Finiteness of local fundamental groups for quotients of affine varieties under reductive groups

Shrawan Kumar

0. Introduction

Let us recall the following conjecture due to C. T. C. Wall:

(C₁) CONJECTURE [W; §1]. Let G be a reductive linear algebraic group $/\mathbb{C}$ acting linearly on an affine space \mathbb{C}^n . Assume that dim $\mathbb{C}^n//G = 2$ (cf. §1). Then the variety $\mathbb{C}^n//G$ is biregular isomorphic with the variety \mathbb{C}^2/Γ , where Γ is some finite group acting linearly on \mathbb{C}^2 .

In our attempt to prove the above conjecture, we (together with R. V. Gurjar) were led to the following question (or conjecture) vastly generalizing the above conjecture:

 (C_2) CONJECTURE. Let G be as above, and assume that G acts on an irreducible normal affine variety X over \mathbb{C} . If the local fundamental groups (cf. §1.2) of X at all the points of X are finite, then the same is true for the quotient variety X/|G, provided dim $X/|G \ge 2$.

Recently Gurjar obtained a proof of the above conjecture (C_2) in the case when X is smooth; in particular he proved Wall's conjecture (C_1) . But his proof relies heavily on the assumption that X is smooth.

The aim of this note is to prove the conjecture (C_2) ; but we need to assume that all the local rings of X have fully-torsion divisor class groups. (In fact a more general result is proved; see our theorem 2.1, and remark 2.2.)

The 'Kempf-Ness theory', as developed by Neeman, is the main ingredient in our proof. We also make use of the Luna slice theorem.

I thank R. V. Gurjar for explaining to me his proof of Wall's conjecture, in particular I make use of his crucial proposition from [G]. I also thank J. N. Damon and J. Wahl for some references, and the Referee for his (her) suggestions to improve the exposition.

1. Notation and preliminaries

By a variety X we shall always mean an algebraic variety $/\mathbb{C}$, and its ring of regular functions is denoted by $\mathbb{C}[X]$. We denote the singular locus of X by Σ_X . Let X be an affine variety on which a reductive linear algebraic group G/\mathbb{C} acts, then by X//G we mean the affine variety Spec $(\mathbb{C}[X]^G)$, where $\mathbb{C}[X]^G$ denotes the ring of G-invariants in $\mathbb{C}[X]$.

Let us recall the following well known fact about CW complexes (see, e.g., arguments in [LW; Chapter II, Sec. 6]):

(1.1) LEMMA. Let X be a CW complex, and $Y \subseteq X$ a (closed) subcomplex. For any $x \in X$, there exists a fundamental system $\{U\}_{U \in \mathscr{U}}$ of (open) neighborhoods of x in X satisfying the following condition:

Given any
$$U, V \in \mathcal{U}, V \subset U$$
, the inclusion $V \setminus Y_x \hookrightarrow U \setminus Y_x$ is a homotopy equivalence, where $Y_x := \{x\} \cup Y$.

Now for any neighborhood $W \subset U$ of x ($U \in \mathcal{U}$, but W not necessarily in \mathcal{U}), there of course exists a V in \mathcal{U} such that $V \subset W$. From the condition (\mathscr{A}), we easily see that, for any $* \in V \setminus Y_x$, the canonical map

$$\pi_1(W \setminus Y_x, *) \to \pi_1(U \setminus Y_x, *)$$
 is surjective. (4)

(1.2) DEFINITION. With the notation as in the above lemma, let us further assume that $U \setminus Y_x$ (for some, and hence any $U \in \mathcal{U}$) is connected and non-empty. If this is satisfied, we say that Y does not disconnect X locally at x. In this case, we define the local fundamental group of X at x with respect to Y, denoted $\pi_1^{x,Y}(X)$, as the fundamental group $\pi_1(U \setminus Y_x, *)$, for any base point $* \in U \setminus Y_x$ and any $U \in \mathcal{U}$.

Observe that, by the condition (A), for any $V \in \mathcal{U}$ and $*' \in V \setminus Y_x$, $\pi_1(U \setminus Y_x, *)$ is isomorphic with $\pi_1(V \setminus Y_x, *')$, and moreover the isomorphism is unique up to an inner automorphism of $\pi_1(U \setminus Y_x, *)$. In particular, the group $\pi_1^{x,Y}(X)$ is defined only up to an inner automorphism. It is easy to see from (I) that $\pi_1^{x,Y}(X)$ does not depend upon the choice of the fundamental system of neighborhods \mathcal{U} satisfying (A).

As is well known, for any variety X and a closed subvariety Y, X is a CW complex such that $Y \subset X$ is a subcomplex (see [Gi; §5, Satz 4] or [Lo]). Moreover if X is an irreducible normal variety, then for any closed subvariety $Y \subseteq X$, Y does not disconnect X locally at any $x \in X$. (This can easily be deduced from [M; page 288, Topological form].) In particular $\pi_1^{x,Y}(X)$ is well defined.

If X is an irreducible normal variety, we will often abbreviate $\pi_1^{x,\Sigma_X}(X)$ as $\pi_1^x(X)$; and call it the *local fundamental group of X at x*.

2. The main theorem and its proof

Following is our main theorem:

(2.1) THEOREM. Let X be an irreducible normal affine variety, on which a (not necessarily connected) reductive linear algebraic group G/\mathbb{C} acts with quotient $q: X \to X//G$, such that dim $X//G \ge 2$. We assume that the following condition (\mathscr{C}) is satisfied:

The union of the codimension-one irreducible components of
$$q^{-1}(\Sigma_{X/|G})$$
 is locally (in the Zariski topology) set theoretically defined by a single equation. (C)

Assume, in addition, that the local fundamental groups of X at all the points in X are finite. Then the same is true for X/|G (i.e. the local fundamental groups of X/|G at all the points are finite).

- (2.2) REMARKS. (a) If all the irreducible components of $q^{-1}(\Sigma_{X//G})$ have codim ≥ 2 , then of course the condition (\mathscr{C}) is vacuously satisfied.
- (b) As pointed out by Gurjar; if all the local rings of the variety X (at the closed points) have fully-torsion divisor class groups, then the condition (\mathscr{C}) is automatically satisfied for any G action on X.

If X (as in the above theorem) is assumed to be smooth, then all the hypotheses are clearly satisfied. In particular, as a special case of the above theorem, we recover the following main result of [G]:

- (2.3) COROLLARY. Let X be an irreducible smooth affine variety, on which a reductive linear algebraic group G acts, such that dim $X//G \ge 2$. Then X//G has all its local fundamental groups finite.
- (2.4) Proof of Theorem (2.1). Set Y = X//G, and write $q^{-1}(\Sigma_Y) = D \cup E$; where D (resp. E) is the union of all the irreducible components of $q^{-1}(\Sigma_Y)$ of codim 1 (resp. codim > 1). Then, by the condition (\mathscr{C}), $X \setminus D$ is again an affine variety (cf. [N; Corollary 1 on page 52, Chapter V]), and clearly (D being G-stable) $X \setminus D$ is G-stable. Now, by a proposition of Gurjar [G], $(X \setminus D)//G$ is biregular isomorphic with X//G. (To prove this, use the fact that the canonical morphism:

 $(X\backslash D)//G \to X//G$ is an isomorphism outside the singular locus and, by assumption X being normal, $(X\backslash D)//G$ as well as X//G are normal.) In particular, we can (and will) replace X by $X\backslash D$ throughout the proof of the theorem; and hence assume that all the irreducible components of $q^{-1}(\Sigma_Y)$ have codim ≥ 2 .

If $\bar{x} \in Y \setminus \Sigma_Y$, $\pi_1^{\bar{x}}(Y)$ is clearly trivial (since dim $Y \ge 2$, by assumption). Hence, in what follows, we can assume that $\bar{x} \in \Sigma_Y$.

We first take a G-fixed point $x \in X$ (such that $\bar{x} := q(x) \in \Sigma_Y$), and prove that $\pi_1^{\bar{x}}(Y)$ is finite by crucially using the Kempf-Ness theory:

We fix a maximal compact subgroup $K \subset G$. Then there is a real algebraic K-stable closed subvariety X_c of X and, by Neeman's deformation theorem [Ne] (also given in [S; §5]), a continuous deformation $\varphi_t: X \to X$ $(0 \le t \le 1)$ satisfying the following properties $(P_1) - (P_6)$:

- (P_1) X_c is contained in the union of all the closed G-orbits of X, and moreover any closed G-orbit intersects X_c in precisely one K-orbit.
- (P_2) The canonical map: $X_c/K \rightarrow X//G$ is a homeomorphism in the Hausdorff topology, where X_c/K denotes the orbit space with the quotient topology coming from the Hausdorff topology on X_c .
- (P_3) φ_0 is the identity map Id.
- (P_4) $\varphi_{t \mid X_c} = Id$, for all $0 \le t \le 1$.
- (P_5) Image $\varphi_1 \subset X_c$.
- (P_6) $\{\varphi_t(x)\}_{0 \le t < 1} \subset G \cdot x$, for any $x \in X$. In particular $\varphi_1(x) \in \overline{G \cdot x} \cap X_c$, where $\overline{G \cdot x}$ is the closure in the Hausdorff topology.

Continuing with the proof of our theorem (2.1); from the property (P_6) , it is easy to see that $\varphi_t(X \setminus \Sigma) \subset X \setminus \Sigma$, for any $0 \le t \le 1$, where we set $\Sigma := q^{-1}(\Sigma_Y)$. (Even though we do not need, the same is true for any subset $A \subset Y$ instead of Σ_Y .) Further, by the property (P_1) , (x being G-fixed) $x \in X_c$, and by assumption $x \in \Sigma$.

Let W be a (small enough) neighborhood of x in X_c , such that $\pi_1^{x,X_c \cap \Sigma}(X_c) \approx \pi_1(W \setminus \Sigma)$. (It is easy to see, from the above deformation, that $X_c \cap \Sigma$ does not disconnect X_c locally at x.) Since $\varphi_1(x) = x$ (cf. P_4), there exists a (small enough) neighborhood U of x in X such that $\varphi_1(U) \subset W$ (in particular $\varphi_1(U \setminus \Sigma) \subset W \setminus \Sigma$), and moreover $\pi_1^{x,\Sigma}(X) \approx \pi_1(U \setminus \Sigma)$. Since $W \cap U$ is a neighborhood of x in X_c and $\varphi_{1_{W \cap U}} = Id$ (cf. P_4), it is easy to see, from (\mathscr{I}) of §1.1, that the induced map

$$\varphi_{1\bullet}:\pi_1^{x,\Sigma}(X)\to\pi_1^{x,X_c\cap\Sigma}(X_c)$$

is surjective (in fact an isomorphism).

Let q_0 denote the canonical map: $X_c \to X_c/K$. By virtue of (P_2) , we identify X_c/K with Y. Let us take a (small enough) neighborhood N of \bar{x} in Y (resp. W of x in

 X_c), such that $\pi_1^{\bar{x}}(Y) \approx \pi_1(N \setminus \Sigma_Y)$ (resp. $\pi_1^{x,X_c} \cap \Sigma(X_c) \approx \pi_1(W \setminus \Sigma)$). We can assume that $q_0(W) \subset N$, and hence $q_0(W \setminus \Sigma) \subset N \setminus \Sigma_Y$. Since x is a G-fixed (in particular K-fixed) point and K is compact, there exists a fundamental system of neighborhoods of x in X_c , which are all K-stable. We take such a $W' \subset W$. (We can choose W' such that $W' \setminus \Sigma$ is connected.) Then by [B; Chap. II, Theorem 6.2], the induced map $\pi_1(W' \setminus \Sigma) \to \pi_1((W'/K) \setminus \Sigma_Y)$ (got by the restriction of q_0) has finite cokernel (bounded by the order of K/K^0 , where K^0 is the identity component of K). But q_0 being an open map, W'/K is again a neighborhood of \bar{x} in Y. Hence, by ($\mathscr S$) of §1.1, the canonical map $\pi_1((W'/K) \setminus \Sigma_Y) \to \pi_1(N \setminus \Sigma_Y)$ is surjective. In particular, the induced map

$$q_{0*}: \pi_1^{x, X_c \cap \Sigma}(X_c) \to \pi_1^{\bar{x}}(Y)$$

has finite cokernel. On composition, we get the map

$$q_{0*} \varphi_{1*} : \pi_1^{x,\Sigma}(X) \to \pi_1^{\bar{x}}(Y),$$

which has finite cokernel. So, to prove the finiteness of $\pi_1^{\bar{x}}(Y)$, it suffices to show that $\pi_1^{x,\Sigma}(X)$ is finite:

Consider the canonical maps α and β as follows:

$$\pi_1^{x,\Sigma}(X) \stackrel{\alpha}{\longleftarrow} \pi_1^{x,\Sigma \cup \Sigma_X}(X) \stackrel{\beta}{\longrightarrow} \pi_1^x(X).$$

Since $X \setminus \Sigma_X$ is smooth and all the irreducible components of Σ are of codim ≥ 2 (by assumption), the map β is an isomorphism. As is well known, the map α is surjective; but we give an argument (told to me by R. R. Simha) for completeness:

Let U be a non-empty connected open subset (in the Hausdorff topology) of an irreducible normal variety X. Since any subvariety $Y \subsetneq X$ does not disconnect X locally at any point (cf. §1.2), $U \setminus Y$ is connected. Let $p: \tilde{U} \to U$ be the simply connected cover of U, viewed canonically as a complex analytic variety. Since \tilde{U} is locally homeomorphic to U, $Z := p^{-1}(U \cap Y)$ does not disconnect \tilde{U} locally at any point of \tilde{U} . But then, by a straightforward pointset topological argument, $\tilde{U} \setminus Z$ itself is connected. From this the surjectivity of $\pi_1(U \setminus Y) \to \pi_1(U)$ follows immediately. This gives the surjectivity of α .

This proves the finiteness of $\pi_1^{x,\mathcal{E}}(X)$ (since, by assumption, $\pi_1^x(X)$ is finite); thereby proving the finiteness of $\pi_1^{\bar{x}}(Y)$, in the case when $G \cdot x = x$.

Now we come to an arbitrary point $\bar{x} \in \Sigma_Y$, and let $G \cdot x$ be the (unique) closed G-orbit lying inside $g^{-1}(\bar{x})$.

By Luna's slice theorem [L; §III], there exists an irreducible affine locally closed subvariety $x \in S \subset X$, which is stable under the reductive subgroup G_x (where

 $G_x \subset G$ is the isotropy subgroup at x), and an affine open subset $N \subset Y$, such that the canonical map $\psi: G \times_{G_x} S \to X$ is étale onto the open subset $q^{-1}(N)$ of X, and moreover the induced map $\bar{\psi}: S//G_x \to X//G$ is étale onto N. So to prove the finiteness of $\pi^{\bar{x}}(X//G) \approx \pi^{\bar{x}}(S//G_x)$, since any descending chain of algebraic subgroups of G becomes stationary, it suffices to show that the G_x -variety S satisfies:

- (F_1) S is normal,
- (F_2) The local fundamental groups of S at all the points of S are finite, and
- (F_3) $q_S: S \to S//G_x$ satisfies the condition (\mathscr{C}) of Theorem (2.1).
- (F_1) follows trivially, since the map ψ is étale and $G \times_{G_x} S$ fibres over the smooth variety G/G_x with fibre S. Since $\Sigma_{G \times_{G_x} S} = G \times_{G_x} \Sigma_S$ and, by assumption, all the local fundamental groups of X are finite, (F_2) follows.

Observe that $(\bar{\psi})^{-1}(\Sigma_{X//G}) = \Sigma_{S//G_x}$ (since $\bar{\psi}$ is étale). So $q_S^{-1}(\Sigma_{S//G_x}) = q^{-1}(\Sigma_{X//G}) \cap S$, which gives

$$G \times_{G_{\mathbf{x}}} (q_{\mathbf{S}}^{-1}(\Sigma_{\mathbf{S}/|G_{\mathbf{x}}})) = \psi^{-1}(q^{-1}(\Sigma_{\mathbf{X}/|G})).$$
 (*)

The equality (*) clearly shows the validity of (F_3) (since the same is true, by assumption, for the map $q: X \to X//G$).

This completes the proof of the theorem.

(2.5) REMARK (due to R. V. Gurjar). The condition (%) in Theorem (2.1) is not always satisfied. Consider, e.g.,

$$X = \text{Spec} \left(\mathbb{C}[x_1, x_2, x_3, x_4] / \langle x_1 x_2 - x_3 x_4 \rangle \right),$$

and $G = \mathbb{C}^*$ acting on X by $t \cdot x_1 = tx_1$, $t \cdot x_2 = t^{-1}x_2$, $t \cdot x_3 = tx_3$, $t \cdot x_4 = t^{-1}x_4$ (for any $t \in \mathbb{C}^*$). Then $\Sigma_{X//\mathbb{C}^*} = \{0\}$, and $q^{-1}(\Sigma_{X//\mathbb{C}^*})$ is the union of two irreducible components (each isomorphic with \mathbb{C}^2); and this does not satisfy the condition (\mathscr{C}). Observe however that in this example, $X//\mathbb{C}^*$ has all its local fundamental groups finite.

REFERENCES

- [B] Bredon, G. E., "Introduction to compact transformation groups," Academic Press, New York (1972).
- [Gi] GIESECKE, B., Simpliziale zerlegung abzählbarer analytischer räume, Math. Z. 83 (1964), 177–213.
- [G] GURJAR, R. V., On a conjecture of C. T. C. Wall, Preprint (1990).
- [Lo] Lojasiewicz, S., Triangulation of semi-analytic sets. Ann. Scuo. Norm. Sup. Pisa 18 (1964), 449-474.
- [L] LUNA, D., Slices étales, Bull. Soc. Math. France 33 (1973), 81-105.

- [LW] LUNDELL, A. T. and WEINGRAM, S., "The topology of CW complexes," Van Nostrand Reinhold Company (1969).
- [M] MUMFORD, D., "The red book of varieties and schemes," Lecture Notes in Mathematics no. 1358, Springer-Verlag (1988).
- [N] NAGATA, M., "Lectures on the fourteenth problem of Hilbert," Tata Institute of Fundamental Research (Bombay) Lecture notes (1965).
- [Ne] NEEMAN, A., The topology of quotient varieties. Annals of Math. 122 (1985), 419-459.
- [S] SCHWARZ, G. W., The topology of algebraic quotients, In: "Topological methods in algebraic transformation groups" (ed. by H. Kraft et al.), Progress in Mathematics Vol. 80, Birkhäuser (1989), 135-151.
- [W] WALL, C. T. C., Functions on quotient singularities, Phil. Trans. Royal Soc. London 324 (1987), 1-45.

School of Mathematics TIFR, Colaba Bombay 400 005, India

and

University of North Carolina Chapel Hill NC 27599-3250, USA

Received November 7, 1990