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'COHOMOLOGY OF QUANTUM GROUPS
AT ROOTS OF UNITY

VICTOR GINZBURG anp SHRAWAN KUMAR

N

0. Introduction. To any Cartan matrix (a;) of finite type of rank r, Drinfeld and
Jimbo have associated a Hopf algebra U over the field Q(v) of rational functions,
with generators E;, F,, K;, K;!;i=1,..., r, subject to the quantum analogues of
Serre relations (see e.g. [L2, §1.1]). Lusztig [L1], [L2] introduced a Z[v, v™*]-form
Uz, analogous to the Kostant Z-form in the classical case, as the Z[v,v7']-
subalgebra of U generated by the elements

EP:= EYnll,, F®:=Fynl,, K&; n>0i=1..,r

(The g-divided powers E™, F™ are defined, e.g, in [L2].) Then U, is a Hopf
subalgebra of U (see [L2, §1.3]). Thus, for any Z[v, v~*]-algebra k, one obtains, by
extension of scalars, a Hopf k-algebra U, := k @, , Uz.

In particular, let £ be a primitive root of unity of odd order / and let k := Q(¢)
be the cyclotomic field, viewed as a Z[v, v™*J-algebra via the specialization v &,
The elements K! (i = 1, ..., r), are then central in U,, and we set

U, := U, /Ideal generated by {K} — 1}.

‘Lusztig further introduced the subalgebra u, = Uy, generated by the elements E;,
F, KE';i=1,...,r, called the restricted enveloping algebra. He showed that u,is a
Hopf subalgebra of U, of dimension / dims where g is the split semisimple Lie algebra
over k associated to the Cartan matrix (ay).

Given an affine algebraic variety V over k, let k[ V] denote the algebra of regular
functions on V. If V is a cone, then there is a natural grading on k[ V] by nonnegative
integers. Let, in particular, &/~ < g be the nilpotent cone, the subvariety of all the
ad-nilpotent elements of g.

In this paper, we compute the cohomology H*(u,, k) of the algebra u, with trivial
coefficients. (See the appendix for the definition of the cohomology of an algebra.)
The following restrictions on 1 (= order of the root of unity) are in force throughout
the paper: lis odd and | > h, and moreover 1 is prime to 3 if g has factors of the type
G,, where h is the Coxeter number of g (see, e.g., [J, Page 262]).

MAIN THEOREM. H°%(u,, k) = 0, and there is a natural graded algebra iso-
morphism '
H(uy, k) = KA1
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180 GINZBURG AND KUMAR

Remarks. (i) The above theorem is a “quantum version” of an earlier result
of Friedlander-Parshall [FP], who computed the cohomology of the restricted
enveloping algebras in finite characteristics.

(ii) After we proved the above result, we were informed by D. Kazhdan and M.
Verbitsky that they obtained the same result in the special case | = prime power
(see [KV]), by reducing it to [FP]. Some partial results towards our theorem have
also been obtained by Parshall-Wang in their recent preprint “Cohomology of
Infinitesimal Quantum Groups L.” '

(iii) There is'a natural g-module structure on each side of the isomorphism of the
above theorem, and the isomorphism is compatible with that structure.

We now describe the contents of the paper in some detail:

In §1 various quantum algebras, with and without divided powers, are introduced.
We make use of an increasing filtration on the Borel part b, of the algebra u,, given
by DeConcini-Kac-Soibelman. The filtration is a quantized version of the standard
increasing filtration on an enveloping algebra, and Gr b, the associated graded
algebra, turns out to be a truncated algebra of skew polynomials [DK].

In §2 we compute the cohomology of b, using a strategy similar to that of [FP].
We first find the cohomology of Gr b, via Koszul duality considerations (see [BGS],
[P1). The cohomology of b, is then computed via a spectral sequence argument. We
find that H*(b;, k) is the symmetric algebra on H 2(bg, k) and that there is a canonical
isomorphism H?(b,, k) ~ n*, where n is the positive part of the Lie algebra g or
rather its “first Frobenius twist™. The latter isomorphism is a certain transgression
map from the cohomology of the “DeConcini-Kac center”.

In §3 an induction technique is used to get the cohomology of u, from the
cohomology of b,. The argument is based on a quantum version of Kempf vanishing,
proved in [APW].

In §4 we define a functor F, assigning to any finite-dimensional U~module M a
finite-dimensional a-module F(M), where a := Z,(n) is the centralizer of the princi-
pal nilpotent n in g. We present a conjecture relating the functor F to the hyper-
cohomology of perverse sheaves on an infinite-dimensional Grassmannian. The
conjecture would imply in particular that, for any simple U,-modules M,, M, in
the same linkage class, there is a natural isomorphism ¢

Extf,(M,, M,) ~ Hom,(F(M,), F(M,)).
In §5 (which is an appendix) we collect various known facts about the cohomology
of algebras.

Acknowledgements. We thank E. Getzler, D. Kazhdan, and B. Tsygan for some
helpful conversations, and S. D. Schack and J. D. Stasheff for some clarifications
and references. We also thank the referee for a useful remark.

1. Preliminaries and notation. Throughout the paper, the ground field is the
cyclotomic field k, and unless otherwise indicated, the tensor products are over k.
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Let g=n* + b +n~ be the triangular decomposition of g. Let ¢; (resp. f)),
1 <i<r, be the corresponding Chevalley generators of n* (resp. n”), let oy, ...,
o, € h* be the set of simple roots of n*, and let W be the Weyl group of (g, h). We
denote the length of an element w € W by I(w). Let b% denote the weight lattice in
b* and let -, -) be the unique W-invariant scalar product on bh* normalized so that
d; .= {o;, 0;>/2,i = 1,..., r are all positive integers with greatest common divisor
= L. Set b := b7 ®z Z/().

We fix a reduced expression of the longest element w, of W. This puts a total
linear order < on the set A, of positive roots (see e.g. [L.2, Appendix]). Moreover,
to each @ € A, and n > 1, Lusztig attached ([L1, §1.9], [L2, §4]) the elements E™,
F{ € Uy. Their images in U are denoted by the same symbols.

Following [DK, §1.5], we introduce the Q[v, v™']-subalgebra %q = U generated
by the elements {E;, F;, K;, Ki '}, <<, Set % = k @qpy, 1) o (Where k is viewed
as a Q[r, r~!] algebra via the specialization v+ &). It is shown in [DK, Corollary
3.1] that the elements {E., F.},. s+ and {K}}, .;, are central in %,. We set

Uy := U,/1deal generated by {K} — 1}, <;<,

and let & < %, be the subalgebra generated by {E., Fi}, .+ Finally, let U(g) be
the classical enveloping algebra of the Lie algebra g.

The above-introduced algebras are related to each other by two isomorphisms
which are due to Lusztig [L1], [L2] (together with [DK, §3.3]). He showed that
the subalgebra u; is normal in U;. (See §5.2 for the definition of normal subalgebras.)
Also # being central is clearly a normal subalgebra of %,. Furthermore, there are
algebra isomorphisms:

1) Ue/|Z ~u;y and U//u; ~ Ulg).

(See §5.2 for the notation //.) The first isomorphism in (1) is induced by the natural
map %, - u, sending E;— E;, F;~ F, and Kf'— K, 1 <i <r. The second iso-
morphism in (1) is induced by the map U, » U(g), sending E—e¢;, FP— f,
1 <i<rand sending (4,), to zero, where the subscript + denotes the augmenta-
tion ideal. The isomorphisms of (1) are “dual” to each other, in the sense that & is
a commutative Hopf algebra, dual in a certain sense to the cocommutative Hopf
algebra U(g). (This is related to the “double construction” of Drinfeld.)

We denote by the superscripts +, —, and 0 the subalgebras of the algebras in
question generated by the E’s, the F’s, and the K’s respectively. (Actually, Uy is

K;;
generated by K, < ;’ c), i=1,...,r,ceZ and t € Z"; see [L2, §6].) There are
corresponding triangular decompositions {(see [L1], [L2], [DK]), e.g.,
Q U:=UQUQU;, U=% QU U , and u;=u; Qui Qu;.

We use the notation B, (resp. %, b;) for the “Borel part”, the subalgebra of U,
generated by {E(™, K;};<;<,ns0 (tesp. the subalgebra of %, u, generated by
{E;, K;}1 <i<»)- The isomorphisms (1) have their Borel and “+, — part” analogues.
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An essential role in our arguments is played by a certain increasing filtration on
%, a quantum analogue of the standard filtration on an enveloping algebra. The
filtration was introduced in [DK] (and is based on a result of Soibelman). We shall
not reproduce its construction and shall limit ourselves to the following proposition.

ProrosITION 1.1 [DK, Prop. 1.7].  The algebra &, has a multiplicative filtration
such that the associated graded algebra Gr % is generated by the homogeneous
elements {E,, K;},ca, .1 <i<r Subject to the defining relations

(3) Kin = KjKis Ki = 1: KiEa = £<a'ai>EaKi
and _
@ E,Ey= E“PEE,  whenever o> f.

The filtration on %, gives rise to a filtration on the subalgebra %;" , on the quotient
algebra %,//%* ~ b, (given by the Borel analogue of (1)), and its subalgebra u; .
We obtain the following corollary.

COROLLARY 1.2. (i) Gr(%; )isgenerated by {E,}, c o+ subject only torelation(4).
(i) Gr by is generated by {E,, K;},ca+,1<i<r> Subject to both relations (3) and (4)
of Proposition 1.1, and also the relations

6)] El=0 forallacA*t.

(1) Gr(uz) is generated by {E,}, subject to relations (4) and (5).

Remark 1.3.  One can use Proposition 1.1 to prove the first of the isomorphisms
(1) as follows. The natural map %; — u, is clearly susjective and factors through
U://%. It suffices to show that the resulting map is injective: This amounts to
showing that dim(%,//%) < dim u,: We first restrict our attention to the posi-
tive parts. We have dim %" //Z* = dim Gr(%;"//Z ™), and the latter dimension is
< 19", for the algebra Gr(%;'//%™) clearly satisfies the relations (4) and (5). On
the other hand, Lusztig showed that dim uf = [¥™™_ A similar argument gives
the inequality for the “0” parts. Now the decompositions (2) give the inequality
dim(#%,//%) < dimu,. W

2. Cohomology of the algebra b,.

2.1. Cohomology of Gr%;". Let A, be the graded algebra with generators
{e,}aca+ (Where we assign grade degree 1 to the generators ¢,) and the defining
relations :

€8+ & P-5, =0  whenever <«
and

e2=0 foranyaeA*.
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Thus, A, is a g-analogue of the exterior algebra. We have the following proposition.
(See Sections 1 and 5.1 for the notation.)

PROPOSITION.  There is a natural graded algebra isomorphism H*(Gr ;") ~ A

Proof. View Gr ;" as the graded algebra with a slightly different grading, where
we assign degree 1 to all the generators {E, }, »+. The relations among E,’s are given
by Corollary 1.2. A criterion [P, §5] (or [BGS, §2.10.3]) then shows that Gr %;" is
a Koszul algebra in the'sense of [BGS, Def. 1.2.4]. The result now follows from [P,
Theorem 2.5] (see also [BGS, Prop. 1.29]). ®

2.2. Cohomology of Z*. Let M be the k-vector space with basis {E.}, . ,+- Then
the algebra 2 (defined in §1) is canonically isomorphic to the symmetric algebra
S(MN). Hence H*(Z*) = A(R*), where A(M*) denotes the exterior algebra of the
dual space.

Further Z*, being central, is a normal subalgebra of %;". Similarly, Gr Z* is a
normal subalgebra of Gr %;", where we take the induced filtration on Z* from the
filtration of %;". By §5.2, the “+” analogue of (1) of §1, and [DK, Corollary 3.3],
there is a canonical u} -action on H*(Z*) (resp. Gr u{ -action on Gr Z™). It is easy
to see that Gr Z* is canonically isomorphic (as an algebra) to Z™.

LEMMA. The uf -action on H¥(Z'*) and the Gr uj -action on H*(Gr Z*) are both
trivial.
Proof. The cohomology of Z* may be computed via the standard Koszul

complex:
oIt ®, Al(m) > ® A°(R) >k,

which is a 2 *-free resolution of the Z*-module k. Since %;" is free as a ' -module
under multiplication, tensoring with %;" over Z* yields an %;" -free resolution of
u; (using the “+” analogue of (1) of §1):

e %g‘ ®k Al(m) b d %§+ ®k Ao(m) - ug‘ .

The uj -action on H*(Z™") comes, by §5.2, from the % -action on the following
complex, where %;" -action on Homy,+(%; + ® A{(M), k) is via the right multiplication
on the %;" factor and the trivial actlon on A{(R) and k.

- Homay (@ ® A'(R), k) — Homge (% ® A°(R), k) « 0.

The latter action clearly is the trivial action on the complex itself, proving the first
claim of the lemma. The second claim is proved in the same way. W

The vector space R can be identified naturally with the positive part n* of the
Lie algebra g, under the map E.+ e,, where e, is a nonzero root vector in n* of
root . Thus the Borel subalgebra b = g acts on 9t (under the above identification)
via the adjoint action, inducing an action on S(N) ~ 2* by derivations. This gives
a b-action on H*(Z*) ~ A(M*). It coincides with the one induced by the coadjoint
action on M*.
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2.3. Cohomology of Gruf. Corollary 5.3, combined with Lemma 2.2, yields
a transgression map 1: W* ~ H(Gr Z*) - H*(Gr u}). Since the image of 7 is
contained in the center of H*(Gr u) (see Corollary 5.3), t extends to an algebra
homomorphism S(9*) — H***(Gr u}). It can be easily seen that uf acts trivially on
the image of t (under the canonical action of ug on H*(Gr uf), induced from the
isomorphism Gr b,//Gr u} ~ ul via Lemma 5.2.1).

PROPOSITION 2.%.1. There exists a natural graded algebra isomorphism
H*(Gruf) ~ A, ® S(N*),

where A, is asin§2.1 and the right-hand side is endowed with the tensor product graded
algebra structure. (The elements of W* are assigned grade degree two.) :

Remark. The right-hand side is also endowed with an ug-action; u? acts trivially -
on S(9t*) and acts on a generator ¢, € A; via the restricted weight —a (see e.g.
[K, §4.4] for the definition of restricted weight). Then the isomorphism of the prop-
osition commutes with the u2-module structures.

Enumerate all the positive roots: By, f,, ..., By (Where N is the total number of
positive roots) according to the total linear order < on A* (see §1). For eachj = 0,
1,2,..., N, let R; be the subspace of N spanned by the elements Ej , ..., E},J, and let
Z; ~ S(N;) be the subalgebra of Z* generated by N;. (We declare R, = 0.) Further,
set u; := Gr(%;")//%; where Z; is identified as a subalgebra of Gr(Z*) = Gr(%;")
under the canonical identification Z* ~ Gr(Z*) (see §2.2).

Since Z; (being central) is a normal subalgebra of Gr(%;"), by Lemma 5.2.1, there
is a canonical w-action on H*(Z;). One shows, repeating the proof of Lemma 2.2,
that this action is actually trivial.

Proposition 2.3.1 is a special case of the following result.

ProrosITION 2.3.2. Foreachj=0,1,2,..., N, there is a natural graded algebra
isomorphism

(1) CH*(w) =~ A, ®, S(NY).
Further, this isomorphism commutes with the canonical ug-actions.

2.4. Proof of Proposition 23.2. 'We proceed by induction on j. For j = 0, the
statement reduces to Proposition 2.1. Now assume the validity of the proposition
(by induction) for all i < j and prove it for j + 1:

Let A = A;,, be the subalgebra of u; generated by E},J“. Then A is a polynomial
algebra in one variable, which is normal (in fact central) in u;, and we have, by
Corollary 1.2(i), u;//4 ~ u;,;. Hence, we get a convergent spectral sequence (see
§5.3) with :

1) EZ9 = HP(w,,, HY(A)) = H"*9(u;).

Step 1. The canonical algebra homomorphism r?: H?(v;,,) — H"(;) is surjective
Joranyp=0.
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Proof. By the induction hypothesis H*(1;) ~ A, ® S(9t}), and hence H*(u;) is
an algebra generated by elements of degree < 2. So it suffices to prove the claim
of Step 1 for p = 1, 2 only.

For any augmented algebra B, we have H'(B) ~ (B, /B, * B,)*, where B, is the
augmentation of the ideal. From this we can easily see that the map r* is in fact an
isomorphism.

Let R; denote the space of relations for the algebra u; (see §5.4). To prove the
surjectivity of r?, it suffices to show by §5.4 that the canonical map R; — R, is
injective. But this is obvious from Corollary 1.2. W

Step 2. In the spectral sequence (1), we have E%% = 0, for all g > 0.

Proof. There is a natural commutative diagram

Ef2 3B ——» EB° S H(y)

N\

HP (u;4,).

The surjectivity of r? (guaranteed by Step 1) and the commutativity of the above
diagram show that the inclusion E%° <» HP(u;) is an isomorphism. Hence, E%? = 0
for all g > 0; for the spectral sequence converges to H*(1;). W

One shows, repeating the proof of Lemma 2.2, that the canonical u;,-action on
H*(A) is trivial. Hence, there is a canonical transgression map H'(4) - H 2(uj+1)
(see Corollary 5.3). Observe that dim H'(4) = 1. Choose a vector v € H*(u;,,) as
the image of a nonzero element in H!(A). It belongs to the centcr of H *(ujﬂ) by
Corollary 5.3.

Step 3. The kernel of the homomorphism r: H*(u;,,) — H*(v;) is equal to the
(two-sided) ideal generated by v.

Proof. First, observe that E5°/d,(E5~>') ~ E%® ~ EP°. (The last isomorphism
follows since H%(A4) = 0, for all g > 1.) But E%° ~ HP(u;), by the proof of Step 2.
Now use the fact that d, is a derivation (see the proof of Corollary 5.3). This
completes the proof of Step 3. W

Step4. The algebra homomorphismr: H*(u;,,) — H*(u;) admits agraded algebra
splitting that commutes with the canonical action of u¢

Proof. We have, by induction, H*(1;) ~ A, ® S(9t¥). We have only to lift the
generators of the algebras A, and S(9t}) to H*(u;,,) and to check that the relations
among them are preserved. To lift the generators of S(9t}), observe that there is a
commutative diagram (see §2.3)

iy — H? (uj+1)

Ir
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where the horizontal arrows are the appropriate transgression maps and the projec-
tion N¥, — N¥ is induced by the canonical imbedding N; = N;,,. Hence, any
splitting of the projection 9%, — N¥ provides a lifting of the generators of S(N¥)
to H?(u;,,). Moreover, Corollary 5.3 shows that the image of the transgression map
is central in H*(u;,,); in particular, the lifted generators are central in H*(x;,,).

Next, view the generators {¢,},.4+ Of A; as elements of H'(1;) (by the induc-
tion hypothesis). We have already observed in the proof of Step 1 that the map
r': H'(u;,,) —» H'(u;) is an (ug-equivariant) isomorphism. We use the inverse iso-
morphism to transfer the elements ¢, € H' (1;) to the elements &, € H'(u i41)- Prov-
ing the claim of Step 4 amounts to showing that the elements £, satisfy the relations
of Proposition 2.1.

Let us first prove that &, & + £~ <%#°Z;-Z, = 0 whenever a >> f: We know that

r(§a°gﬂ + 5—(1,ﬂ)§ﬂ.§1) = Sd.gﬂ + §_<a'ﬁ>sﬂ'8¢ = 0.
So by the claim of Step 3, we get
()] &, B+ @Pg 8, =cv  forsomecek.

To show that ¢ = 0, observe that the left-hand side of (2) has restricted weight
— (& + B) (with respect to the u2-action) whereas the right-hand side has restricted
weight 0. But for any positive roots a # f, either —1 < {a, f¥> <1 or -1 <
{B, a”) < 1(see [Bo, p. 278]). In the first case, we have 1 < {a + B, B¥) < 3, hence
o+ f ¢1-b%, for | > 3.(By our assumption I > h; and further h > 3 for every simple
Lie algebra g, except when g = si(2). Hence for any g other than sl(2), we have [ > 3.
For g = sl(2), since there is only one positive root, the relation is vacuously satisfied.)
This forces the constant ¢ in (2) to vanish

To prove the other relation, ie., & = 0, we similarly need to observe that (since
lis odd) 2a ¢ I-b%, for any positive root o 0

Step 5. The element v introduced in Step 3 is not a zero-divisor in H* (u;,,).

Proof. By Step 2, we have ES' = E%! = 0; hence the differential d, restricted
to EZ, in the spectral sequence (1), is injective. But for x ® y € H?(1;,,) ® H'(4) =
E%! we have d,(x ® y) = (—1)Px-d,y = (—1)Px - v (see the proof of Corollary 5.3).

|

The results of Steps 3—5 complete the proof of Proposition 2.3.2 and hence, in
particular, that of Proposition 2.3.1. W

2.5. Cohomology of b,. For any A € bf (see §1), let k(4) denote the 1-dimensional
ug-module corresponding to the restricted weight A. We denote by the same symbol
k(4) the 1- d1mens1onal representatlon of b, (and Gr b;) obtained via the canonical
projection to u,;
Following is the main result of this section, where as usual p is the half sum of
positive roots, to be considered canonically as an element of b,
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THEOREM. (i) H°*(b;) = 0, and there is a natural graded algebra isomorphism
H*(by) = S'(R*).

(ii) For any w e W, H*(bs, k(p — wp)) is a free module over H*(b,) of rank 1
generated by an element of degree l(w), the length of w.
(iii) H*(bg; k(2)) = O, if A € b is not of the form p — wp, for any we W.

COROLLARY. HP(b,, k(p — wp)) = O, unless p — I(w) € 2+ Z,..

Proof of the theorem. The subalgebra u; is normal in b, and moreover be//uf
=~ ug. Hence, for any b-module M, we have a natural isomorphism H(b;, M) =~
H(uf, M)%, whereothe superscript u stands for ul-invariants. Furthermore, the
assignment N — N* is an exact functor on the category of ug-modules, for ? is a
finite-dimensional semisimple algebra. Hence, the natural isomorphism as above
can be extended to the corresponding derived functors, giving a natural isomorphism

Hi(b,, M) ~ H'(uf, My®  foranyi> 0.
In particular, for any A € bf we get
R Hi(by, k(1)) = [H'(uf) ® k()T

Using now the filtration of u; (see §1) and Proposition 5.5, we get a spectral
sequence with

EP4 = HPY9(Gr u}) = HP9(u}).

This spectral sequence is compatible with the ug-actions. Hence, the isomorphism
(1), combined with Proposition 2.3.1 and the remark following it, yields a spectral
sequence with E,-term

@  [H*Gru) @k(A)]% ~ [A, ® k()14 ® S(*) = H*(by, k(3)).

Observe next that any restricted weight, occuring in the pth graded component
Af of A;, is of the form — (B, + - + B,), for some distinct positive roots f;, ..., B,.
We claim that for A = p — wp, one has

‘ . 0 1 ifp=1(w)
p ul _
@) dl?l[Ag ® kAT {0 otherwise.
The claim amounts to the following statement: Let {y,,...,y,} and {1, ..., y;} be
two sets of distinct positive roots (y; is allowed to be equal to y;). If y; + -+ 7, =
91 + - + y, mod I-b¥, then the equality actually holds in h%. (Here we are using
our assumption ! > h and ! is odd.) The proof of this statement is a slight variation
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of the argument contained in [J, Part I, Lemma 12.10]. (Since [ is not assumed to
be a prime, the argument loc. cit. can not be taken verbatim.) We briefly outline the
argument: As in [J], we may assume that y:=y, + -+ 7y, — (1 ++* + y,) is of
the form y = I, for some (fundamental) miniscule weight §, and moreover y < 2p
(as elements of h%) (and of course y is in the root lattice). From the list of miniscule
weights (see e.g. [Bo, Exercise 15, §4, Chap. 6]) and the description of the fundamen-
tal weights as in [Bo, Planche 1-9], we see that y = I is not in the root lattice for
any odd ! and anyminiscule f in the Lie algebras of type B, C, D, and E,. For the
- miniscule weights f§ in the Lie algebras of type A and Eg, one can easily see that
the condition y = If < 2p is violated, for any I > h. The remaining simple Lie
algebras (of type Eq, G,, and F,) have no miniscule weights at all.
It follows from (3) that (for A = p — wp) all the nonvanishing E,-terms in the
spectral sequence (2) are of the same parity. Hence, the spectral sequence collapses
at the E,-term itself, giving rise to a graded space isomorphism

“ E,, = Gr(H*(by, k(p — wp))) = E; = S*TIOI2 (),

Further, there is (as at the beginning of §2 3) a natural transgression map t: N* ~
HY(Z*) > H?(uf). It is easy to see that u acts tnv1ally on H*(Z™*). In particular,
7 being a uZ-module map, Image t < [H 2(u")]"c ~ H?(b,). Furthermore, the sub-
algebra A generated by the image of |* in H*(u;) is commutative (see Lemma 2.2
and Corollary 5.3) and hence is a quotient of S(9t*). But (taking w = e) the corre-
sponding graded subalgebra Gr A < E_, ~ E, can be seen to be isomorphic, via (4),

“with the right-hand side of (4), and hence Gr A coincides with E,,. This proves parts
(i) and (ii) of the theorem.
We come to part (iii):

. HP(be, k(A)) = Extp(k, k(1))
= Extf (k(—4), k) (see [ B, Propn. 3.1.8])

- Bxtf (u, @y, k(—4), k) (see the proof of Lemma 5.2.1).

Now part (iii) follows from the linkage principle [APW2, §2.9], for —,1 is not
linked toQ unless A =p —wp. &

Remark. For the Lie algebra of type A,, conmsidering the positive roots
{oy, 00y + 3, ..., 2y + ** + &}, we see that their sum is equal to (r + 1)w,, where
®, is the first fundamental weight. Since h = r + 1 (for 4,), we see that the restriction
I > his necessary in the argument given above to prove (3).

2.6. An adjoint action on H*(b;). The algebra b, is a normal subalgebra of the
algebra B, and we have (see §1) B;//b ~ U(b), the classical enveloping algebra of
the Borel subalgebra b < g. This gives, by §5.2 and [L2, Lemma 8.8], a canonical
U(b)-action on H*(b,). On the other hand, there is a canonical U(b)-action on the
algebra S(n*) induced by the adjoint b-action on 1 := n*.
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LemMA. The isomorphism H(b;) ~ S'(n*) of Theorem 2.5 (identifying Rt with n;
see §2.2) commutes with the U (b)-actions.

Proof. Fix the divided power E® € Uj. Let D; be the derivation of the algebra B,
the Borel part of Uy, given by D;: u+— E®-u — u- E®. It is a remarkable fact [DK,
§3.4] that the derivation D; descends to a derivation of the algebra %, (no divided
powers!) to be denoted by D, again. Moreover, it is shown in [DK] that D,(%;") =
; and D(Z™*) = Z*, so that D, induces a derivation on u; =~ %;//Z*. A deriva-
tion on the algebra gives rise to a derivation on its cohomology. Thus, forany p > 0,
there is a natural D-action on H?(Z*), H?(uf), and on HP(b;). Now, recall the
isomorphism £ +. ~ S(N) from §2.2. It is shown in [DK, §3] that the D;-action on
N < Z* (modulo @), SP(N)) corresponds to the adjoint action of the element
e;€n on N ~ n. Hence, the canonical isomorphism H'(Z™*) ~ n* is compatible
with the Diaction on the left-hand side and the coadjoint action of e; on the
right-hand side. Furthermore, the transgression map H*(Z™*) — H*(u}) commutes
with the D;-action. The last part of the proof of Theorem 2.5 shows now that the
Di-action on H*(b;) corresponds to the coadjoint action of ¢; on S(n*) via the
isomorphism of the theorem.

Finally, the derivation D; on By induces (an mner) derivation on B; such that
Dy(b;) < b;. It follows from Lemma 5.2.2 that the canonical action on H *(b,:) of the
image of E?) in B;//b; coincides with the one induced by D;. This shows that the
isomorphism H*(b,) ~ S(n*) of Theorem 2.5 commutes with the action of e;. Hence
it commutes with the U(n)-action. Compatibility of the isomorphism with the
b-action is easy and is left to the reader. W

3. Cohomology of u;. We compute here the cohomology of the algebra u,, along
the lines of [J, Part II, Chapter 12] The computation relies heavily on some results
of Andersen-Polo-Wen.

Recall first that the algebra u; is normal in U;, and we have (see item (1) of §1)
U;//u, ~ U(g). Hence, there is a natural U(g)-module structure on H*(u;) (see §5.2).

Here is the main result of the paper.

THEOREM. (i) H**(u,) = 0, and there is a natural graded algebra isomorphism
H>(g) ~ K[A].

where N < g is the nilpotent cone.
(i) The natural g-action on the left-hand side of the above isomorphism corresponds
to the standard coadjoint action of g on k[ A"].

We first recall the construction of the induction functor [APW].
For any (left) U,-module M, set

M/ ={xe M|FPx = EPx =0,forall 1 <i<randall p > p(x) » 0}.

By the commutation relations [L2, §5, 6], M’ is an Ug-submodﬁle of M. We.
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similarly define M’ for any U(g)-module M. Let @y, (resp. By(y) be the category of
all the U;-modules (resp. U(g)-modules) M such that M = M. Similarly, for a
B.-module N, set

N/ ={xeN|EPx =0,forall 1 <i<randallp > p(x)> 0}.

(An analogous definition is given for N/, for any U(b)-module N.) Let @5, (resp.
%us) be the category of all the Bg-modules (resp. U(b)-modules) N such that N =N,
Define the induction functor Ind = IndB %p,— By, by Ind M = [Homy, (U;, M)V,

where Homg, (U, M) is made into a Ug-module under

() = f(yx)  for f € Homg (U;, M), x,ye U;.

Define the functor Ind = Indgfggz oy~ Gugina similar way.

Proof of the theorem. Given an Ugmodule M, set I, (M) = H°(u§, M) = M*%,
as the subspace of u,;-invariants There is a natural U(g)-module structure on I,,(M)
ansmg as in §5.2. It is easy to see that the assignment M +— I, (M) yields a functor

L By, — by Similarly, one defines a functor Iy, G, — %ﬂ,) It is easy to check
that the diagram

o,
er \fu;
(1) s, ‘ oo
I,,:\‘ Ind
’ (gU(b)

commutes. Observe next that all the functors in the above diagram are left-exact
and all the categories involved are abelian categories with enough injectives (see
[APW2,§0.8]). Furthermore, it is shown in [APW2, §0.8] that the functor Ind takes
injectives into injectives and also, by an argument similar to [J, Part I, proof of
Lemma 6.4], I,, takes injectives into injectives. Thus there are two spectral sequences
(given by Grothendieck, for the composition of two functors; see e.g. [J, Part I,§4.17)
converging to the same limit, with E,-terms

'E%? = (R?I,,)(R? Ind(k))
and
"E%? = (R? Ind)(R, (K)),

where k is treated as the trivial B;-module.
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Observe that R”I, (1) = H"(ug, *). Further, R? Ind(k) = 0, for all ¢ > 0 by [AW,
Theorem 5.3] and R® Ind(k) = k. Hence, the first spectral sequence collapses at the
E,-term, and we have 'E,, ~ H*(u,, k). In the second spectral sequence, we have
R'IL, (k) = H'(b,, k) ~ S(n*) by Theorem 2.5. Furthermore, the canonical U (b)-mod-
ule structure on R’I,, (k) corresponds to the coadjoint action on S(n*) by Lemma 2.6.
Hence "E5? = 0 for all p > 0 by [J, Part I, Lemma 12.12(a)]: Thus, the second
spectral sequence also degenerates at the E,-term, and we have (see [J, Part II,
§12.147) .

@ "Eq = Ind(S(n*)) = HO(G(K)/B(K), S(n*)) = k[4],

where G (k) stands for the split (semisimple) simply-connected Lie group over k with
Lie algebra g and B(k) stands for the Borel subgroup of G(k) corresponding to the -
subalgebra b < g.

Comparing the two spectral sequences yields a graded space isomorphism

3) H*(u;) ~'E,, ~"E,, ~k[AN].

Next, we construct a natural g-equivariant algebra homomorphism @: H*(u,) -
k[#7] as follows. The canonical restriction map H*(u;) > H*(b;) is a U(b)-
equivariant algebra homomorphism and hence induces a U(g)-equivariant algebra
homomorphism ¢: ind(H*(u;)) — Ind(H*(b;)). As we saw in the preceding discus-
sion (see (2)), the target algebra is canonically isomorphic to k[.4#7]. On the other
hand, H*(u,) being a U(g)-module, we have Ind(H *(ug)) ~ H*(uy). Now one checks
easily that the resulting map @: H*(u,) - k[#7] from ¢ (under these identifications)
is an isomorphism, because of the isomorphisms (3). But since @ is a g-equivariant
algebra homomorphism, the theorem follows. W

4. Relation to perverse sheaves on a Grassmannian. The results of the previous
sections hold for any field F containing the cyclotomic field k. In this section we
choose an imbedding k < C and take C to be the ground field throughout. Let G
be the simply-connected (semisimple) complex Lie group corresponding to the Lie
algebra g.

4.1. A functor. We have defined, in the course of the proof of the main theorem
in §3, a functor (derived functor of 1,,) assigning to any Urmodule M € %, the
graded U(g)-module H*(u,, M) € %y,,. By definition, the U(g)-action on any object
of @y, is locally finite. Hence, it can be exponentiated to an algebraic G-action, so
that H*(u;, M) becomes a G-module. In addition, the cohomology H*(u,, M) has
a natural H*(u,)-module structure (see §5.1). The G-module and the H*(u,)-module
structures are compatible; i.e.,

1) g(a-x) = g(a)- g(x) for any g € G, a € H*(uy), x € H*(u,, M).



192 GINZBURG AND KUMAR

One can show that H*(u., M) is finitely generated over H*(u,), provided M is
finite-dimensional. The isomorphism H 2'(u¢) ~ C'[A"] of the main theorem (§3)
makes H*(u,, M) into a finitely generated C'[4#"}-module. The C[.4#"}-module
H*(u., M) gives rise to a G-equivariant coherent sheaf on A" (because of (1)).

There is a canonical C*-action on 4" by multiplication, commuting with the
adjoint G-action (C* := C\{0}). The gradation on the cohomology puts a C*-.
equivariant structure on the corresponding sheaf on 4. Thus, H*(u,, M) may be
viewed as a C* x G-equivariant coherent sheaf on A"

By G-equivariance, the sheaf H*(u,, M) is locally trivial on the (open) conjugacy
class O consisting of the regular nilpotents in 4. Let ne 4" be a fixed regular
nilpotent and let a denote the centralizer of n in g. Then a is an abelian Lie algebra
of dimension = rk G. Set

F(M) = H*(u§’ M)lna

the geometric fibre of the locally free sheaf H*(u,, M), at n. There is a natural action
of the isotropy group A~ = C* x G of the point n on the space F(M), arising from
the C* x G-equivariant structure on the sheaf. The centralizer of n in G is canonically
contained in 4~, and hence F(M) is an a-module. There is also a copy of the group
C* contained in 4~, constructed as follows: Let SL,(C) — G be a group homo-
morphism associated to n via the Jacobson-Morozov theorem and let C* =

0 . .
SL,(C), z—> ((Z) Z_1>,_be the diagonal imbedding, The composition of these two

homomorphisms gives a map ¢: C* — G such that ¢(z)-n-¢(z)™! = z2'n, z € C*.
Define a homomorphism C* —» C* x G by z+ (272, ¢(2)). The image of this homo-
morphism has » as a fixed point. The weight-space decomposition of F(M), with
respect to the action of this C¥, puts a Z-gradation on F(M). Similarly, the sub-
algebra a is stable with respect to the adjoint action of the image of ¢. This action
.puts a gradation on a. The gradation on a is compatible with that on F(M), making
F(M) a graded a-module.

4.2. A category of perverse sheaves. Let T = B c G be the maximal torus and
the Borel subgroup of G, corresponding to the fixed triangular decomposition of
the Lie algebra g (see §1). Let Q := Hom(C*, T) be the group of algebraic homo-
morphisms A;: C* — T. Then Q can canonically be thought of as the coroot lattice
(for the simply-connected group G). The Weyl group W acts naturally on Q. The
affine Weyl group W, is defined as the semidirect product Q x W. The map A-wi— 4
gives a canonical bijection W,.,/W ~ Q.

Let LG be the group of all the polynomial loops f: C* — G, L* G the subgroup of
those loops that have no pole at 0e C, and I = L*G the (Iwahori) subgroup
consisting of all those loops f € L*G such that f(0) € B. Set Gr = LG/L*G, the
generalized Grassmannian. The space Gr is the union of a sequence Gr, = Gr, < - -+
of subsets, all of which have a compatible structure of finite-dimensional projective
varieties over C.
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There is an obvious I-action on Gr on the left. Each I-orbit is contained in a
certain subset Gr; and is biregular isomorphic to a finite-dimensional affine space.
Any homomorphism 4 € Q can of course be viewed as an element of LG. Let - L*G
be the corresponding point in Grand let C, := I- 4+ L* G/L* G be the I-orbit of that
point. The assignment A+ C; sets up a bijection of the set @ with the set of all the
I-orbits in Gr. We can also parametrize the orbits by the cosets W,/W via the
canonical bijection W,,;/W ~ Q. The orbits form a stratification of Gr.

The varieties Gr; (i = 1, 2, ...) being finite-dimensional, it makes sense to consider
a perverse sheaf on Gr whose support is contained in a certain Gr;. Let P(Gr) denote
the abelian category of all those perverse sheaves on Gr, which are constant along the
I-orbits and supported on a finite union of orbits. For A € W,/W, let IC; denote
the intersection cohomology complex on the closure of the orbit corresponding to
1. The complexes ICz;, 1 € Wi /W, are the simple objects of the category P(Gr).
Further, let H*(Gr) = H*(Gr, C) be the singular cohomology of Gr. There is
a natural graded algebra isomorphism H*(Gr) ~ S(a) constructed in [Gi, §1.7].
(The gradation on a is the one defined in §4.1.) Given & € B(Gr), let H*(F) denote
the hypercohomology of &. Then H*() is a finite-dimensional graded vector
space. The space H*(#) has a natural graded H*(Gr)-module structure and hence
a graded a-module structure. Thus, the assignment & — H*(&) yields a functor:
PB(Gr) ~>graded a-modules.

4.3. A conjecture. Assume from now on, in this section, that g is simply laced
and identify Q with the root lattice in h*. Define a W, -action on h* by the formula

w,(v) =11+ wy forw,=1-weQ xWand vebh*.

A finite-dimensional simple U,-module is said to be linked to the trivial representa-
tion (see [APW]) if its highest weight is of the form w,(— p) — p, for some w, € W_.
Let % be the abelian category formed by all those finite-dimensional U,-modules,
all of whose simple subquotients are linked to the trivial representation. The
simple objects of ¥ are precisely those irreducible U,-modules with dominant highest
weights of the form w,(—p) — p. This forces w, to be the maximal element in its
coset € W /W.

Combining the recent results of Kazhdan-Lusztig [KL] with those of Casian
[Ca], one obtains the following result.

THEOREM. There is an equivalence of categories : €~ B(Gr). Under this equiva-
lence, the irreducible Ug-module with (dominant) highest weight w,(—p) — p,w, € Wy,
goes to the complex I1Cy, where w, := w, mod W e Wg/W.

We can now make the following conjecture.

CONJECTURE.  There is a natural isomorphism of graded a-modules

H*?M)~F(M)  foranyMe&.
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Let M, N € €. We have H*(u;, M) =~ Ext} (U, ®,, C, M) (see the proof of Lemma
5.2.1). Hence, the Yoneda product

Extﬁg(U;QZ),,e C, M) x Ext§ (M, N) - Ext} (U, ®,, C, N)
yields a natural morphism
) }%xtbc(M, N)—> Hom},.(,,g)(H*(ué, M), H*(u,, N)),

where Hom' stands for the space of morphisms of graded modules shifting the
grading by i. Taking the fibres at n € A of the corresponding coherent sheaves (see
§4.1), we get a morphism

@ Exty (M, N) - Hom3(F (M), F(N)).

The above conjecture, combined with a theorem of [Gi2], would imply the following
result (see also [BGS, Prop. 3.3.9(ii)]).

COROLLARY. For any simple Ug-modules M, N € €, the morphism (2) is an iso-
morphism, provided the above conjecture holds.

APPENDIX

5. Cohomology of associative algebras. Fix a field k. By an algebra we always
mean an associative k-algebra with unit.

51. Let A be an augmented algebra. Given a left A-module M, deﬁné the
cohomology of M (see [CE, ch. X]) by

HY(A, M) := Exti(k, M) i>0,

where k is viewed as an A-module via the augmentation. Let M itself be a k-algebra
such that A acts trivially on M. Then there is a cup product on H*(4, M) (see [G,
§7]) making it into a graded k-algebra. We have, in particular, the graded algebra
H*(A, k), to be abbreviated as H*(A). .

For any A-module M, there is the Yoneda product [B, §2.6] H*(4) ® H*(4, M)—
H*(A, M) making H*(4, M) a graded H*(4)-module. The Yoneda product on
H*(A) coincides with the cup product [GS, §13.7].

5.2. Given an augmented algebra B, let B, denote the augmentation ideal. Let
A be a subalgebra of B and A, := A n B, the augmentation ideal in A. The
subalgebra A is said to be normal if B- A, = A, - B. In this case B- A, is of course
a two-sided ideal in B, and we set B//A := B/B- A, which is an augmented algebra
again.

LEMMA 52.1. Assume that B is a flat right A-module (under the right multi-
plication). Then, for any B-module N and any i > 0, there is a natural B-module
structure on H'(A, N), where B := B//A.
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Proof. We have Hom,(k, ') = Homy(B ®, k, *). This yields, since B is flat over
A, that Extj(k, N) ~ Ext3(B ®, k, N). But B®, k ~ B, and the (left) B-action on
Ext4(B, N) is induced by the right multiplication of B on itself. MW

We now describe the action of Lemma 5.2.1 in a special case: Let d be an element
of B such that d-a— a-de€ A, for any a € A. Then the assignment a~ D(a) :=
d-a — a-d is a derivation of A. The derivation D can be extended canonically to a
derivation on the Bar-complex of A4, hence induces a derivation D of the algebra
H*(A). On the other hand, let d € B be the image of d. We have the following lemma.

LEMMA 5.2.2. The action of d on H*(A), arising from Lemma 5.2.1, coincides with
the derivation D.

Proof. Proofisleft to the reader (use the bar-resolution to compute H*(4)). W

5.3. Retain the notation and assumptions of §5.2l. (In particular, we assume that
Bis a flat right A-module.)

ProposITION [CE, Chap. 16, Theorem 6.1].  For any B-module M and a B-module
"N, there is a convergent spectral sequence with

Eg* = Exth(M, H'(4, N)) = Extg*"(M, N). W

Taking M = N = k, the differential d,: E3'* — E2'° in the spectral sequence yields
the following result.

COROLLARY. Assume that the canonical B-action on H*(A) is trivial. Then there
is a natural transgression map

H'(4) - H*(B),
and its image is contained in the center of H*(B).

Proof. Only the second statement requires proof. Observe first that the cup
product (§5.1) on H*(B, H*(A)), arising from the algebra structure on H*(A), makes
the above spectral sequence with '

Ey* = HP(B, H(4)) = H**(B)

amultiplicative spectral sequence. Furthermore, the E—act_ion on H*(A)being trivial
(by assumption), we get a canonical graded algebra isomorphism

(1 E3* = H*(B, H*(4)) ~ H*(B) ® H*(4),
where the right-hand side is endowed with_'the tensor-product graded algebra
structure,

For any x € H?(B) and y € H'(A4), we have

D) (1®y)=(-1Fley) x&1).
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Since the differential d, in the spectral sequence (1) is a derivation [G, §7] and since
d,(E%°) = 0, we get

d((x® 1) (1Q®y) =dpx-y+(—1)x-dyy = (—1)’x-dyy

|

(—1Yd(1 ®y) (x® 1) = (- 1)°(dyy x — y-d;X) = (—1Pd,y- x.

This completes the proof. W

54. Let I be a homogeneous two-sided ideal in the tensor algebra T(V) of a
finite-dimensional k-vector space V (under the natural grading on T(V)). Set 4 =
T(V)/Iand R = I(T*(V)-I + I-T*(V)), where T (V) is the augmentation ideal of
T(V). The following lemma is well known and can easily be proved.

LemMA. If I has no degree 1 elements, then H>(A) ~ Hom,(R, k).

5.5. Let A be an augmented algebra with a multiplicative filtration k = 4, =
A, < ---, such that U A; = A, and let Gr A be the associated graded algebra. Pick
a graded resolution of k by free Gr A-modules. Using such a resolution for comput-
ing cohomology, one gets an extra grading: H(Gr A4) = I, , H,,(Gr A) on each
cohomology group.

The following result seems to be known; its proof is similar to that of [J, Part I,
Prop. 9.13].

ProPOSITION. There is a natural convergent spectral sequence with
E%% = HPS9(Gr A)= H?*%(A).

5.6. Let A be a Hopf algebra with comultiplication A: A - A ® A and antipode
&: A — A. The counit &: A — k gives an augmentation on A. Given an A-bimodule
M, define the adjoint A-action on M by the formula

ada:x—-) al"x-F(a?) foraed,xeM,

where A(a) = ), a} ® a?. Let M* denote the (left) A-module structure on M thus
obtained.

Viewing A itself as an A-bimodule, we get an A-module A, The multiplication
map on A4 gives a morphism of A-modules m: A ® A** — A*. Define a graded
algebra structure on H*(A4, A*®) via the composition

H*(A, A%) ® H*(4, A%) ~ H*(A ® A4, A ® A%)

5 H*(A, A% ® A%)™ H*(A, A).
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The following result is an extension to Hopf algebras of a well-known fact in
group cohomology.

PROPOSITION. For any A-bimodule M, there is a natural graded space iso-
morphism

EXt::-bimod(A’ M) ~ H*(A’ Mad)'
Proof. We have

N

) H°(A4, M*) = {me M|ad a(m) = 0,Vae 4.},
2 Ext] bimoa(4, M) = {me Mla-m=m-a,Va e A}.

The right-hand side of (2) is clearly contained in the right-hand side of (1). For the
opposite inclusion, write A(a) = Y a} ® a? and (Id ® A)(A(@)) = ). a} ® a} @ a'.
Then we have m-a=m-) e(al)a? =Y e(af)-m-a?, for any me M. If m belongs
to the right-hand side of (1), then the latter expression equals

Y.ai-m-(L(a))-a)=) al m-e@?)=) ale(a?) m=am.

Hence (1) = (2), and the functors Ext$ pimoa(4, -*!) and H%(4, *) coincide on the
category of A-bimodules. Hence the derived functors coincide, and the proposition
follows.

We obtain the following corollary, which seems to be known (but we could not
find a reference).

COROLLARY. For any Hopf algebra A with antipode, H*(A) is a commutative
algebra.

Proof. By a result of Gerstenhaber [G, §7], the algebra Ext¥ ,;..q(4, 4), the
Hochschild cohomology of 4, is a commutative algebra for any A. It follows from
the proposition above that H*(4, A*®) is commutative, for any Hopf algebra 4. But
the augmentation map split off the imbedding k = A as an A-module homo-
morphism (observe that k is A-stable under the adjoint representation). Hence, the
natural morphism H*(4, k) -» H*(A, A*) is injective, and the result follows. W
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