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INTRODUCTION

Let § be a finite dimensional simple Lie algebra over C and let
g = Aff(§) be the affine Lie algebra bidually associated to § (cf. Defini-
tion 2.1). Let 4 be the dual Coxeter number of g (cf. Section 1.1), and let
/=1 be any integer. Lusztig made a conjecture determining the decomposi-
tion (in an appropriate Grothendieck group) of irreducible highest weight
modules of g of level —/—h (where the level is the scalar by which the
canonical central element c e g acts) in terms of the Verma modules of the
same level, which involves the value of the KL-polynomials for the
affine Weyl group W at 1 (cf. Conjecture 2.7). (Actually Lusztig explicitly
wrote down this conjecture only for the case when g is simply-laced, in
which case g is nothing but the affine Lie algebra L(§); cf. Section 1.2.)
The aim of this paper is to show that the celebrated Kazhdan-Lusztig con-
jecture (which determines the decomposition of the irreducible module
L{—wp — p) in terms of the Verma modules M(—uvp — p)) for the affine Lie
algebra g implies the validity of Lusztig’s conjecture for every /=1 (cf.
Theorem 2.10). Of course the KL-conjecture is known in the finite case due
to Beilinson—Bernstein and Brylinski~Kashiwara. Recently, L. Casian [C]
has claimed to prove the KL-conjecture (for L{(—wp—p)) in the affine
case. Our work does not rely on Casian’s work in any manner and would
supplement his (or similar) results to establish the full Lusztig’s conjecture
concerning the negative level representations of affine Lie algebras.

The main ingredient in our proof is an extension of Jantzen’s translation
functor for the negative level representations of the affine Lie algebra g,
developed in Section 1 of this paper. This functor is obtained by tensoring
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a negative level representation of g with an integrable highest weight
(irreducible) g-module and then projecting onto a component of certain
specific type. This extension crucially relies on an earlier work of the author
[Ku], concerning a vanishing result for the Ext functor corresponding to
the negative level representations of g. Recall that the Jantzen’s translation
functor is studied in [DGK], for the positive level representations.

1. JANTZEN’S TRANSLATION FUNCTOR FOR
NEGATIVE LEVEL REPRESENTATIONS

(1.1) Notation. We follow the notation as in [K, Chap. 6].

Let g=g(A) be the affine (possibly twisted affine) Kac-Moody Lie
algebra over C, associated to a generalized Cartan matrix 4= (a,)o<; ;<n
of affine type. Let h=b be the standard Cartan subalgebra, and the
standard Borel subalgebra of g (respectively). Observe that dimg h=n+ 2.
Let m={ag,.,a,}<h* be the set of simple roots (for b), and
n¥={a,... 2, }ch the set of simple coroots. We denote by QO
(resp. 0¥) the root lattice Y.7_,Za,<h* (resp. the coroot lattice

"_o Za; < bh). We define

h¥={iebh*: A, )eZ, for all 0<ign}.

The Weyl group of g is denoted by W. It is a Coxeter group with simple
reflections {sq, ..., 5,} as generators, where s, is the reflection corresponding
to the simple root o, (ie., 5,4 : =4 — A" ) o, for all 1eh*).

We fix an element deb satisfying o,(d)=0 for 1 <i<n, and ay(d)=1.
Then

h=@ Ca;” ®Cd.

i=0

The centre of g is one dimensional and is spanned by the canonical
central element
"
ci=ay + ), a’a).

i=1

We also define the imaginary root
n
d:=3 au,€Q;
i=0

where a; (resp. a;” ) are the “labels” of the Dynkin diagram of 4 (resp. the
Dynkin diagram of the dual generalized Cartan matrix 4°) (cf. [K, tables
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in Chap.4]). The number g: =37 ,a, (resp. the number #h:=
1+37 ,a;) is called the Coxeter number of g (resp. the dual Coxeter
number of g).

We fix an element p e h* satisfying p(«,” ) =1, for all 0 < i< n, and define
the shifted action of W on h* by

wx A=w(l+p)—p, forany we W and Aebh*. (1,)

Observe that the action * does not depend upon the choice of p. Clearly
p(c)=h.

(1.2) Untwisted Affine Algebras. To any finite dimensional simple Lie
algebra §, there is associated the (untwisted) affine Kac—Moody Lie algebra
a=L(§) =3d®,C[t,17']®Cc® Cd (the Lie bracket structure in L(§) is
defined in [K, Chap.7]), and this way we get all the untwisted affine
Kac-Moody Lie algebras. The twisted ones are got from the untwisted
ones by taking the fixed points of a finite order automorphism of g coming
from the Dynkin automorphisms of the corresponding §. For L(§) the
numbers a,s are given by

a,=1, and Y a,a,is the highest root for §. 1,)

i=1

(1.3) Verma Modules and the Relation ~. Let g, b be as in Section 1.1.
For any 4eb*, we denote by M(4) the Verma module with highest weight
A, and L(A) is its irreducible quotient.

For any g-module M, we say that L(4) is a constituent of M if L(A) is
a subquotient of M.

For any A, pebh*, we call Axpu if L(4) is a constituent of M(u), and
denote by ~ the equivalence relation generated by =.

Define a hyperplane H of h* by H= {Aeh*: (A + p)(c)=0}, where p, c
are as in Section 1.1. Then, as can be easily seen, H= (3.7_, Ca;) —p.

The following resuit will play a very crucial role in this paper.

(1.4) Tueorem [Ku, Coro. 1.8 and Prop. 1.10]. Take any Ae K=
K*# :=h*\H. Then any u~ 1 belongs to K. In fact ue W= A, where
* [s the shifted action as in Section 1.1. Conversely, for any iebh3nK
(¢f. Section 1.1) and any we W, wx A~ Ai. More generally, for any L€ K,
p~2Aifand only if ue W(A) x A, where W(41) is as defined in [ Ku, Coro. 1.8].

(1.5) Decomposition of the Category ¢. Let us begin by recalling the
definition of the BGG category €, say from [DGK, Sect. 3]. The objects
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of this category are all those g-modules M, which satisfy the following
conditions:

(1) The module M is h-semisimple, with finite dimensional weight
spaces.

(2) There exist finitely many elements y,, ..., 4, € b*, such that any
weight u of M belongs to some D(u;), where

D(p;) :==p;— Z Z%ay,

where Z* :={0, 1,2, ..}

The morphisms in ¢ are, by definition, all the g-module homo-
morphisms.

It is easy to see that for M, M,e O, their tensor product M, ® M, is
again in the category €.

For any equivalence class (w.rt. ~) A<bh* by ¢, we mean the full
subcategory of ¢ consisting of all the modules Me ¢ such that every
constituent of M has highest weighte A.

By [DGK, Thm. 4.2], any M € (¢ admits a decomposition

Mz((—B M/\>®N, (1,)
A

where the sum runs over all the equivalence classes A of K (under ~ ), the
submodule M , € ¢, , and all the constituents of N have highest weights e
(cf. Theorem 1.4).

(1.6) Translation Functor. Fix a dominant integral weight 8 ebh* (ie.,
O(ay)eZ*, for all 0<i<n) and let L(8) be the corresponding irreducible
g-module (which is known to be integrable, ie., the g-action “exponen-
tiates” to give an action of the corresponding affine Kac—Moody group).

For any Ae K such that A+ 60¢ K, we define the translation functor
(extension of Jantzen’s translation functor)

T=T(40):Cpiiy= Cpii oy by T(M)=[M®L(0)] i, 0y

where A(4) denotes the equivalence class of 4, and [ ],,,, denotes the
A(4 + 0)-th component as guaranteed by (I;). (For AeTit’s cone, the
functor T was defined in [DGK].)

Define the subset D _ < h* by

D_={jieb¥: Aa’)< -1 forall0<i<gn, and

moreover A(a;” ) < — 1, for at least one 7}.
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Observe that any 2 such that A+ @€ D_ has the property that 4 and
4+ 8 both belong to K.
For any Zeb* define the stabilizer W,={we W:wi=4}.

(1.7) PrROPOSITION. Fix a dominant integral weight 8. Then

(@) T=T(4,0). O\~ Onui, 0 is an exact functor for any i€ K such
that A+60€eKk.

(b) For any Aeb* such that A+ 6e D_ and any we W, the following
is satisfied:

(b,) T(M(w=*21))=M(w=(A+0)),
(by) T(L(w=* A))=L(wx* (L+8)), if wis the shortest element in the
coset wW, .4, ,, and

(by) Assume that —(2p+ 1) is dominant (integral). Then
T(L(w+ 4))=0, if w is not the shortest element in the coset wW, 4, ,.

(1.8) Remark. Observe thatfor A+8eD _, W, , ., is the subgroup of
W generated by the simple reflections it contains (see [K, Prop. 3.12]).

(1.9) Proof (of Proposition 1.7). (a) is clear because of (I;).

Proof of (b,). Let feb* be such that the ffth weight space of L(8) is
non-zero. We claim that wx 2+ e W« (1 +8) if and only if f=w8. (In
particular the fth weight space is one dimensional.):

Write w* A+ B=v#* (A+8),forsomeve W.Thenv 'w(i+p)—(Ai+p)=
0—v '8, ie (putting A+p=—p), u—0=v""w(p—0+0—w"'B), which
gives

lu—012=lu—012 + 10 —w "BI*+2 {u—6,0—w "B ()

By assumption u — 0 is dominant and is non-zero and of course # —w !B e

Q" =X"_,Z%x,, hence {u—0,0—w 'B>>0. Further the Killing form

{, > restricted to Y 7_,Ra; is positive semi-definite, and moreover

{B,B>=0,for fe3’_,Ra, if and only if fe RS (see [K, Section 6.2]). In

particular, for (*) to hold, we should have 0—w 'BecR3. But since

{pu—48,6>>0, (x) is possible only if § =w ~'f. This establishes the claim.
Now (b,) follows from [DGK, Lemma 5.8].

Proof of (b,). By an argument identical to [DGK, p. 113, (b)], we
conclude that T(L(w=#4)) is either O or else is isomorphic with
L(w* (A4 8)). So we need only show that T(L(w % 4))#0:

Observe that M(w * 4) is a module of finite length, since Ae D_. In the
Grothendieck group of U{g)-modules, write

M(w* )= (Z n:L(v * ).)) + L{wx4), forsome n.eZ*, (I,)
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where the sum runs over those elements /=vmod W,, ,e W/W, ., such
that

wxAi—vxAle Q"' and is non-zero. (Is)
By the (a) and (b,) parts of this proposition, we get by applying 7 to (1,),

M(w * (A+0)) =3 n; T(L(v * 4)) + T(L(w * 4)). (I6)

But if non-zero, T(L(v * 4))= L(v * (A + 6}), for any ve W. In particular, if
T(L(w=*A4))=0, we get that wx (A+60)=v=*(41+0), for some ve W
satisfying (I5). But since w is the shortest element in the coset wl; .4, ,
(by assumption), v=w. But then v* A—wx1e Q" (since ieD _). This
contradicts (I5), thereby proving that T(L(w * A}) = L{w * (4 + 0)).

Proof of (b;). By assumption W, ,=(e). Write

M(w*i):(z nL,L(v*/l)>+L(w*/l), forsome n,eZ*. (1,)

U ow

Let w, be the shortest element in the coset wW, .4, ,. Then, of course, w

admits a reduced decomposition w;-s, for some se W, o, ,. Write

s=s; -5, as a reduced decomposition, where s,’s are simple reflections

contained in W,,,,, (see Remark 1.8). It is easy to see that there is an

embedding M((w,s; ---5,)* Ay M((w,s; ---5, )+ 4) for all 0<j<k. In

particular, L(w, = 4) is a constituent of M(w * 1), ie, n,, #0 in (I,).
Applying the functor T to (I,), we get

Mw=x(A+0)= Y n,T(L(v*1)+n,, T(L(w, * 2))+ T(L(w * 1)),

vFE W, W
ie.,

M(wx (A+0)= 3 n,T(L(v* 1))

PFE W W
+n,, L(wy % (A+60))+ T(L(w * 1)), (Ty)

by (b,)—part of the proposition. But since the multiplicity of
Liwx*(A+60)) in M(w=x(A+8)) is exactlyl and T(L(w = 4)) is either
L(wx(A+8)) or 0, we are forced to have T(L(w = 4))=0 (by lg). This
proves the proposition. ||
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(1.10) COROLLARY. For any Ae D_, and v, we W such that v is the
shortest element in its coset vW , ,, we have

[M(w * 4), L(v x 2)] = [M(w * (=2p)), L(v * (—2p))),

where [ , ] denotes the multiplicity.

Proof. For any 0<i<n, let p, denote (any) fundamental weight
defined by p,(«; )=, ;, for any 0<j<n For a subset S< {0, .., n}, let
Ps =2icsPi-

First take 6=-1—p—ps, where S:={0<i<n: Mz )< -1}
Clearly 6 is dominant and moreover W, , ,= W, ,,,. So, by the above
proposition, we get

[(M(wx 4), L(v* A)] = [M(wx (—p—ps)), Llvx (—p—ps))]. (Io)

Further we write M(w * (—2p))=>, n,L(u* (—2p}), for some n,eZ™,
and apply the functor 7(—2p,0) for 0:=3, ,  ,spP:- Then, by the
above proposition, M(w+* (—p—pg))=Y. n,L(u* (—p—pgs)), where the
sum runs over only the shortest coset representatives in W/W, . This, in
particular, gives

[M(wx (—p—ps)), Lo * (—p—ps))]
=n,= [M(wx (=2p)), L(v * (—2p))], (L)

since, by assumption, v is the shortest element in its coset v, , and
W.sp=W,, Combining (Iy) and (I,,), we get the corollary. |

A+ p

(1.11) Remark. An appropriate analogue of Proposition (1.7) for 4 not
necessarily integral can easily be proved. But we do not need it.

2. REpucTioN OF LuszTiG’s CONJECTURE TO KL-CONJECTURE

(2.1) DerFiNITION. Let § be a finite dimensional simple Lie algebra over
C, and let §¥ be the (simple) Lie algebra corresponding to the dual root
system. Consider the corresponding (untwisted) affine Kac—-Moody Lie
algebra L(§") (cf Section 1.2) with generalized Cartan matrix 4, and
let g:=(L(§"))" be the affine Kac-Moody Lie algebra associated to
the generalized Cartan matrix 4’ (where A4’ is the transpose of A4). We
tentatively call the affine Kac-Moody Lie algebra g to be bidually associated
to § and denote this g by Aff"\(§). By [K, Chap. 4], class of such g is
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precisely (in the notation of loc. cit.) 4" (/=1), D'V (I=4), E\", E",
EQM, A4S  (123), D, (1=2), EY, and D).

From now on, we fix once and for all cuch a g=Aff"\8) and follow the
notation as in Section 1.1.

Define the following spaces:

e
*

I
™M=

@)
R

N
=
..*

o
D%
I
=]
R
n
=
\'*

and

—

>

e
R

<
n

Ny

—

o
|
M= I s (1= 0
o
R
<
n
b

o=
=
Il

Then we have orthogonal direct sum decompositions (with respect to the
Killing form) (cf. [K, Chap. 6]):

b= IO)G—) (Cc® Cd), where ¢, d are as in Section 1.1, and
h*=h*@® (CS@CA,),  where d is as in Section 1.1,

and A,eb* is defined as Ay(a,” ) =46, ;, for 0<i<<n, and A4(d)=0.

Observe that (by [K, Chap 61) o,(Cc+Cd)=0, for all 1 <i<n, and
hence I)* is canonlcally identified with Homc(b C).

Define R = R h*, where R is the set of all the roots of g. Then R is the
root system for the Lie algebra §. Let W be the subgroup of the Weyl
group W (of g) generated by the simple reflections {s, ..., 5,,} (cf. Sect. 1. 1).
Then W is isomorphic with the Weyl group of §. Set Q > Za; cb*
Then W keeps Q  h* stable. In particular, we can form the semi- dlrect
product W & Q.

We recall the following lemma from [K, Prop. 6.5]:

(2.2) LEMMA. There is a canonical isomorphism W= W X Q.

In particular, since W & O acts on O (or b ) by affine transformations,
we get an affine action of W on b*

(2.3) Fundamental Alcove. Let 8 be the highest short root (i.e., highest
among the short roots) of 3, and hence 8" is the highest coroot for the
root system of §. Write

OVZZ m;a. I,
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Then, by [K, Section 6.4], the number 1+ 3 7_, m; is nothing but the dual
Coxeter number 4 of g (cf. Section 1.1).
Fix an integer /> 1. As in [L, Sect. 2.4], define

A,={xef)§:x(a,")< —1,forall1 <i<n,and Y my(a))> —l—h-}—l}.

i=1

We also define
A(Z)={y€ed,;: y(a)eZ forall 1 <i<n}.

Consider the group embedding ¢, Wa WX Q — W, defined by
@ w, q)=(w, —Ig), for we W and ge . Recall the definition of the

representation j,: W — Aff E, where E := Eo)ﬁ,;, from [L, Sect.2.4]. Then we
have the following:

(2.4) Lemma. For any we W, yeE, and 1 2 1
Jiw) x=e@w) ¥y,

where (for any ve W and ye E) v* y:=v(x+9)—p, p€E is defined by
play)=1 for all 1 <i<n, and v(y+ p) denotes the action of W on E as
given in Lemma (2.2).

Proof. The linear part of the affine map ¢,(w)*: E— E clearly pre-
serves the Killing form. So it suffices to show that the fixed hyperplane F,
of j,(s,) is the same as the fixed hyperplane F, of ¢,(s;) %, for all the simple
reflections s, (0 <i<n):

For 1 <i<n, F,={xeb: x+p(x;) =0},

and by [K, Sect. 6.4 and 6.6], Fy= {xef}ﬁ,‘;: 1+p07)=~1},

where 6 is the highest coroot as in Section 2.3. But
X+POY)=h—1+ 3 my(ay),  by(Iy)

i=1

But then F,(0<i<n), by definition, is the same as F,. This proves the
lemma. ||

For any integer /> 1 and y e §*, define 6,(x) e (h*)*, where b' :=h @ Cc,
as follows:

0,(x) ) )=xlay), foralll<i<n, and  6,(x)(c)=—I-kh
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Observe that by [K, Section 6.4] and (I,,),

c=ay + Y ma, where m;’s are as in (I,,). 1,5)

(2.5) LemMma. For any xe[o)ﬁ, weW, and [ 2 1,
0,((p,w) * x)=w=0,(x), as elements of (h')*, (I,3)

where % is as in Lemma (2.4), and the action of w x on b* (as given in 1,)
gives rise to an action on (h')*.

Proof. Both the sides of (I,;) take the same value on ¢ (see
[K, Identity 6.2.5 on p. 821]), so it suffices to show that they take the same
value on f):

If we W, it is clearly true. So take ae Q (cf. Lemma 2.2), and consider
the translation w=1¢, by a«. Then

left side = y— I, whereas
right side ; = [7,(0,(x) + p) — P13

=[0,(0)+ <0, (x)+p,c)al, by [K, Identity 6.5.2, p. 87]
=yx+t(—I—h+h)a, by (I,,)
=y—ln |

For any integer /> 1, and affine Kac-Moody Lie algebra g, define

H/={ie(®")*:{la) yisrealand < — 1, forall0<i<n,
and moreover A(¢)= —I1—h}, and

H/(Z)={ieH,: {4, a))eZ foral0<i<n}.

We have the following simple

(2.6) LEMMA. For any [ =1,
0,(4,)=H,, and moreover 6,(4,(Z))=H,Z),

where A,, 4,(Z) are as in Section 2.3.
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Proof. By definition

0,(x)c)=—1—h 1ie,by(l;),

9,(x)<a3’ + Z m,-(x,.v)= —I—h

i=1

Hence

0,(x)og )=—1—h—3 myla; )< —I—h+I+h—1, for yed, |

i=1

Let us recall the following conjecture due to Lusztig [L, Conjecture 2.5
(c)]. (Actually he wrote down the conjecture only for simply-laced §, in
which case g as below is nothing but L(§d), cf. Section 1.2.)

(2.7) Conjecture. Let § be any finite dimensional simple Lie algebra,
and let g:= Aff\§) (cf. Section 2.1). Fix an integer /> 1. Then for any
xed,(Z) (cf. Section2.3), and we W (where W is the Weyl group
associated to g)

LO,(i(w)-x) = 3 (=1)@p, (1) M(8,3ji(v)- %))
in the Grothendieck group of U(g')-modules, where g' is the commutator
subalgebra [g,ag], 0, (resp. j,) is as in Section 2.4 (resp. Section 2.3),
M() (resp. L()) is the Verma module (resp. irreducible quotient) as in
Section 1.3, w’ is the (unique) shortest element € W satisfying j,(w') - x =
Ji(w)-x, and P, . of course is the Kazhdan-Lusztig polynomial for the
Coxeter group W.

Combining Lemmas 2.4-2.6, we get the following equivalent reformula-
tion of the above conjecture:

(2.8) PROPOSITION. Let the notation and assumptions be as in the above
conjecture (2.7). Then its (Conjecture 2.7) validity is equivalent to the validity
of the following statement:

For any Ae H(Z) and we W

Liwxi)= 3 (=10 P, (1) M(v = 4), (I4)

in the Grothendieck group of U(g')-modules, where H/(Z) is as defined in
Section 2.5, w' is the (unique) shortest element € W satisfying w' x A=w % 4,
and * is the action as in Lemma (2.5).
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Let us recall the following celebrated conjecture due to Kazhdan-Lusztig
[KL, Conjecture 1.5]. It was originally conjectured for the finite case,
and of course proved independently by Beilinson-Bernstein and
Brylinski-Kashiwara. The following is its direct extension to the affine
Kac-Moody case, claimed to have been proved recently by Casian
[C, Thm. 17]. It may be mentioned that the corresponding conjecture (cf.
[DGK, Conjecture 5.16]) for L(wp — p) has been proved independently by
Casian and Kashiwara—Tanisaki.

(2.9) KL-Conjecture for the Affine Algebras. Let g be any affine
(including twisted affine) Kac—-Moody Lie algebra. Then for any we W
(where W is the Weyl group associated to g)

L(_WP_P)= Z (_I)I(U)-*I(W)Pv.w(l)M(_vp_p)’

in the Grothendieck group of U(g)-modules.

Finally we come to the following main result of this paper:

(2.10) THEOREM. Let g := Aff "\(§) be the affine Kac—-Moody Lie algebra
as in Conjecture (2.7). Then the validity of the KL-conjecture (2.9) for g
implies the validity of Lusztig’s conjecture (2.7) for g.

Proof. In view of Proposition (2.8), it suffices to show that the validity
of (2.9) for g implies the validity of (I,,):

Fix any Ae H,(Z) and we W, and arbitrarily extend 4 to eh*. Define
asubset Sc{0,1,..,n} by S={i:i(x;")< —1}, and take 0= —A—p —pg
(cf. proof of Corollary 1.10). Then 8 is clearly dominant integral and,
moreover, the isotropy

W1+p:W1+H+p- (Is)
By Conjecture (2.9), write

Lw *(=2p))= ) (1) P, (1) M(v*(—2p)), (Lis)

v<w

where w' is the shortest element in wh/; .
Applying the translation functor 7(—2p, p —ps) to (I,4) and using
Proposition (1.7), we get

Lw *(—p—ps)= 3, (=D P, (1) Mv*(—p—ps)). (I,7)

rEw
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Write
Liw i)=Y  n:M([@x2), for some n,eZ. Ig)

de WiWi,

Applying the functor T(4, 0= —A—p —py) to (I,5), we get (by Proposi-
tion 1.7),

Lw *(—p—ps))= Z n:M(* (—p—ps)) (use I;5). (L)

fe WiWi,,

Comparing I,,-1,, together with 1,5 (and then considering the g-modules
involved, just as g'-modules) proves the theorem. (Observe that W, =
{(weW:w(i+pgn)=4i+p,,}, as the right hand subgroup of W is
also generated by the simple reflections it contains, cf. [K, Proof of
Proposition 3.127.) |}

Remark. This is a slightly revised version of the preprint, distributed in
May 1990, with the title “Proof of Lusztig’s Conjecture Concerning
Negative Level Representations of Affine Lie Algebras.”
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