V : Z(X)) is well defined, i.e., it does
not depend upon the choice of Verma filtration.
(5.12) Lemma. For any A € h*,,, the i-module 0) (cf.(1) of §5.7) admits
a Verma filtration. Moreover,
(1) - (T(A) : Z()) = dim Z(u),.

Proof. By the definition, I(A) = u®uocp£()\) ~ U®y (b®un QE(’\)) It is eagy
to see, usmg Proposition (2.4) and the welght consideration (c¢f. Definition
2.8), that b®uocpe(,\) has a filtration by b-stable submodules:

Fp=0CcFC---C Fk=g®u0@e(/\),

such that F;/F;_; ( for any j) is isomorphic with QE(’\ i) (for some A; € h* ;).
Further, for any p € b*,,,

#{1 <7 <k:Xj=p}=dim Z(p),.

Since ¥ is b-free (under right multlphcatlon) the above filtration gives
rise to a Verma filtration of T(). O

The following lemma can be obtained by the same argument as in [BGG;

6.

e
o
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(5.13) Lemma. For two §-modules Vi,Va € F, Vi & Vs admits a Verma
filtration if and only if both of Vi and Va admit Verma filtrations.
(5.14) Proposition. Any projective i-module € F admits a Verma filtra-

tion.
Further, for any X, p € b*y,, we have the BGG- duality

(1) - (@ Zw) = (Zwy : ).
Proof. The first part follows immediately from Lemmas (5.12), (5.13) and
(58).

The 1dent1ty (1) follows by an argument same as [ J; Proof of Satz 3.8],
using Lemmas (5.10)(b), (5.12), and (the following) Proposition (5.15). O

By an argument same as proof of Lemma (3.11) (together with Lemma
5.8 and Corollary 5.9 ), we get the following.

(5.15) Proposition. For any projective module Q € F,
(1) --. Q= @ n(A) @A) (as i~ modules),

,\Eb'z

where n(A) := dim a, (Hom(@, M(X))).
In particular, for any p € h*y,,

2) - T(p) ~ @dim(M(2),) G(N).
A

(5.16) Proposition. For any A € bz
QN ~ Q(X), as u— modules,
where X is as in Lemma 5.7.
In particular, any projective u-module admits a Verma filtration.
Proof. Since f(u) I(E) as u-modules (by (2) of §5.7), é(u) is a projective
u-module which surjects onto M (u) M (%) (cf. Lemma 5.7). In particular,
we can decompose as u-modules (cf. Lemma 5.10(a)) :

Qp)~ @nﬁ,;Q(V) , for some nzz > 0 and ngzz > 0.
veh;



222

Substituting this in (2) of Proposition (5.15), we get (as u-modules)
D dim (M(k))) ( PrarQ@))
ney* veh;

@ @ dim(ﬁ(/to+£/11),\) Ny Q(7)
TEh; pg€hjand
#16'1'2

1(3)

Q

Q2

Q

Fehz o El)Zlnd
H1EH®

Q

(1)

veh; Hyen;

But, by Proposition (4.7),

I) =~ Pdim (M (7)) Q@) .

vehy

This, together with (1), forces Np,,» = 6g, 5 , proving the proposition. O

(5-17) Corollary. For any MNE€E h;

Q) : 2(m)) = (2(g) : M(V)), i.e.,
the matriz D = B* (cf. Theorem 3.9).

Proof. Fix any preimage X € bz (resp. p) of X (resp. ) under the canonical

map h*5 — b;. Then, by Proposition (6.16) and (1) of §5.6,
QM) : Z2(m) D (@) : Z(u+ 10))

HGIJ‘Z
1 .. = Y (@(A-10): Z(u)), by Lemma 5.10(a).
6€h*
Similarly,
2 - (Z(m): M) = > (Z(p): M(A+ £9)).
eeb‘z

Now the corollary follows by combining (1) and (2) with Proposition (5.14).

@ @ dim(ﬁ(ﬂo),\_zm) nE, v @(F), by (2) of §5.6

@ @ dim (M(/—lo)(x)) Tig,,» @(7), by Lemma (5.7).

[APW

B

223
References

] Andersen, H. H.; Polo, P.; and Wen, K.: Representations of quantum
algebras. Invent. Math. 104, 1-59 (1991).

] Ballard, J. W.: Injective modules for restricted enveloping algebras.
Math. Z. 163, 57-63 (1978).

] Borel, A.: Linear representations of semi-simple algebraic groups.
Proc. of Symp. in Pure Math. vol. 29, 421-440 (1975).

| Bernshtein, I. N.; Gel’fand, I. M.; and Gel'fand, S. I.: Category of
g-modules. Functional Anal. Appl. 10, 87-92 (1976).

] Cartan, H. and Eilenberg, S.: “Homological Algebra”. Princeton
Univ. Press, Princeton, N. J., (1956).

] Curtis C. W. and Reiner, I.: “Representation the.ory of finite groups
and associative algebras”. Interscience Publishers (1962).

] DeConcini, C. and Kac, V. G.: Representations of quantum groups
at roots of 1. In:“ Operator Algebras, Unitary Representations, En-
veloping Algebras, and Invariant Theory” (ed. by A. Connes et. al.),
Progr. Math. 92, 471-506 (1990).

| Garland, H. and Lepowsky, J.: Lie-algebra homology ahd the Macdonalc
Kac formulas. Invent. Math. 34, 37-76 (1976).

] Humphreys, J. E.: Modular representations of classical Lie algebras
and semi-simple groups. J. of Algebra 19, 51-79 (1971).

| Humphreys, J. E.: “Ordinary and modular representations of Cheval-
ley groups ”. Lecture Notes in Mathematics vol. 528, Springer- Verlag,
(1976).

| Humphreys, J.E.: Symmetry for finite dimensional Hopf algebras.
Proc. of AMS 68, 143-146 (1978).



224

[J

(L1

(L2

(L3

(L4

[LS

[LSw

] Jantzen, J. C.: Uber darstellungen hoherer Frobenius-kerne halbein-
facher algebraischer gruppen. Math. Z. 164, 271-292 (1979).

] Lusztig, G.: Quantum deformations of certain simple modules over
enveloping algebras. Adv. in Maths. 70, 237-249 (1988).

| Lusztig, G.: Modular representations and quantum groups. In:
“Classical groups and related topics”, Contemp. Math. 82, 59-77
(1989).

] Lusztig, G.: Finite dimensional Hopf algebras arising from quantized
universal enveloping algebras. J. Amer. Math. Soc. 3, 257-296 (1990).

| Lusztig, G.: Quantum groups at roots of 1. Geometriae Dedicata 35,
89-113 (1990).

] Levendorskii, S. Z. and Soibelman, Ya. S.: Some applications of
quantum Weyl group I. J. Geom. and Phys. 7(4), 1-14 (1991).

] Larson, R. G. and Sweedler, M. E.: An associative orthogonal bilinear
form for Hopf algebras. Amer. J. of Maths. 91, 75-94 (1969).

] Nesbitt, C.: On the regular representations of algebras. Annals of
Maths. 39, 634-658 (1938).

] Schue, J*R.: Symmetry for the enveloping algebra of a restricted Lie
algebra. Proc. of AMS 16, 1123-1124 (1965). ‘

| Sweedler, M. E.: “Hopf algebras”. W. A. Benjamin, Inc., New York
(1969).

| Verma, D. N.: The role of affine Weyl groups in the representation
theory of algebraic Chevalley groups and their Lie algebras. In:“Lie
groups and their representations” (ed. by I. M. Gel’fand), Summer
School of the Bolyai J4nos Math. Soc., Halsted Press, New York, pp.
653-705 (1975).




