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PROOF OF WAHL’S CONJECTURE ON SURJECTIVITY OF
THE GAUSSIAN MAP FOR FLAG VARIETIES

By SHRAWAN KUMAR

Introduction. Let X be a smooth projective variety over C, with
ample line bundles £, and &, on X. We can form their external tensor
product to get a line bundle &, [X] £, on X X X. Let $, be the ideal
sheaf of the diagonal D C X X X. Wahl defines a map (which he
calls as the Gaussian map) ®g ¢, : H'X X X, $p ® (£ X &£2)) —
H(X, Ok ® £, ® £,); which is induced from the canonical projection:
$p— $,/9% by identifying the Oxxx/$p =~ Op-module $,/$} (supported
in D) with the sheaf of 1-forms Q) on D = X. Wahl has extensively
studied this map in [W,], [W-], [W5], and [W,]; and he made the following
conjecture in [W,].

ConJECTURE (Wahl). The Gaussian map g, «,, defined above, is
surjective for any (generalized) flag variety X = G/P (where G is any
complex semi-simple group and P C G a parabolic subgroup) and any
ample homogeneous line bundles ¥, and £, on X.

Wahl proved the above conjecture in the case when X =
SL(n, C)/B, and also in the case when X = G/P but P is a maximal
parabolic subgroup corresponding to a miniscule weight (cf. [W,]).

One of the principal aims of this paper is to prove the above con-
jecture in full generality. In fact we prove the following:

(2.5) THEOREM. With the notation and assumptions as in the above
conjecture; HP(G/P x G/P, $5 ® (£1 X £,)) = 0, for allp > 0.

Considering the long exact cohomology sequence associated to the
sheaf exact sequence:

0 95 (L1 X1 £L2) = $p (£ [X £2) — (90/9D) ® (L1 X £2) 0,
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1202 SHRAWAN KUMAR

we immediately see that the above Theorem (2.5) implies the validity
of Wahl’s conjecture. (Actually, as we have shown in Remark 2.10, the
two are equivalent.)

We prove the above theorem by first proving the following result
on the existence of certain components in the tensor product of two
representations.

Let g be a complex semi-simple Lie algebra with a fixed Borel
subalgebra b and a Cartan subalgebra ) C b. We denote the set of roots
for the pair (b, §) by A., and call them as the positive roots. Let
{ay, . . ., ag} be the set of simple roots in A, and let {ay, . . . , o/} be
the corresponding co-roots. For any A € bh*, define S, = {l =i=¢:
MaY) = 0}; and forany B € A,,define Fy = {1 =i<=€:B — o ¢
A, U {0}}. With this notation, we have the following:

(1.1) TueoreM. Let V(N) and V() be two (finite dimensional)
irreducible g-modules (with highest weights \ and . resp.). Take any 3 €
A, satisfying:

(Py) N + p — B is a dominant weight, and
(P2) S)\US“CFQ.

Then the g-module V(N + p — B) occurs as a component in the
tensor product g-module V(\) ® V(p).

(To understand the condition P,, it is instructive to keep the case
p = 0 in mind.)

We next show that the validity of Theorem (2.5) is ‘essentially’
equivalent to the validity of the above Theorem (1.1) (see Proposition
2.6 for a more precise statement). It may be mentioned that Theorem
(2.5) easily implies (1.1) (see [W,; Proposition 3.9]). But we have re-
verted the roles.

Theorem (1.1) should be contrasted with the PRV (Parthasarathy-
Ranga Rao-Varadarajan) conjecture (proved in [Ku,]) which asserts:

THEOREM [Ku;; Theorem 2.10]. Let g, V(\), and V(p) be as
in Theorem (1.1). Then for any w € W the irreducible g-module
V(N + wp) occurs in the tensor product V(\) & V(w) with multiplicity
m,(\, ) = 1; where W is the Weyl group associated to (g, Y), and
N + wp is the unique dominant element in the W-orbit of A + wp..
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In fact in [Ku,; Theorem 1.2] (following a conjecture due to D. N.
Verma), we have shown that m,(\, p) = #{v € W\\W/W,: A\ + vp =
N + wu}, where W, is the stabilizer of X in W.

It should be mentioned that our Theorem (1.1) detects certain
components in the tensor product V() ® V() not covered by the above
theorem (PRV conjecture) and conversely. (Assuming \ and w to be
regular the above theorem detects | W| many components whereas Theo-
rem 1.1 only gives <|A. | components.)

Section (0) is devoted to establishing notation. Section (1) contains
the statement of our Theorem (1.1) and its proof, whereas Section (2)
contains the proof of Wahl’s conjecture.

Acknowledgments. 1 thank J. Wahl for bringing my attention to
his conjecture and to D. N. Verma for some conversations.

0. Notation. We will adhere (often without explaining again) to
the following notational conventions throughout the paper:

g = a complex finite dimensional semisimple Lie al-
gebra
b = a fixed Borel subalgebra of g
n = the nil-radical [b, b] of b
h = a fixed Cartan subalgebra C b
U(a) = the universal enveloping algebra of a (for any Lie
algebra a)
G = Simply-connected complex (semi-simple) group
with Lie algebra g
B = the Borel subgroup of G with Lie algebra b
N = the unipotent radical [B, B] of B
T = the (complex) maximal torus of G with Lie algebra
)
A = the set of roots for the pair (g, §)
8. = the root space corresponding to the root a (for any
o €EA)
A. = the set of roots for the pair (b, §)
W = the Weyl group associated to (g, b)
( , ) = afixed killing form on §*
{o, . . ., @}  denotes the set of simple roots C A,
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{aY, ..., a¥} denotes the corresponding (simple) co-roots: o)
c= 2a/{o, o)

{ri, . . ., r¢  denotes the (simple) reflections € W correspond-

ing to the simple roots {a, . . . , o} respectively

bz = the set of integral weights, i.e., {\ € hH* : (A, o)
€ Z, for all i}

D = the set of dominant integral weights, i.e., {\ €
bz : (\, o) = 0, for all i}

D} ={\€D:(\ o) = 0if and only if i € S}, where
S is any subset of {1, . . . , €}

D® = D}

For A € bz, C,  denotes the one dimensional B-module, such that
the torus T acts by the character ¢* and (of course)
the unipotent radical N acts trivially

V(\) = the (finite dimensional) irreducible g-module with
highest weight A € D
p = the (unique) element in D, such that {p, o) = 1,
for all the simple co-roots o.

Unless otherwise stated, vector spaces and tensor products are over
C. For a vector space V, V* denotes its dual Hom¢(V, C). For any A €
b%, N denotes the unique dominant element in the W-orbit of \. For
any 1 = i = ¢, we fix a root vector e; € g,, and f; € g_,, such that
(e f) = 2K, o), where ( , ) denotes the killing form on g induced
from ( , ) on h*. In the sequel, we shall often denote (A, o)) by
AMo).

1. Existence of certain components in the tensor product of two
representations. For any A € §*, define S, = {1 =i=€¢: \(a¥) = O};
where {0'};=i=¢ are the simple co-roots. Also for any B € A, define F,
={l=si=¢€:B — a;does not belong to A, U {0}}.

With this notation we have the following main result of this section:

(1.1) THEOREM. Let g be any complex semi-simple Lie algebra.
Take any N\, . € D and B € A, satisfying

(P]) )\+|L“B€D and

(P) S\US, CF,
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Then the irreducible g-module V(N + p — B) occurs as a component
in the tensor product g-module V(\) ® V(n) with multiplicity (denoted
mﬁ()" “‘)) =1

Before we come to the proof of the above theorem, we record a
particular case of this in the following:

(1.2) CoroLLARY. Let g be any complex semi-simple Lie algebra
such that the simple Lie algebra of type G, does not occur as a component
of §. Then, for any N\, p € D° (cf. Section 0) and any B € A,,
mg(\, p) = 1.

(As seen below A + p — B € D under the assumptions of the
corollary.)

Proof. For any g as in the corollary and any B € A,, (B, o) =
2 for all the simple co-roots o’ (cf. [B; page 278]). This, in particular,
gives that A\ + p — B € D. Now the corollary follows as a particular
case of the above theorem. U

(1.3) Remark. The above corollary in the special case when B is
a sum of simple roots with coefficients < 1, is earlier obtained by Wahl
[W,; Section 5].

As a preparation for the proof of Theorem (1.1), we observe the
following crucial

(1.4) ProrosITION. Forany\, ., 8 € D, letm = m(\, w; 0) denote
the multiplicity of V(8) in the tensor product V(\) @ V(w). Then m =
dim V; where V. = V(\, w; 8) := {v € [V(W)]o-» : €'y = 0, for all
1 =< i = €}, [V(n)]o-x denotes the (86 — \)-th weight space of V(u), and
e; is as in Section 0.

Proof. Clearly m = dim[V(\) ® V(w)]s, where [V(\) ® V()]
denotes the space of n-invariants of weight 6 in V(\) ® V(n). We can
rewrite [V(\) @ V()]s = [Hom.(V, V())le.

Now, by a result of Harish-Chandra, the map ¢ : U(n) = V(\)*
given by X — Xv}, for X € U(n) (where v§ # 0 € [V(\)*]-)), is
surjective and moreover

ker (P — 12( U(n).e;‘(uy)"'l.

(This also follows from the BGG-resolution.)
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In particular, the map ¢ : V — [Hom.(V(N\)*, V(n))]e, given by
Y()(Xv¥) = Xv (for v € V and X € U(n)), is well defined and is an
isomorphism. O

The following result is well known.

(1.5) CoroLLARY. Let A, pn, 0, N, n' € D. Then
m(\, w; 0) =m0\ + N, p + pn'50 + N + p).

Proof. - Define the map & : V(pn) = V(n + p') by &v) =
w(v ® v,), for v € V(); where 0 # v,. € [V(p')]. and 7 is the unique
g-module projection: V(p) ® V(p') = V(p + p').

Since for any 0 # v € V(p), v, ® v. € U(g)(v ® v,.), it is easy to
see that the map £ is injective. Further £ takes the set V(\, p; 6) into
the set {(w € [V(in + p)]|oswr : €@*'w = 0,forall 1 =i =< €. In
particular, by the above proposition, the corollary follows. U

We also record the following lemma on the property of finite re-
duced root systems.

(1.6) LeMMA. Let g be any simple Lie algebra. Then

(a) If B € A, is such that B — 20 is a root (for some simple root
a,), then none of the B — 2a; and B — 20; — «; belong to A U {0}, for
any simple root o; # w;.

We denote this (unique) o; (whenever it exists) by o;(B).

(b) Assume g to be simply laced. Then, for any B € A, and simple
root o;, B — 2a; is a root if and only if B = «;.

Proof. The (b)-part follows from the fact that for any § € A, and
any simple co-root o such that g # o;, —1 = (B, o) = 1 (see [B; Page
278)).

To prove the (a)-part; (in view of the b-part and the classification
of simple Lie algebras) we can assume that the type of g is one of
(following the notation of [B]) B.(f = 2), C{(€ = 2), F,, or G,. Now,
from the explicit knowledge of A, (see [B]), one easily finds the validity
of (a).

Alternatively (as B. Kostant has suggested), by looking at the span
of B, o, and o; (for any i # j), we can reduce the problem to the simple
Lie algebras of rank = 3; where we can explicitly check. O
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(1.7) Proof of Theorem (1.1). By Proposition (1.4), to prove the
theorem, it suffices to show that V.= V(\, p; A + p — B) := {v €
[V(w)]u_p : €@y = 0, for all 1 < i < €} # 0. Next observe that (to
prove the theorem), it suffices to assume that g in fact is simple.

We need to deal with the following three cases separately:

Case (a). B — 2u is not a positive root for any simple root o; or
else (u, V) = 1:

(This case, in particular, covers all the roots of simply laced Lie
algebras — A,, D., Es, E;, and Es.)

Consider the element v := X_gv, € [V()].-s, Where 0 # X_, €
g_g and 0 # v, € [V(p)]p. We claim that

(1) Xgv # 0, for 0 # X, € gg (in particular v # 0), and (2) v E V:

XpX_pv= [Xp, X_g]ve , since Xpv, = 0
= (Xp, X_p)hgv, , where ( , ) is the Killing form on g and
hg is the unique element in § satisfying
x(hg) = (x, B) for all x € bh*
= (Xp, X-p)i(hp)v,..

Writing B = ;<4< nxou, we get that n,, > 0 for some ko ¢ Fp. In
particular, by the condition P,, p(a)) > 0 and hence w(hg) # 0. This
proves (1). We now prove (2):

For i € F,, ev = [e;, X_p]v. = 0 (by the definition of Fy).

For i ¢ F, (setting n = MaY) + 1), efv = ((ad e)"X _g)v, = 0,
for the following reason:

In the case when B — 2q; is not a positive root, ((ad €;)’X_g)v,. is
clearly 0. Moreover, since i ¢ F, by the assumption P,, M(oY) = 1.

In the other case, i.e., (u, BY) = 1, we easily see that
[V(W)]u-p+ne, = 0, since [ — B + naull > [pll:

Iw = B + noif® = |pl® + r’laull® + 2n(n — B, @)
= l® + r’llell* + nlloul|Xp — B, o)
= [ull® + nllol®(N + p — B, a¥) + 1)

> ||ll? since, by P, A + . — B € D.
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So the theorem is established in this case; in particular, for any
simply laced g.

Case (b). B — 2a;is a positive root for some (and hence, by Lemma
1.6, unique); simple root o; = o(B), and g # G»:

Pick a non-zero X s € g4 and set X g, := [¢, X g], and
X _p+20, = (ad €)’X . By our assumption on B, X ., and X _g. 2, are
both non-zero. (Observe that none of B + o;and B — 3, can be a root
since, for any g # G, and any a € A, —2 < (o, o) = 2.) Now take v
= (X_p+afi — 2w, 0)X_p)v,. Again we claim that

(1) XBV # 0, for 0 # XB (S as
*)--- (2) ev =0,foralll =i =< ¢, and
(B)ev =0,foralli€ Fy N Fy_, :

We have
XBV = [[XB’ X—B+u,]’ fj]vu - 2<“" ay)[XB’ X—ﬁ]vu

= [[eh [XB’ X*B]]’ fi]vu - 2(“4, al\'/)[th X—B]vw since [ef’ XB] =0

= —o([Xp, X-pDm(o)v = 2w, o )[Xp, X_p]ve

= _<”‘7 a]v><XB7 X—ﬁ><2”‘ + Qy, B)vu

# 0, since (B, o) = 2 andj ¢ S, (by P,).

This proves (1). We next show (2):

First take i # j. Then €/X_gv, = ((ad €;)’X_p)v, = 0, by Lemma
(1.6). Also €X g, [V, = ((ad e)’X _g+o) fiv. = 0, again by Lemma
(1.6). Further

v = (X pra fi + () X pra)Vu — 2m, )X pi2aVs

= 2W()) X pr2o Ve — 21, )X pr2aVs

= 0.
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This establishes (2). The assertion (3) is clearly true.

By (*), we get that v € V in all the cases covered by (b) provided
Sy C Fy_q, (since Sy C Fg by the assumption P,), and hence the theorem
is established in the case (b) as well provided the following condition is
satisfied:

) S\ C Fy_a,

Two cases are noteworthy when the condition € is automatically
satisfied:

(6,) When A € D°, so that S, = ¢, and

(6,) Any A, p as in Theorem (1.1) but those B (satisfying the
condition as in case b) which have Fy = Fp_ ).

We next observe that for a given B € A, in any g # G,, to prove
the theorem for arbitrary \, p (satisfying the conditions of the theorem),
it suffices to assume (in view of Corollary (1.5)) that A = p = pg, where

ppi= 2 Xoand x(1 =i =1¢)
i¢FB

is the i-th fundamental weight: x.(oY) = 9 ;.

(Notice that 2p, — B € D, for any B € A, in any g # G,.)

Now, by combining the cases (a) and (b) (satisfying the condition
,), we readily see (from the following chart) that the theorem is es-
tablished for any g and any B (for arbitrary choices of A, u € D satisfying
the conditions of the theorem) except the three roots: B = 2a,; + a, of
Gy B =oa; + o+ 203 + 204, and B = oy + 20, + 403 + 20, Of F.
So the theorem will be completely proved, if we check its validity for
the above three roots and A = p = py; which we isolate as:

Casec. (1)ga =GB =20 + 03, A =p =pg =Xa

2)g=FyB =01+ o+ 203 + 20, A=p=pg =X+ Xe,
and

B)g =F;B=0a; + 20, +4as + 204, N = p = pg = Xa:

In this case as well, the validity of Theorem (1.1) can be established
by an explicit calculation using Proposition (1.4):

In the first subcase (c-(1)) take for v = (cX_pg + dX_pia,f1)Vy, in
the second v = (cX_g + dX_pio,f1)Vy+x» and for the third take
v=(cX_p+ dX gia,f3 + €X_piogra,X—(as+as)Vx,- FOI SOME appropriate
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choices of ¢, d, e € C, v belongs to V in all the cases and Xzv # 0. This
completes the proof of the theorem. O

2. Proof of Wahl’s conjecture. Following the notation of Section
0, we fix (once and for all in this section) a proper subset S C {1, . . .,
¢} (including S = ), and let B C P = P; be the corresponding parabolic
subgroup of G, with Lie algebra p = ps. We denote the unipotent radical
of Pby U = Us and its Lie algebra by u = 1. Then

u= @ g.andp =0 ® (DPaca,(s) 3-0)>

aEAﬁ

where A% 1= A \AL(S), and A, (S) := Cies Zay) N A,
We define u~ as the Lie algebra @.cas g-., and let U~ be the
corresponding (unipotent) subgroup of G.

(2.1) Definition. For any algebraic P-module M, by L(M) we
mean the vector bundle (locally free sheaf) on G/P associated to the
principal P-bundle: G — G/P by the representation M of P.

For any A € b7, such that A(aY) = O for all i € S, the one dimen-
sional T-module C, (given by the character ") admits a unique P-module
structure (extending the 7-module structure); in particular, we have the
line bundle £(C,) on G/P. We abbreviate the line bundle £(C_,) by
£(M\). Given two line bundles £(\) and £(j.) on G/P, we can form their
external tensor product to get the line bundle £(\ [X] p) on G/P X G/P.

With this definition, we have the following:

(2.2) ProposiTiON.  For any p € DS (cf. Section 0):

(a) H(G/P, 9. ® L(n)) = 0, forallp >0

(b) H(G/P, $2 Q@ £(n)) = 0, for all p > 0, and

(c) HY(G/P, $:Q L(p)) (resp. H'(G/P, 0/92Q $(w)) is canonically
isomorphic (as P-modules) with (V(p)/g-v,)* (resp. (g-v,)*), where $,
denotes the ideal sheaf of the base point e = PIP C G/P, O denotes the
structure sheaf of G/P, and v, # 0 € [V(p)]..

(Observe that, since p(a¥) = 0 fori € S, g-v, C V(p) is stable
under P, and also the point e being P-fixed H(G/P, $2 @ $(w)) and
H°(G/P, 0/$2 ® £(p.)) have canonical P-module structures.)
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Proof. (a) Consider the sheaf exact sequence:
(CARN 0> 9. L(p) = L(n) > 0/9, @ L(n) — 0.

Clearly H?(G/P, 0/$. ® £(n)) = H"(e, £(p).) = 0, for all p > 0.
Also H?(G/P, $(p)) = 0, for p > 0, by [RR; Theorem 1]; and the
restriction map: H(G/P, £(p)) — H e, L(1.).) is surjective (cf. [RR;
Theorem 2]). So the long exact cohomology sequence, associated to the
sheaf sequence (&), gives (a).

(b) Similarly, consider the sheaf exact sequence:

(£ 0 $2® L(n) > L(p) — (0/92) @ (1) — 0.

We write a part of the corresponding cohomology exact sequence,
and denote it by

(#3)--- 00— HYGIP, 97 ® L(n)) = HY(G/P, £())
3 HY(G/P, (0/$2) ® £(p)) — H'(G/P, $2 ® L(n)) — 0.

The map: u~ — G/P, given by X — exp X(mod P), is an open
embedding (onto the ‘big’ open cell through €) and moreover the line
bundle L(jL)|mage «- admits a nowhere-vanishing (tautological) section
of weight — . This allows us to identify H°(G/P, 0/$2 ® £(p)) canon-
ically with C_, ® (C[ta]pcas /{tutp)u peas ), Where {ts}acas are the coordinate
functions on u~ under a fixed basis {X _p}geas (consisting of root vectors
of weight —B) of u~ and {¢,£) denotes the ideal generated by #.t,. Further
the Borel-Weil isomorphism canonically identifies H°(G/P, $()) with
V(p)*. So, transporting the map w under these identifications, we get
the map

# 1 V(n)* > Homc(C,, Cltglpess /tatp)apens)-

It is easy to see that the map 4 is given by

(7 (9)";&)('362Ai X a) = 08(exp (2 X _p)v,) mod(tuty),

for 8 € V(p)* and v, € C, = [V(p)].

= O(VM) + BE%‘S, tae(X_BV“).
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Now we assert that the map f (and hence ) is surjective: To prove
this, it suffices to show (in view of the above expression of #) that the
vectors {v,, X _gV.}seas are linearly independent. But since they all have
different weights, it suffices to observe that they are all non-zero (which
follows since p. € DY).

So the exact sequence (¥5) (and the surjectivity of ) establishes
the vanishing of H'(G/P, $2 ® £(p)). Vanishing of H?(G/P, $2 Q%(w)),
for p > 1, follows by considering the cohomology exact sequence as-
sociated to the sheaf exact sequence:

(9’4)... 00— &3@&2(”‘)—)§e®$(ﬂ)_)-g)e/5)3®°(£(p‘)——>0’

and the (a)-part of the proposition. So (b) follows.
(c) It is easy to see, from the description of the map 4, that

Ker & = {8 € V(n)* : 8jg., = 0} = (V(w)/g-v,)*.

So, by the exact sequence (¥;) again, (c) follows. O

Remark. The analogous proof as above also gives that H?(G/P,
0/9% @ L(n)) = 0,forallp >0and k = 1, 2.

(2.3) LemMA. For N\, . € D§, k = 1,2 and any p = 0, there are
canonical isomorphisms:

H?(G/P x GIP, $% ® $(\ [X] w))
~ H?(G/P, 2(\) ® L(H(G/P, $¢ @ L(w)))),
and
H?(G/P x GIP, 0/%% XL\ ® n))
~ H?(G/P, 2(\) @ L(H'(G/P, 0/%* @ L(w)))).

Further H?(G/P x G/P, $p ® (A X n)) = 0, for all p > 0; where $,
is the ideal sheaf of the diagonal D C G/P X G/P.

(We will see in Theorem 2.5 that H?(G/P X G/P, $, ® $(\
wn)) = 0, for all p > 0.)

A
Proof. Consider the fibration G/P := G Xp G/P = G/P (with
fiber G/P), where P acts on G/P by left multiplication. Clearly the group
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G acts on G/P by multiplication on the first factor. Define a biregular
G-equivariant isomorphism d : GlP > GIP x G/P, by d(g, g'P) =
(gP, gg'P), for g, g’ € G; where G acts diagonally on G/P X G/P (cf.
[Kuy; Section 1.1]). Clearly d"'(D) = G Xp{e} C G Xp G/P. From
this it is easy to see that Ric.(d*($H @ L(A 1)) is canonically
isomorphic with £(\) ® L(HY(G/P, 3¢ ® £(p))), for any g = 0. (A
similar statement is true for $% replaced by 0/%%.) In particular, by
Proposition (2.2) and the (degenerate) Leray spectral sequence, first
part of the lemma follows.

To prove the vanishing of H?(G/P X G/P, $, ® L(\ [X] n)); use
the cohomology exact sequence, associated to the sheaf exact sequence:

&) 059 Q@LEANK p)—> LXK p)
— (0/$,) ® $(\ X p) — 0,

and [Ku,;; Theorem 1.5]. U

The following lemma is used in proving our crucial proposition
(2.6).

(2.4) LeMMA. Take N, . € D§ and 6 € D. Then Homp(V(0)*,
C_, ® (g-v,)*) is one dimensional if and only if 8 = A + p — B, for

some B € A, U {0} such that (if B # 0) S C F; (cf. Section 1.1). Otherwise
it is zero.

Proof. 1t is easy to see that, as a P-module,
=~ (g/Ann v,) ® C,,

where Ann v, is the annihilator of v, in g and the right side is given the
tensor product P-module structure. Hence

(8-v)* = (8/(n ® Ker p ® (Buea,s) 3-)))* ® C_,,

where Ker p := {h € § : p(h) = 0}. Using the Killing form on g, we
get:

(1) (8- v)* = U ® (Ker p)') ®C_,,
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where (Ker p)* := {h € b : (h, Ker p) = 0} and u & (Ker p)* is a P-
module under the adjoint representation. By the result of Harish-Chan-
dra (cf. proof of Proposition 1.4), we get:

Homp(V(8)*, C_, ® (g-v.)*)
~ Homp(V(8)*, C_q+wy @ (1 ® (Ker p)*)), by (1))
~ {vE [u ® (Ker p)*]r+n_o : (ad €)**y = 0, for all i}.
It is easy to see, from the above description, that
(L)--- Homp(V(6)*, C_, ® (g-v,)")
~{v € [u® (Ker p)*hsn_o : (ad )**y = 0,
forl1 =i=¢and (ad f)v = 0, for all k € S}.

Clearly the right side of I, is of dim =< 1 and if it is non-zero, the following
conditions (1) and (2) are both satisfied:

(1) A\ + p — 0 = B, for some B € AS U {0}, and
2 Ifg#0,F,DS.

Conversely, for any dominant 6 which satisfies the conditions (1)
and (2) as above, the right side of I, (and hence Homp(V(0)*, C_, ®
(g-v,)™)) is one dimensional:

If = 0, (ad e)**!((Ker p)*) = O for all i ¢ S (since \, p €
DY), and ad e,((Ker p)*) = ad fu((Ker p)*) = 0 for all k € § (since
p(a) = 0).

So assume now that B € A% and pick 0 # Xz € gg: By (2),
(ad f)Xz = 0, for k € S. So, by the s€(2)-theory, B(a) = 0 and
(ad €)' P@)X, = 0. For i ¢ S, we again claim that (ad e)*®*1X, =
0,ie.,B + (6(ew) + 1o ¢ A,: We have [B + (0(er¥) + Da](ar) =
AN+ p)a)+ AN+ p—B)ow)+2=4,sinceN+pn—-B=0€E
D and \, p. € D§. But this contradicts [B; page 278, Fact 6].

Next observe that any B € A, with § C F,, automatically lies in
A% . This completes the proof of the lemma. O



1216 SHRAWAN KUMAR

Following is the main theorem of this section:

(2.5) Tueorem. For any N\, n € D§ (where S C {1, ..., €} is
arbitrary)

H?(G/IPx GIP, $5Q £(\ X n)) = 0, for all p > 0;

where (as in Lemma 2.3) $p is the ideal sheaf of the diagonal D C
G/P x G/P.

Before we come to the proof of the above theorem, we prove the
following crucial

(2.6) ProrosiTiON. With the notation and assumptions as in Theo-
rem (2.5), the following two are equivalent:

(a) H'(G/P x G/P, $5 QLA X n)) = 0.
(b) For all B € A, satisfying

(1) Fe D S, and

@ +p-BED,

there exists a fg € Homp(Cysp—pg ® V(N)*, V(1)) such that
Xp(fo(Crin-p ® W) # 0, for Xp # 0 € qp; where v # 0 €
[VM*]-x
Proof. From the cohomology exact sequence, associated to the
sheaf exact sequence:

Fe)+ 0> QLK p) > LN X p)

— (0/93) @ L\ [X ) — 0,
and the vanishing of H'(G/P x G/P, £(\ [X] p)) (cf. [Ku;; Theorem
1.5]), we get that (a) is equivalent to the surjectivity of the canonical
map 7 : H(G/P x G/P, $(\ [ w)) — HGIP x GI/P, (0/$%) ®
LN X w)).

By Lemma (2.3) and Proposition (2.2) we get:
HYGIP x GIP, (0/%%) ® £(\ K n))

~ H(G/P, 2(\) ® £((g'vi)™)-
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Further, by [Ku;; Proof of Theorem 2.2] and Borel-Weil theorem,
H%G/P x G/P, (A X] n)) = H(G/P, £(\) ® L(V(n)*)).
Transporting the map T under these identifications, we get the map
T HY(GIP, £(\) ® £(V(w)*)) = H(G/P, Z(\) ® £((3°v.)*));

which in fact is induced from the canonical restriction: V(p)* — (g-v,)*.
By Peter-Weyl theorem, for any algebraic P-module M, we have a
canonical G-module isomorphism:

H(G/P, £(M)) =~ ®oep V(8)* ® [V(8) @ M],

where G acts trivially on [V(0) ® M]". (Even though we do not need,
a more general result is obtained by Bott [Bo; Theorem I].) So the
surjectivity of the map 7 (and hence of 7) is equivalent to the surjectivity
of the canonical restriction maps

Yo : [V(6) ® C_x @ V(w)*]" = Homp(C, ® V(p), V(8))

e Homp(Cx ® (Q 'vu)o V(B))’

for all 6 € D.

For 8 = N + p, the map v, is clearly non-zero and hence, by
Lemma (2.4), is surjective. Making use of Lemma (2.4) again, we only
need to check (for the surjectivity of 1) that the map vy, is non-zero for
6 =N+ p — B, for all those B € A, satisfying S C Fz (and A + p —
B dominant):

Choose a positive definite Hermitian form { , } on V(\) (and
V(w)) satisfying {Xv, w} = —{v, a(X)w}, for v, w € V(\) and X € g;
where o is a conjugate-linear involution of g which takes g, to g_, for
all € A. Now set the tensor product form (again denoted by) { , } on
V(\) ® V(p).

Consider the diagram (for 8 = A + p — B):
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Homg(V(8), V(N) ® V(1)) —2>Homg(V(A) ® ¥(k), V(8))—> Homs(C, ® V(w), V(6))

2I Y2 N\ VG l Y5
Homg(V(8) ® V(V)*, V(W) Hom,(C, ® V(n), V(9))
U mn Yo
Homjp(C, ® V(N)*, V(i) Homp(C, ® (g-v,), V(9));

where vy;, i, ¥s, Y6 are the canonical restriction maps, and vy, is the
canonical isomorphism. Clearly vy, and vy, are isomorphisms and more-
over s is injective. But v, being surjective, v; is surjective as well. Now
we describe the map vs: For any non-zero f € Homg(V(9), V) ®
V(p)), write V(\) ® V(n) = Image f @ (Image f)* and set 'y3(f) as the
projection on the first factor (identifying it with V(0) under f). It is easy
to see that vy, is a bijective map. (Observe that it is not a linear map.)

Following through the various isomorphisms in the above diagram,
it can be seen that

the map -y, is non-zero < there exists a B-morphism f = f : C, ®

V(\)* — V(p) such that {(yy')V(8), C,
® (g ' vu)} #0

< {U(n_)(('YZ'Y;lf)CO)’ G ® (g : V,,,)} #0

S {(v41'f)Cs, C. ® (g-v,)} # 0, by the in-
variance of { , }; since C, ® (g-v,) is U(n)-
stable

S{f(Ce®VvY),a-v,} #0

S {f(Ce® V), X_pv} #0,for0# X _sEg_¢

S {Xa(f(Co ® V))), v} # 0, by the invariance
Of{ b }

S Xa(f(Co ® vY)) # 0.

This proves the proposition. O
Now we are ready to prove Theorem (2.5):

(2.7) Proof of Theorem (2.5). We first prove the vanishing of
H'(G/P x G/P, $3 ® L(\ [X] n)): In view of Proposition (2.6), it suffices
to check the equivalent condition (b):

By Theorem (1.1), for any B € A, as in condition (b) of Proposition
2.6, Homg(V(A + p — B), V() ® V(n)) = Homp(Cysp—p, V(N) ®
V(r)) = Homp(Cy+ g ® V(N)*, V(p)) # 0. In fact, if we carefully see
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the proof of Theorem (1.1) (as given in Section 1.7), we have constructed
fe € Homp(C,,,.-p ® V(N\)*, V(i) which satisfies the requirement of
Proposition (2.6) viz Xa(fp(Cy +.-p ® v¥)) # 0. This completes the proof
of the vanishing of H'(G/P X G/P, $5 ® L(\ [X] p)).

To prove the higher cohomology vanishing; consider the coho-
mology exact sequence, associated to the sheaf exact sequence:

F) 059 LAKX )= Ip ®LNX 1)
- ($/93) R LA X p) — 0,

together with Lemma (2.3) and [W,; Proposition 3.9]. (Use the fact that
the sheaf ($,/93%) ® L(\ [X] p.) of Ogpx i/ $p = Op modules on G/P %
G/P is supported on the diagonal D and, moreover, restricted to D it
is isomorphic with Q% ® L(\ + p), where Q& is the sheaf of 1-forms
on G/P.) This completes the proof of Theorem (2.5). O

Let us recall the definition of the Gaussian map from [W,]:

(2.8) Definition. Let X be a smooth projective variety with two
line bundles &; and &, on X. Let D C X X X be the diagonal. Define
the Gaussian map

®: HAX X X, $p @ (L K L)) =>HX X X,($5/93) ® (£ K L))

l

HX, QL £, ® %),

got by the projection: $, — $,/95, where $, is the ideal sheaf of
D C X X X and Qf is the sheaf of 1-forms on X.

The following result was conjectured by Wahl [W,], who proved it
for X = SL(n, C)/B and also for X = G/P, where P is a maximal
parabolic subgroup (in a semi-simple G) corresponding to a miniscule
weight (cf. [W,; Theorems 6.1 and 6.2]).

(2.9) THEOREM. Let G be a complex semi-simple simply-connected
group and P = Pg any parabolic subgroup. Then, for any \, p. € D§,
the Gaussian map ® : H'(G/P x G/P, $, @ $(\ [X] p)) —> H*G/P,
Qbr @ L(\) Q@ L(1)) (defined in Section 2.8) is surjective.
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Proof. Follows trivially from the cohomology sequence associated
to the sheaf sequences ¥; (cf. Section 2.7), together with Theorem
(2.5). O

(2.10) Remark. (a) Surjectivity of the Gaussian map ® (as in the
above theorem) together with Lemma (2.3), in view of the sequence
¥, gives the vanishing of H'(G/P x G/P, $3 ® £(\ [X] )). Now the
vanishing of H' implies the vanishing of H?(G/P x G/P, $3 @ £(\
p)), for any p > 0 (as is seen in the proof of Theorem 2.5, given in
Section 2.7). Hence we see that Wahl’s conjecture (proved in Theorem
2.9) is equivalent to Theorem (2.5).

(b) A more geometric proof of Wahl’s conjecture (not using Theo-
rem 1.1) is desirable.
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