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T-EQUIVARIANT K-THEORY
- OF GENERALIZED FLAG VARIETIES

BERTRAM KOSTANT & SHRAWAN KUMAR

0. Introduction

To any (not necessarily symmetrizable) generalized / x / Cartan ma-
trix A, one associates a Kac-Moody algebra g = g(A4) over C and group
G = G(A4). G hasa “standard unitary form” K . If A4 is a classical Cartan
matrix, then G is a finite dimensional semi-simple simply-connected alge-
braic group over C and K isa maximal compact subgroup of G . We refer
to this as the finite case. In general, one has subalgebras of g: hcbCp,
the Cartan subalgebra, the Borel subalgebra, and a parabolic subalgebra,
respectively. One also has the corresponding subgroups: H C B C P, the
complex maximal torus, the Borel subgroup, and a parabolic subgroup,
respectively. We denote by 7 the compact maximal torus H N K of
K. Let W be the Weyl group associated to (g, h) and let {r;}, .,
denote the set of simple reflections. The group W operates on the com-
pact maximal torus T (as well as on H) and hence on the group algebra
R(T) := Z[X(T)] of the character group X(T) of T and also on the
quotient field Q(T) of R(T).

For any W-field F, we can form the smash product F,, of the group
algebra Z{W] with F . In [19] we took, for F, the field Q = Q(p") of all
the rational functions on h and defined an appropriate subring R C Q,,,
and showed that R and its “appropriate” dual A, along with a certain
R-module structure on A, replace the study of the cohomology algebra of
G/B together with the various operators defined on H"(G/B). Hence the
problem of understanding H"(G/B) , especially the cup product structure
and other operators on H *(G/B) , reduced to a purely combinatorial (and
hopefully more tractable) problem of understanding the ring R and its
“dual” A, defined purely and explicitly in terms of the Coxcter group W
and its representation on §” .
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Our aim in this paper is to prove similar results for the T-equivariant
K-theory of G/B as well as the K-theory of G/B, where T acts on
G/B by the left multiplication. A parallel approach for other cohomology
theories is not possible, as is shown by Bressler-Evens and Gutkin [4, 10,
13].

We replace Q(4") by the W-field Q(T) and analogously define a cer-
tain subring ¥ of Q(T), , again purely and explicitly, in terms of the
Coxeter group W and its action on the torus 7. We prove a structure the-
orem for Y analogous to the corresponding structure theorem for R [19,
Theorem 4.6]. Our next main result is that the dual ¥ of Y , which is also
a Y-module, is “canonically” isomorphic with K,.(G/B) and, moreover,
under this isomorphism, the Weyl group action as well as certain operators
{D,}yew On K (G/B), which are similar to the Demazure operators de-
" fined on R(T), correspond to the action of certain well-defined elements
in Y. The ring ¥ “evaluated” at 1 does the same for K(G/B). Similar
results are true for any G/P and in fact for any Schubert subvariety of
G/P.

As a particular case, we obtain the above-mentioned results in the finite
case. We believe that the main results of this paper are new in the finite
case as well. As an application of our results in this case, we can easily
deduce some of the important (though known) results. '

Now let us describe the contents of the paper in more detail.

81 is devoted to recalling some standard facts from Kac-Moody theory
and setting up the notation to be followed throughout the paper.

In §2 we let Q,, = Q(T), be the smash product of the W-field Q =
Q(T) with the group ring Z[W] (cf. §2.1). Then @, is an associative
ring with identity, which is an algebra over the W -invariants o” (but
not over Q). The ring Q,, admits an involuntary anti-automorphism ¢
(cf. (1,)). For any simple reflection r; € W, we define a certain element
¥, =¥, €Qy (cf. (1,)). These elements satisfy the braid relations (cf.
Proposition 2.4), and as a consequence we have a well-defined element
Yy €Qy forany we Ww.

The ring Q,, has a natural representation in Q (cf. (I;)). We define
our basic subring Y C @, as the stabilizer of the subring R(T) of Q.
It is easy to see that y,, € Y, and moreover Y is stable under the left (as
well as the right) multiplication ' with R(7). But conversely, we prove the
crucial structure theorem for ¥ (Theorem 2.9); which asserts that ¥ isa
free R(T)-module under left (as well as right) multiplication, with a basis
{Vu}wew (and this is our first main theorem). This theorem is analogous
to our structure theorem for the ring R [19, Theorem 4.6] and its proof
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also is similar. But let us point out that the structure theorem for Y is
proved here even ‘over Z’ in contrast to [19], where the corresponding
theorem for R was proved only ‘over C (or Q) . In fact, in the appendix
of this paper, we show that this is false ‘over Z’ already in the finite case.
We analyze this question in somewhat more detail in the appendix. We
introduce a coproduct structure A in Q,, (in §2.14) which is used to study
the product in K.(G/B).

We dualize the above objects and define Q = Q(T) := Hom,(Q,, , Q),
where Q,, is considered as a Q-module under the right multiplication.
The coproduct A in @, ‘makes Q into an associative and commuta-
tive algebra over Q. Since O, hasa Q-basis {J,},cp > € can also be
thought of as the space of al/ the functions W — Q. Under this identifi-
cation, the algebra structure on 2 is nothing but the pointwise addition,
scalar multiplication, and pointwise multiplication of functions. Using
the involution ¢ of Q, , Q gets equipped with a natural left Q,,-module
structure defined in (I,,). Now ‘dualizing’ Y, we get an R(T')-subalgebra
Y= {y e Q: w(Y)CR(T)) of Q, which will play an important role in
the paper. It is easy to see that the action of Y C 9, on Q keeps ¥ sta-
ble, in particular, the elements J, and y,, acton ¥. The R(T)-algebra
" ¥ has a ‘basis’ {y"} dual to the basis {y,} of Y. (Actually ¥ is
the direct product HweWR(T)'//w (cf. Proposition 2.20).) We introduce
the W x W matrix E = (¢"), o, » where """ := y"(4,). We collect
various properties of-the matrix E in Proposition 2.22. In particular it is
‘upper triangular’, We show (cf. Proposition 2.22(e)) that the ‘/(v) th de-
gree component’ of e’ is precisely equal to (—l)l(v)dv w? where d, .
is as in [19, §4.21]. So the FE-matrix determines the D-matrix of [19].
The action of y, on ¥ is explicitly given by Proposition 2.22(d), and
moreover the action of 5w as well as the product in W is explicitly writ-
ten down (in the {y"}-‘basis’) in terms of the E-matrix (cf. Proposition
2.25). - _

Finally we show (cf. Proposition 2.30) that the ring ¥ has a ‘natural’
filtered ring structure, such that the associated graded ring Gr(¥) (rather
C ®, Gr(¥)) is canonically isomorphic with the ring A introduced in
[19]. (We recall that the ring A is the ‘cohomological analogue’ of the
ring '¥.) In particular, by the results of §3, we get that Ce, K .(G/B) has
a filtration such that the associated graded ring is canonically isomorphic
with the equivariant cohomology (over C) H7(G/B).

§3 is devoted to the study of T-equivariant K-theory of G/P, where
G is any Kac-Moody group with any parabolic subgroup P and T acts

wew
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on G/P by the left multiplication. In particular, the results apply to the
based loop group Q,(G,) of a compact simply-connected Lie group G, .

Motivated by the Demazure operators on R(7), we define certain op-
erators {D, } ., on K.(G/B) (and K(G/B)). It may be mentioned
that Kazhdan and Lusztig have recently defined similar but more general
operators in the finite case (acting on equivariant K-theory of Springer fi-
bres) and used them to prove the Deligne-Langlands conjecture [18]. The
Weyl group W, being isomorphic with N (T)/T, acts on K/T ~ G/B
(cf. §3.11). Moreover the W-action commutes with the action of 7" on
G/B, and hence we get an action of W on K (G/B) (and K(G/B)).

Our second main theorem of the paper (Theorem 3.13) is that there
is a ‘canonical’ R(T)-algebra isomorphism y: K (G/B) — ¥, such that
the action of the Weyl group element w (resp. the operator D,) on
K, (G/B) corresponds, under 7, to the action of the element J§, (resp.
y,,) on ¥. About the proof; we only mention that it crucially uses the
localization theorem of Atiyah-Segal, and a certain consequence of the
equivariant Thom isomorphism (which can be viewed as a generalization
of Bott-periodicity). We also prove (Theorem 3.28) that y induces an
isomorphism y,: K(G/B) — Z ®pry ¥, where Z is considered as an
R(T)-module under the standard augmentation map. Similar results are
also obtained for K (G/P) (and K(G/P)) and, in fact, even more gener-
ally for any left B-stable closed subspace Vg of G/P (cf. Corollary 3.20
and Theorems 3.23 and 3.29). By transporting the ‘basis’ {¢“} of ¥ via
!, we get a ‘basis’ {t"} of K, (G/B). In particular, the Weyl group
action, the product, and the action of the operators D, on K .(G/ B) can
be explicitly written down in the {t“} ‘basis’ in terms of the E-matrix.
We give a characterization of this ‘basis’ in Proposition 3.39. As a con-
sequence we show that, in the finite case, the basis {e(z")} of K(G/B)
(where ¢ is the canonical map K (G/B) — K(G/B)) is essentially the
basis given by Demazure in [7].

84 is devoted to specializing the earlier results to the finite case. We
show that some of the important (though known) results can be easily de-
duced from our Theorem 3.13 (which identities K.(G/B) with ¥). In
particular, for any compact simply-connected Lie group G, with maximal
torus 7', we deduce that: (a) K.(G,/T) is canonically isomorphic with
R(T) ®r(G,) R(T) (cf. Theorem 4.4), and (b) the Atiyah-Hirzebruch ho-
momorphism R(T) — K(G,/T) is surjective (cf. Theorem 4.6). The fact
that K*(G,) is torsion free can also be easily deduced from our Theorem
3.13. :
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The main results of this paper are announced in [20].

The second named author has proved that, for any v < w € W, the
ring of functions of the tangent cone T,(X,) at v for X, , which is
canonically a 7-module, has character (defined appropriately) *bw_l !

(cf. (I5)), where * is the involution of Q(T) induced by the map PN
e~* forany ' € X(T),and X, isthe Schubert variety Bw B/B C G/B.
This result is used to connect the singularity of the Schubert varieties
with the B-matrix (cf. §2.7), which in turn ‘controls’ the T-equivariant
K-theory of the flag variety G/B.
As another consequence, one obtains that bw,v # 0 if and only if
w > v . The details will appear elsewhere.

Acknowledgments

We thank the referee for his suggestions on improving the exposition
and for pointing out an error, and H. V. Pittie for some helpful conversa-
tions. The contents of this paper were (at various stages of writing) subject
matter of lectures, by one of the authors, at SUNY (Stony Brook), Yale
University, Universita degli studi di Roma, and the University of British
Columbia (Vancouver). Hospitality of these institutions is gratefully ac-
knowledged. :

1. Preliminaries and notation

(1.1) Kac-Moody algebra (definitions and basic properties) [16, 25].
Let 4 = (a,.j)lsl.,jg be any generalized Cartan matrix (i.e., a;, = 2,
—a; €L, forall i # j, where Z_ is the set of nonnegative integers, and
a; = 0 if and only if a; = 0). Choose a triple (b, 7, nv), unique
up to isomorphism, where b is a vector space over C of dimension
(2] —rank A), n = {o;},.;; Ch", and 1’ = {h;}1<i<; C b are linearly
independent indexed sets satisfying ;(k;) = a;;. The Kac-Moody algebra

= g(A) is the Lie algebra over C, generated by h and the symbols e, and
f; (1 £i< 1) with the defining relations [h, ] = 0, [4, ¢,] = ¢;(h)e;,
h, f1=—c;h)f, for heh andall 1 <i</, [el.,fj] = 5ijhj for all
1<i, j<I,and

(adei)l_a’f(ej) 0= (adf,.)l_aij(ff) forall 1<i#j<L

In the above, we can replace C by any field k& of characteristic 0. and
obtain a Kac-Moody Lie algebra g, over the field k. If k is a subfield
of C, then of course g, ® C=g.
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b is canonically embedded in g and is called the Cartan subalgebra of

g.
One has the root space decomposition g =h @} ., (8, P8_,), where,

for any A € b*, g, := {x € g: [k, x] = A(h)x, for all h € b}, and
A, = {a e Zi’=1 Z,o;:a#0 and g, #0}. Define A=A, UA_, where
A_:=-A_ . The subset A, (resp. A_) of h" is called the set of positive
(resp. negative) roots. The roots {a;},<;.; are called the simple roots and
the elements #, (1 <i <) are called the simple coroots.

We fix a subset S (including S = &) of {1, --,/}. Put Ai = A
{Xies Ze;} , and define the following Lie subalgebras of g:

n=>Y g, u=ug= Y g,

LN

a€A+ QGA+\Ai
t=t5=b@§:(ga®g_a), b=bh&n, p=ps=trPu
aGAi

Since [rg, ug] Cug, tg acts on ug.

Associated to (g, b) there is the Weyl group W C Aut(h*), generated
by the ‘simple’ reflections {r;}, ;.,, where r{A) == A —A(h))a, for any
A €h*. Asisknown, (W, {rh <_i<7) is a Coxeter group, and hence we can
talk of the Bruhat ordering < and length of elements of W . We denote
the length of w by /(w). The Weyl group W preserves A . The set of
real roots A is defined to be W -z, and the set of imaginary roots A™
is, by definition, A\A™. For a €A™, dimg, = 1. Weset AT = ANA_;
similarly A™ := A®NA_. By dualizing, we get a representation of W in
b. Explicitly r,(h) =h ~a,h)h; for heh and 1 <i</.

Forany S c {1, ---,/}, let W be the subgroup of W generated by
{rl.}ies and define a subset W, , of the Weyl group W, by WSl ={we
WA s NWAL C AN\ Ai}. Then WSl can be characterized as the set
of elements of minimal length in the cosets Wow (w € W) (each coset
.contains a unique element of minimal length).

There is a (C-linear) involution w of g defined (uniquely) by w(/f,) =
—e, forall 1<i</,and wh)= —h. for all 2 eb. It is easy to see that
w leaves g, stable (where R C C is the subfield of real numbers). Let
w, be the conjugate-linear involution of g, which coincides with @ on
e . , ‘

R(1.2) Integral form of the Cartan subalgebra. We fix, once and for
all, an integral lattice h, C b (i.e. h, ®, C=h) satisfying:
(P,) h,ep, forall 1 i<,
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(P,) bg/ Zﬁ=1 Zh; is torsion free, and 7
(P;) by :=Hom,(h,,Z) (Ch") contains {a,}.

(The choice of b, , as above, is possible.) Clearly b; is W-stable. It is
called the weight lattice and its elements integral weights.

We make a choice of the fundamental weights p; € I‘); (1<i<)
satisfying .pl.(hj) = 51.,]., for all 1 <1i,j <. This is possible because
of (P,). We further set p = Zﬁzl p;. Of course in the case when A4 is
nondegenerate (i.e., rank 4 =1) b, = ZLI Zh; and the p,’s are uniquely
determined. h ‘

(1.3) Kac-Moody group and its parabolic subgroups. The construc-
tion, given below, is due to Kac-Peterson [17]. It should be mentioned
that there are other constructions of the group(s) associated to any Kac-
Moody Lie algebra g, due to Moody-Teo, Marcuson, Tits, Slodowy, etc.
Even though these groups may differ from each other, the corresponding
‘generalized flag varieties G/P’ are ‘essentially’ the same. Since, in this
paper, we will mainly be interested in the flag varieties G/P, we could
have used either of these constructions. -

A g-module (V,n) (n:g — EndV) is called integrable if n(x) is
locally nilpotent whenever x € g, for a € A and, as an h-module, ¥V
decomposes as the (direct) sum vch* V; of its weight spaces, with the ad-
ditional requirement that any y such that v, # 0 belongs to l‘);. Observe
that for any integrable g-module (V', ), the h-module structure on V in-
tegrates to give a representation of the multiplicative group H := b, ®, (o
on V, which we again denote by n. Let G~ be the free product of the
additive groups {g,},co= and the group H, with canonical inclusions
ij:g,— G and i: H— G". For any integrable g-module (V, ), de-
fine a homomorphism #n°: G* — Aut. ¥ by n"(i (x)) = exp(n(x)) for
x €g, and n"(i(¢)) = n(¢) for t€ H. Let N" be the intersection of all
Kern" , where n ranges over all the integrable representations of g. Put
G =G"/N". Let g be the canonical homomorphism G* — G. It can be
seen that the canonical map H — G is injective. For x € g, (a € A™),
put exp(x) = q(i_x), so that U, := expg, is an additive one-parameter
subgroup of . Denote by U (resp. U ™) the subgroup of G generated by
the U s with a € Af (resp. o € AT). We put a topology on G as given
in [17, 4(G)]. Then G becomes a (Hausdorff) topological group, which
may also be viewed as an (possibly infinite dimensional) affine algebraic
group in the sense of Safarevi¢ with Lie algebra g [17]. (Actually Kac-
Peterson constructed a slightly different group which corresponds to the
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commutator subalgebra gl .) We call G the Kac-Moody group (associated
to the Kac-Moody Lie algebra g) .

The conjugate-linear involution w, of g, on ‘integration’, gives rise
to an involution &, of G. Let K denote the fixed point set of this
involution. Then K is called the standard unitary form of G.

Foreach 1 <i </, there exists a unique homomorphism f£;: SL,(C) —
G, satisfying

"B [(1) i] = exp(ze;) and B, [i_ ﬂ = exp(zf))

(for all z € C), where e, and f, are as in §1.1. Define

m=pfls i|izec). G=psL0),

N; = Normalizer of H; in G;, and N the normalizer of H in G. We
call H the complex maximal torus of G. Of course its Lie algebra is §.
There is a group isomorphism 7: W = N/H , such that 7(r,) is the coset
n,H, where n; is the (unique) nontrivial element of N, (mod H,). We
will, sometimes, identify W with N/H under © and hence w € W can
also be thought of as an element of N (mod H).

Put B = HU and P = P; = BW,B. Then B is called the standard
Borel subgroup and P the standard parabolic subgroup of G (associated
to the subset S'). (Since H normalizes U, B is a subgroup and P is
a subgroup because (B, N) is a Tits system.in G.) Define T = Bn
K ; then T is compact connected and is contained in H . Moreover the
complexified Lie algebraof T = Lie H=¥§. Wecall T as the (standard)
compact maximal torus of K (or G).

The canonical inclusion K/Kg — G/Pg, where K is (by definition)
KNP and K is given the subspace topology, is a (surjective) homeomor-
phism [17, Theorem 4(d)].

(1.4) Bruhat decomposition. Fix any subset S C {1, --- ,/}. Then
G can be written as a disjoint union

G= |J (Uw™'Py), sothatG/Pg= |J (Uw™ Py/Py).
weWw, wew,
_‘Further G/Pg is a CW complex with cells {Uw_lPs/Ps}weWS‘ , and

moreover dimR(Uw—lPS/PS) =2l(w).

2.  Definition of the basic ring Y and its structure

Throughout this section (and the next) G denotes any (not necessarily
symmetrizable) Kac-Moody group over C, with the standard unitary form
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K, the standard Borel subgroup B, the complex maximal torus H C B,
and the compact maximal torus T = HN K. Let W be the Weyl group
associated to (G, H) and let {r;}, ..., denote the set of simple reflections
in W (cf. §1). Let R(T) := Z[X(T)] be the group algebra /Z of the
character group X(7) of T (i.e. R(T) is the representation ring of the
torus T) and Q = Q(T) be its quotient field. Of course C®, R(T) can
also be viewed as the ring of regular functions C[H] on the complex affine
variety H . For any integral weight A (cf. §1.2), the notation ¢ means
the corresponding character of T (or H).

The treatment in this section is parallel to the one in [19, §4).

(2.1)  Definition of the ring @,,. The Weyl group W operates on
the torus 7 and hence on R(7) and its quotient field Q = Q(T) (by
field automorphisms). Let Q, = Q(T), be the smash product of the
W-field Q with the group algebra Z[W], ie., Q, = Z[W]®, @, and
the multiplication1 is given by:

(Il)'

((Swlql).(&wzqz) = (SWIWZ(UJZ—lq])q2 forq,, g, € Qand w,, w, e W,
where we write (here and henceforth) J, g for §, ® ¢. This makes Q,
- into an associative ring with identity J,. Since Q = 6,Q is not central
in @, , @, isnotan algebra over @, but clearly @, is an algebra over
the W-invariants QW in Q.

The ring ), admits an involuntary anti-automorphism ¢, defined by

(L) ' (éwq)t =d,-1{(wgq) forweW and q € Q.

Clearly Q has a natural left @, -module structure, given explicitly by
(L) (6,9)-d =w(gq) forweWandq,q €Q.

For any simple reflection r,, 1 <i </, define a certain element
0 %=y, =040, s = g
where o; is the (positive) simple root associated with the simple reflection

r.

(8,-€7"3,) € Oy,

(2.2) Remark. The notation @ and Q,, in this paper, and also the
subsequent notation Q (§2.17), should not be confused with the corre-
sponding notation in [19, §4], where they have somewhat different mean-
ing. '

'We will often drop the dot for multiplication.



558 BERTRAM KOSTANT & SHRAWAN KUMAR

We record the following simple lemma.

(2.3) Lemma. (a) yi2 =y, forany 1 <i<|.
(b) yia=(r@y;+(a-ra)/(1—e %)), forany g€ Q.
(€) 4,y =e%y, +(1—e")yy; forany 1 <i, j<I.
(d)

.Vja =

L

1—e %

(1+e%)5,—e%y, ifi=].

One has the following very useful proposition

(2.4) Proposition. Let w € W and let w =r, T be a reduced
decomposition. Then the element Vi, € O does not depend upon
the particular choice of the reduced decomposzlzon of w.

We define y,, =y, -y, €Qy . We further denote 7, = Vi

Proof. By a result of Matsumoto [6, Proposition 5, p. 16], it suffices
to check the braid relations:

For any two simple reflections r;, g
order m; ;> We need to check that

yyyyj yjy,-yj}’,-"‘
m;; factors m;; factors

{ (1= e")y,y,+ ey, + (£280) 6, -y,) i),

(i # j) such that 1t is of finite

Now as is well known [16 Proposmon 3. 13], the only possibilities for

m;. are 2, 3, 4, 6, and oo. The proof of the proposition can now be

completed by an explicit case by case checking (cf. [7], [10], [13] or [18,
§3]). o |

As an immediate consequence of the above proposition, together with
Lemma 2.3, we have the following.

(2.5) Corollary. (a) y,¥,, =V, if l(vw)=[(v) +(w).

(b) YoV, = y,, if l(vr ) < I{v).

and itisa subrmg of Qy .

(2.6) Proposition. For any v e W, write
I) Yyt = Z bv,wdﬁ-. for some (unique)b, ., € Q.
w

| Then ‘
(a) bv,w =0, unless w <v.

(b) bv,v = Hu€A+nv_'A_(l - e”)—l .
In particular, b, , #0.
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Proof. (a) is an easy consequence of [8, Theorem 1.1} and (b) follows
from [26, §2]. '

(2.7) Corollary. Define the W x W-matrix B = (b
b, , isasin (Is). ‘

By the above proposition, B is a lower triangular matrix (with respect to
the usual Bruhat partial ordering < in W) with nonzero diagonal entries,
and hence {y,},ci 1s a left (as well as right) Q-basis for Q, .

The notation B as above is not likely to cause any confusion with the
same notation used for Borel subgroups.

(2.8) Definition. Recall from (I;) that Q is naturally a left Q,, -
module. Now we define our very basic subring Y C Q,,, by

v,w)v,weW’ where

Y ={y€Qy:y-R(T) C R(T)}.

It is easy to see that y;, for any 1 < i </ (and hence any y, ),
belongs to Y, and of course Y is stable under the left (as well as the
right) multiplication by the elements of R(T). Conversely, we have the
following crucial structure theorem analogous to [19, Theorem 4.6]. The
proof given below also is similar; but we give the details for completeness.

(2.9) Theorem. With the notation as above, the ring

Y=Y R(T)y, =Y y,R(T).

In particular the elements {y,,},, cw
left (as well as-the right) multiplication.

(2.10) Remark. See the appendix.

Recall that the affine ring C[H] of the complex torus H is a unique fac-
torization domain. Also recall that C[H] can be identified with
C®, R(T). _

As a preparation for the proof of Theorem 2.9, we prove the following
lemmas.

(2.11) Lemma. Let f € C[H] be irreducible and let {f,},,, <\ be
certain elements in C[H], such that any nonzero f, is coprime to f,
f,, #0 for some w of length k, and (Zl(w)Sk f,y,) - ClH] C fC[H].

Then Z(f) C Ivor’_v_l for some vy € W and some simple reflection r,,
where Z(f) is the zero set C H of f and, forany ve W, I ={te
H:viw™ ' = t}.

In particular, f divides (1—e~"%). (Observe that in general 1—e"
is not an irreducible element of C[H].)

Jorm a R(T)-basis'of Y under the

'anl-
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Proof. Write y =3 <k fuVu = 2w y<k %0y, for some g, € Q.
By Proposition 2.6,

(Ig) Gy = Fpby-r v i L(w) =k,

Define V = Uv sely - We claim that Z(f) C V. For, if not, choose any
L€ Z(f)\ V. Fix any w, of length k and choose f, € R(T) such that
(wofo)(to) =1 and (wfy)(¢,) = 0 for all those (finitely many) w # w,
satisfying g,, # 0. (This is possible since the point #, has no W-isotropy.)

Evaluating y - f; at ¢,, we get qwo(to) = 0 (observe that for any real root

B and any ¢y notin V', (1~ eﬂ)(to) # 0 and hence any ¢, does not
have a pole at #,), i.e., by (I), fwa(to) = 0. Hence f divides fw0

contradiction to the assumption of the lemma! So we obtain that Z(f) C
V', and since f is irreducible, we actually have Z(f) c I, for some
v # e € W. In particular, Z(f) being a hypersurface, 7, is of codim. 1
in H, i.e., the element v fixes pointwise a hyperplane (the Lie algebra:
Lie I, of I)) in Lie H. Hence, by [19, Lemma 4.8], v = vor,.vo_l for
some v, € W and some simple reflection r;, and of course Lie I, =

Ker(vya;) .
Now we prove that I, , ot C Z(l—e %), Take t € I, ;o and write
V]
t— exph for h e Lie H Smce ter rag > W get rv0 1tvor =, tvo,

ie., exp(rv, h) = exp(v, 1h). Hence exp(—« [(vo h)h;) = 1, where A,
is the ith simple coroot. Taking e” (where p; is an ith fundamental

-1
weight; cf. §1.2) of both the sides, we get e %@ M — | This proves the
lemma.

(2.12) Lemma. Let { fw}l(w)sk and f be certain elements in C[H]
such that (Zl(w)Sk f,¥,) - CLH] C fCI[H]. Assume further that f is irre-
ducible and Z(f) c 1, for some simple reflection r;. Then f divides all
the f,s.

Proof. Denote y = }wayw and write y = y* 4y~ , where y* (resp.
y7)=4(y+6,y) (resp. (¥ —4,¥)). Now y* also satisfies y* - C[H] C
C[H], and y* is again of the form } Zf:uyw for some fiu € C[H] (use
Lemma 2.3 and the fact that Z(f) is r-fixed and hence f/r,f € C[H]).
(A similar statement istrue for y .) So we can assume that either 6§,y =y
or —y.

Fix w, of length k such that f # 0, and write:

(I-,) fy = Z fwyw =y0+qw05wo +q’iw06’iwo ’
H{w)<k
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where

(I) Gu, = Jfu,Puz1,wzr  (bY Proposition 2.6),

Yo= . 4,6, forsomeg,€Q, and
w & {wy, rwy}
Gr is some element in Q.

Fixany t, € Z(f) C I, with the property that the set {v € W: vtofu_l =

to} coincides with {e, r;} and (1 —e_")(to) # 0 for any positive real root
v # a;. Such a choice is possible:

If possible, assume that Z(f) C I% for some v, # r, and e. Then for
some Ay € Lie H, exp(Kero; +hy) C 1 v This implies that

exp(vo(h + hy) — (A + hy)) =1 for all & € Kera,,

which is possible only if v,s = 4 for all 4 € Kera;. A contradiction!
Similarly, if possible, assume that Z(f) c Z(1 —e™") for some positive
real root v # a,. Then exp(Kera, +h,) C Z(1 - e "), ie., e vtk _
for all # € Kera,;, which is possible only if v(h) =0 forall % € Kero, .
Again a contradiction (since v # a; )!

Now choose f, € C[H], such that j%(wo_ltowo) =1 and ﬁ)(w_ltow) =
0 (in fact a zero of sufficiently high multiplicity) for all those w # w, and
raw, , satisfying g, # 0.

In the case when 5’.- y =1y (resp. (5,'iy = —y), we have

S S
,i—f(riqwo) =4, |TESD: ,l_—f(r,-qwo) = b, ) -
In particular, in either case, r,w, < w,. Denote by a = f/r,f or —f/r.f

according as we are in the first or the second case, respectively. Of course
a € C[H]. We have, by (I,) and (I;), in either case: '

(Ig) (1—e ) fy=(1-e"")yy+(1-e ")q, 3, +(1-€e ")a(rq, )d,,, .
Take a reduced expression w, = Fir e (starting with r,). Then,
by Proposition 2.6 and (I4)- (1), we get

(110) (1 - e_.ai)fy = (1 - e_ai)yo - fwo(rib)e_aiawo + a(rifwo)bariwo ’

where b =]] -t

ué{a. I - PRI S a }(1 _e”)

i3 iy R Sl P R P

Evaluating ((1 —e™ ™) fy)- f; at t,, we get from (I,,):
0= ~b(tg) Sy, (o) + blty)alty) f,, (1) (since e it =1).
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But, by the choice of ¢, b(t;) # 0. Hence
(L) Ju, (o) = a(t) fy, (t)-
From (I,,), we have

—o;

1
fy = yo —_ fwol__?‘__a,'(rib)éwo + — e_a,_ ba(rifwo)ériwo.
—1
Applying it to the function (1 —e™™ *)f, we get

(=™ ) ) =3y (L= ) fy) = £, & (r ) wo )

e’

+balrf) (1 ) U )
Evaluating at ¢, we get
0= fwo(zo)b(zo) + b(to)a(to)fwo(to)'
But since b(z,) # 0, we get
(I}2) Ju,(to) + alto) £y, () = 0.

Adding (I;,)-(I,,), we get fwo(to) = 0. This proves the lemma.

- (2.13)  Proof of Theorem 2.9. Let y € Y. By Corollary 2.7, we can
write y = }wayw , where f, f, € R(T) = C[H]. We can further as-
sume, without loss of generality, that f € C[H] is irreducible. By Lemma
2,11, Z(f) C Ivof,-vo" = UoIr,.Uo_l for some v, € W and some simple
reflection r;. Since 5%Y =Y and, by Lemma 2.3, 51;0(21” R(T)y,) =
>, R(T)y, , we can assume that Z(f) C I . But then Lemma 2.12
proves that y € - C[H]y,, . ‘

We next observe that

(*) Qy N (Z C[H]yw) = Y QHly,,

weWw weWw

where Q is the field of rational numbers, and Q[H]:=Q®, R(T).

The inclusion ) Q[H]y, C Qy N (>, ClH]y,) is obviously true.
To prove the reverse inclusion, take y' = 2 lw)<k wYw M Qy , Where
{gw},(w)Sk C C[H]. Then it suffices to show that 8y, € Q[H] for any

w, with /(w,) = k: Write y' = 2 iwy<k 4Oy » Where g, € Q(T) (since

= Q). Then, by Proposition 2.6, Gy, = gwobw(;-l' wyl But since
bwo_' g € Q(T), we obtain that 8u, € C[H]N Q(T). Further (as is easy
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to see, e.g., by taking a basis of the Q-vector space C) C[H]NQ(T) =
Q[H]. This proves the assertion (*). In particular we obtain that ¥ C
EwEW Q[H]yw . ‘

So finally it suffices to show that if there is a prime integer p and
elements f, € R(T) such that '

y-R(T) CpR(T), wherey= Y  f,¥,;
T I(w)<k
then Jf, itself isin R(T) forall w.
Fix any field F of characteristic p. Write

1
(113) y= 7‘;‘111)511)’

where a, € R(T) and f is of the form Hﬂ(l - eﬂ) for B running over
some finite set of (not necessarily distinct) real roots. (This is possible, as
is easy to see.) Moreover, by Proposition 2.6,

(I,4) Jl‘,aw0 = fu H (1= e")_l for any w, with /(w,) = k.
veA Ny _

Of course (fy)-R(T) C pR(T). But, by (I,;), fy = El(w)sk a,d,
and hence (El(w)sk a,(p)o,(p))- F[H] =0, where F[H]:=F ®,R(T),
a, (p) denotes the reduction mod p of the element a, € R(T), and
d,,(p) denotes the reduction mod p of the operator J,,: R(T) — R(T).
But the canonical representation W — Aut(F[H]), given by w 4, (p),
is clearly injective and hence by [2, Corollary on p. 35], a,,(p) =0 for all
w . (Even though this corollary is stated for fields, the same proof gives
its validity for integral domains, i.e., when, in the notation of loc. cit., E
and E' are integral domains.) In particular, by (Lg)» fwo(p) = 0 since

F[H] is a domain and, for any real root §, (1 —ef ) is a nonzero element
of F[H]. This proves the theorem completely.

(2.14)  Coproduct structurein Q,, . Let A: O, — Qw®, 0y (where
the tensor product over Q is taken with respect to the @-module structure
given by the right multiplication by @ on both the copies of Q) be the
diagonal map defined by
(Is) A(6,9)=96,®0,9=90,9®0, forweW andqe.
Clearly A is Q-linear and it is easy to see.that the coproduct A is asso-
ciative and commutative with a counit defined by &(d,q) =¢.

We introduce an associative product structure, denoted by ®, in
Qy ®, Q) , making A into a ring homomorphism:

1

. - 1—1
(5‘uqv®5wqw)6(511'q1;'®5w’qw') = 5’()'(u;'_')1)uy'qv'(w qu)®5ww'(w qw)qw“
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Observe that the product ® introduces a left (resp. right) Q, -module
structure on Oy, ® 0 0, by the left (resp. right) multiplication under the
ring homomorphism A . The right @O, -module structure takes a particu-
larly simple form:

(y®2).(0,9)=y3,q®25, fory,zeQ,, weW, andqe Q.

Recall the definition of y,, from Proposition 2.4. The following propo-
sition describes the A-map in terms of the {y,,} basis.
(2.15) Proposition. Forany we W,

A= > 7,874,

u,v<w

for some (unique) a;, v € R(T) Moreover au - considered as an element

of C[H], has a zero ofmulziplzczzy >l(w)+1(v) - H{w) at 1.
Proof. We prove the proposition by induction on /(w). By the defi-
nition,
— (6,6 ) — 1,
e ri 1 —e Q’-

M) A =0,(1-¢") 7 ®4, +4, 85, (1-¢™)"

=7, ®7,(1-e")+,87,€"
+7, ®6,e" —3,®08,e".

Now write w = w'r,, with w’ <w. Then

AF,) = AF,) ©AF,)

@(585958——1——5 3, ——a>
l—e" ] —e %

(by the induction hypothesis)

2This, by definition, is the multiplicity at 1 of the divisor of f .
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where - is asin (I;).

Now the proposition follows by using Corollary 2.5 and the fact that,
for any f € C[H], y, - f has zero (at 1) of multiplicity > (multiplicity
of zero at 1 for f) — 1.

(2.16) Remark. We will determine the coefficients a:“l”’ , €xplicitly in
Proposition 2.25.

(2.17)  Dualizing Q, . Regarding Q, as a Q-module under the
right multiplication, define Q = Q(T) := HomQ(QW, Q). Then Q is
canonically a Q-module under (qy)(¥) =q.¥(y) for g€ @, y € Q, and
v € Q. Further the coproduct structure A in @, , defined in §2.14, makes
Q into an associative and commutative algebra over Q with identity (since
A has the corresponding properties). ,

Since any w € Q is determined uniquely by its restriction to the basis
{6,,} (and conversely), we can (and often will) regard € as the space of all
the functions W — Q. It is easy to see that (under this correspondence)
the addition, scalar multiplication (by elements of Q), and the multi-
plication in Q correspond respectively to the pointwise addition, scalar
multiplication, and pointwise multiplication of functions W — Q. The
(multiplicative) identity, denoted by 1, (under this correspondence) is the
function which takes any w e W to 1.

We also introduce the structure of a left O, -module on Q as follows:

(7 W)y =p('y) foryeQandy,)y €Q,.

(Observe that the action of y is Q-linear.)
In particular Q gets equipped with the Weyl group action (which is -
the action of J, € Y C Q) ) and also the Hecke operators (which is the
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action of y, €Y C Q). Let us describe the action of Y, , for a simple
reflection r;, explicitly:

—a. 1
0, VG =v |6, - —L s,
| —wa,
) w6, - e

I—e™ &

(2.18) Remark. Observe that Q has two Q-module structures, one
coming from the scalar multiplication by elements of Q (viewing Q as
the space of functions W — @) and the other coming from the action
of QJ, = 6,0 C Qp defined in (I;;). 'We caution that these two Q-
module structures are in general different. Whenever we speak of € as
a Q-module, we will always mean the first Q-module structure. The other
Q-structure is distinguished by denoting it with a solid dot.

HNow we are ready to define the dual of the ring Y, which will play an
important role in the whole paper. :

(2.19) Definition. Let ¥ = {y € Q: w(Y') c R(T)}; recall that Y
is the ring defined in Definition 2.8.

(Notice the difference in the definition of ¥ with the definition of the
analogous ring A in [19, §4.19], where we put, in addition, some finiteness
conditior.) '

Define certain elements w” € ¥ (for any w € W) by

(119) ) : l//w(ﬁv)=5v,w forv,weW,

where ¥, is as defined in Proposition 2.4.

By Corollary 2.7, v = }_, q”w" is a well-defined element of Q for
arbitrary (infinitely many of them are allowed to be nonzero) choices of
q” € Q. Of course if all the g ’s belong to R(T), then y € V. '

We have the following proposition on the structure of W¥.

(2.20) Proposition. (a) ¥ (as defined above) is an R(T)-subalgebra
of Q.

(b)Y is stable under the (left) action of Y C Qy, . In particular, for any
w € W, the elements J,, and y,, acton V.

(c) ¥ is the direct product [],, R(T)w", ie., any element of ¥ can be
uniquely written as ", f“w" , with [* € R(T), where infinitely many of
fY ’s are allowed to be nonzero.

Proof. (a) follows from Proposition 2.15, (b) follows from the fact
that. Y is a subring of @, , and (c) follows from the structure theorem
(Theorem 2.9) for Y.
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(2.21) Definition of the matrix E. Define the W x W matrix E =
(&™) by e”" = y"(4,).

The relevance of the matrix E to the study of T-equivariant K-theory
of generalized flag varieties will be clear in the next section.

Recall the definition of the associative algebra & = %, over ¢ from
[19, §4.23]. We collect some of the basic properties of the ‘basis’ {“} in
the following: °

(2.22) Propesition. For any v, w € W, we have:

(a) " belongs to R(T). Moreover they are uniquely determined by

the following:
= Z e"‘vyu_x.

uew

- (b) " =0, unless v <w and

Y= J[ (u-¢é).

vew™'A_NA,

In particular, the matrix E is upper triangular (and hence E € %B),). Fur-
ther, since E has nonzero diagonal entries, E s invertible as an element
of By,

(c) B' = E™', where the matrix B is as in Corollary 2.7, and B’
denotes its transpose. (Observe that, by Proposition 2. 6(a) B'e By,.)

(d) For any simple reflection r,, we have

w { v+ ifrw<w,
Y, ¥ = .
0 otherwise.

() The element """ € R(T) c C[H] has a zero of multiplicity > l(v)

at the point 1. Moreover the l{v)th homogeneous compone‘nt3 of "% is
. {v) . .

precisely equal to (—1_)l v dv,w, where dv’w is as defined in [19, §4.21.].

() v*(@d,)=e"" *.

(8) (€776,e”)-y" = y" provided rw > w.

(h) v'y" = Yy weu az’ww“, where a;j’w is as defined in Proposition

2.15.
(1) Forany y,, v, € Q,

V) = w0, - ¥) + 0, ¥ = 3)(0, - ¥,)-

3For any f = 21&!1; nle}' € C[H] and any d € Z_, by the 4 th degree homogeneous

component (f), of f,we mean the element 3, nlld/d! of S(h"). Recall that the smallest
d, such that (f), # 0, is multiplicity mult,(f) of the zero of f at I.
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Proof. (a) follows from the definition of e”"

(b) Assume that v £ w and assume further, by induction, that for any
u<w, we have e”"" := y"(6,) = 0. By Proposition 2.6, we can write

() G- = H (1-¢") V-1t Z 9,9, forsomeg, € Q.

vew™'a_na, u<w

Taking ¢ and then taking " (and ¥") of both the sides of (I,,), we
get (b).
(c) follows from (a) and (I;) .
(d) Forany ve W, (», -w")(¥,) = ¥"“((¥,-1¥,)") . Hence by Corollary
2.5
w — -
v (¥, ifrv<uw,
(L) (y,-u/w)(7)={ _ )
21 r v v (¥,,) otherwise.
In particular, (y, -¢")(7,) =0, unless v =w or rw.
Casel. rw <w: Inthiscase (y, -v")(F,) =0, - v“)¥,,)=1.
Case IL. rw > w: In this case (v, - ¥"*)F,) =, -¥"“)7F,,)=0.
This proves (d).
(e) Assume, by induction, that e”"™! satisfies the assertions in (e),
provided either /(v,) < /(v) or v, =v and /(w,) < /(w). (The induction
starts by (b).) Write w = r,w,, such that w, <w. By (I4),

PO _ev,we—w“'ai

-1
—wl ;

(122) (y’i * ‘//U)(dwl) =

: l—e
Now there are two cases to consider:
Case 1. r,v > v In this case, by (d) and (I,,),

-1
(123) eu,wl =ev,we w, a,..

Case Il. rv <v: In this case, again by (d) and (I,,),

v,w N -
e‘l),zl)‘_*_er‘.'u,wl =€ — ] e

ie.,
(12 ) ev,wl _ (1 —e—w‘_lai)(€1"w| + eriv,w,) — ev,we—w‘—lai
4 X .

So in either case, by the induction hypothesis, the first part of assertion
(e) follows. The second part follows similarly by using the analogous result
for d, ’s as deduced from [19, Proposition 4.24(b) and I, ].
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(f) follows by induction on /(w), using (I,;).
(g) follows trivially from the (d) part, if we use the identity
4 STy —p
6, —0, =e'(l—e %y e’

r.
i

(h) is a consequence of Proposition 2.15.
(i) follows from direct calculation by using the right Q,-module struc-
ture on Qy, ®, Oy > as given in §2.14, and the identity

Ay,) =10y, +7, ®9, ~1®9,.

(2.23) Remark. The elements {V’w}wew are uniquely determined
if we assume that they satisfy (d) and (f) of the above proposition and, in
addition, y"(6,) =0 forall w#e.

The proof of this remark is similar to the proof of the (e) part of the
above proposition.

(2.24) Lemma. Forany u,ve W, write

(Is) d," w' = Zcz,wy/w Jfor some (unique) c:’w € R(T)
w
(which is possible by Proposition 2.20). Then cl'f’w =0 unless l(w) >
l(v) - l(u), and moreover C:,'w’ as an element of C[H], has a zero at 1
of multiplicity > l(v) — l(w).
Proof. Choose a w, such that w, is of minimal length among those
w satisfying cz,w #0. Then

WY (6,6,) = (6, ¥)6,) = ch , (5,

(by Proposition 2.22(b) and (1)), ie., y/v(éu_;wo) = cg,wot//w"(éwo).

Thus, again by Proposition 2.22(b), v < u—lwo and hence [(w,) >
Hv) —1(u).

The assertion about multiplicity follows similarly (by induction on /(w))
using Proposition 2.22(e). O

Recall the definition of a;"’ o, (TESD. c;",v) from Proposition 2.15 (resp.
Lemma 2.24). Even though a, , was defined only for u,v < w, we
extend it for all u,v,w € W by putting a., = 0 otherwise (i.e., if

u,v

at least one of u or v violates the condition u, v < w). Now we will
determine {a, ,} and {c, ,} explicitly in terms of the E-matrix.

u,v

(2.25) Proposition. Fix we W.
(a) Define two W x W matrices A, and E, by A, (u,v) = a,

w, U

w,n 7 [y
| and E,(u,v) = 6,“,6 Jor any u,v € W. (By Proposition 2.15, 4,
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is upper triangular and hence 4,, € %, , and of course E,, € &), .) Then
~1
A,=E.E, E"
(b) Similarly define two matrices C,, and S, € #,, by C, (u, v) =
and S,,(u,v)=20,, ,. Then

w
Cu,v

c,=ES,E".

(Observe that C,, € B, , by Lemma 2.24.)
Proof.

(Ay-E)u, v) = > a, 07
wl

= (¥"y¥")(3,) (by Proposition 2.22(h))

(
e = (E.E,)(u,v),

proving (a). :

The proof of (b) is similar.

(2.26) Definition. Let S C {1,---, [} be any subset. Recall the
definition of W, and WS1 from §1.1. We define ¥ =¥ 10 be the set
of all the W-invariants in ¥, ie., ¥° = {y € ¥: 4, -y = v, for all the
simple reflections r, with [ € S}. l

We have the following lemma describing the structure of P

(2.27) Lemma. ¥° = Myeny RO - ¥").

Proof. By Proposition 2.22(g), for any w € WS1 , el y' e ¥’ . Hence
Moew RN - y™) C¥°. -

Conversely, take any y € ¥S and write
(Le) w=>_ fe y") forsome f € R(T).
w

By the definition of ¥S and the identity used in the proof of Proposition
2.22(g), we get (yr_e_”) -y = 0 for any i € S. Now, by Proposition
2.22(d) and (1,4), we get

ey w= 3 £y ™).

riw<w

Hence, by Proposition 2.20, f* = 0 for all those w such that rw<w
for some simple reflection r, with i € §. This proves the lemma. 0O

Finally we show that the ring ¥ admits a ‘natural’ filtration such that
the associated graded ring is isomorphic with the ring A defined in [19].
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Recall the definition of Q from [19, §4.17]. (We denote this Q by
Q(h) here to distinguish it from the Q defined in §2.17.)

(2.28) Definition. Define a decreasing filtration {F, = F,(‘¥)}
of the ring ¥ by

F,={y e¥: mult,(y(d,)) = n for all w e w1,

n>0

where, for any element f € C[H], we denote by mult, (f) the multiplicity

of the zero of f at I; in particular for ¥ € ¥, since y(J,) € R(T) C

C[H], mult,(y(d,)) makes sense. ‘
We clearly have

F,.F,CF,  foralln,meZ,.

We define the associated graded ring Gr(¥) := 3,5, F,/F,
we define a map &,: F, — Q(h) by -

(&, (¥)6,) = (W(,)), foryeF,andweW,

where (¥(d,,)), is the n-th homogeneous component of (d,,) (cf. Propo-
sition 2.22(e)). The map ¢, obviously factors through F,/F, , to give a
map ¢,: F, /F,_ , — Q(h) . These maps give rise to a ring homomerphism
¢: Gr(¥) — Q(h) defined by éI(F,./F,.H) =¢, forall n>0.

(2.29) Lemma. Image ¢ C A, where A is the subring of Q(h) defined
in[19, §4.19]. :

We denote the map ¢ considered as a map Gr('¥) — A by e.

Proof. Let w =%, f“y"” € F, (with f“ € R(T)). Then we assert
that

e Further

(%) mult, (f*) > n—1I(w) forany w € W. .

For, otherwise, let .w, be of minimal length violating (). By Propo-
sition 2.22(b), t//(cSwo) = f% t//w°(5wo). But, by assumption, y € F, and
by Proposition 2.22(b), multl(t//w"(éwo)) = l(w,). Hence mult; (/") >
n — l(w,), contradicting the assumption! This proves (x).

As a consequence of (*) and Proposition 2.22(e), we obtain that ¢, ()
= Z,(w)Sn(f'”)n_l(w)(—l)l(w)éw , where ¥ € A isas defined in [19, Propo-
sition 4.20]. In particular ¢,(w) € A. This proves the lemma. O

Since A is a C-vector space, by extension of scalars, we get a map

ec: C®; Gr(¥) — A.

Now we have the following.
(2.30) Proposition. The map e.: C®, Gr(¥) — A defined above is a
ring isomorphism.
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Proof. Of course e. is a ring homomorphism. We first prove the
surjectivity of e : '

For any w € W, by Proposition 2.22(e), y" € Fyy), - Let v denote
w" mod Fyyys1 - Then (W) = (=1)"™E¥ (see the proof of the above
Jlemma). Also for any p € S"(h"), there exists f € C[H] ~ C®, R(T)

such that mult, f > n and (f), = p. In particular pl € Image(e.) . So
the surjectivity of ¢, follows from the structure of A [19, Proposition
4.20].

The injectivity of ¢, is easy to see.

3. Identification of ¥ with the T-equivariant K-theory K (G/B)

We continue to use the same notation and assumptions as in the first
paragraph of §2.

(3.1) Definition. Let X be a compact (Hausdorff) topological space
on which a compact group G, acts. For any p € Z, recall the definition
of the G-equivariant K-group Kgo (X) from [29]. In the sequel KGO(X )

(without a superscript) will always mean Kgo (X). Let us just recall that
KGO(X ) is the Grothendieck group associated to the semigroup, whose
elements are the isomorphism classes of the G -equivariant complex vector
bundles on the G-space X .

Now let X be a Hausdorff' (not necessarily compact) topological space
on which the compact group G, acts. Assume further that X has a filtra-
tion Z: J=X_, C X,C X, C---, such that

(1) each X, isa compact subspace of X which is Go-stable, and

(2) topology of X is the limit topology induced from the filtration
&

Then we define, forany pe Z,
p _ . p
KGO(X) = IE‘_’,IC}?KGO(XQ'

It is easy to see that KZO(X ) does not depend (up to a ‘canonical’
isomorphism) upon the particular choice of the filtration satisfying (1)
~and (2) as above (since any such filtration is cofinal in any other). Of
course KEO(X ) is a graded algebra over KG0 (pt.), where pt. denotes a
one point space.

In particular, for any Kac-Moody group G and any standard parabolic
subgroup P = P (cf.§1.3), K;(G/P) makes sense, where 7T is the stan-
dard compact maximal torus which acts on G/P by the left multiplication.
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Moreover K;(G/P) is an algebra over K (pt.) ~ R(T). (The Bruhat de-
composition, cf. §1.4, provides a desired filtration of G /P as below.)

(I,7) X, P):= |J (BwP/P).
wew
H(w)<n

‘We often abbreviate X,(B) by X, itself, where B is the standard Borel
subgroup of G. .

(3.2) Definition. Fix a simple reflection r;, and let P, := BU (Br;B)
be the corresponding (standard) minimal parabolic subgroup. The group
P, has a natural two-dimensional representation V; (¥, also denotes the
underlying representation space) such that the ‘unipotent radical’ of P,
(with Lie algebras ) . AN{a} g,) acts trivially on V;, and the ‘standard
maximal reductive subgroup’ of P, (of rank 1) (with Lie algebra h@Ce,; &
Cf;, cf. §1.1) acts by the highest weight p; (cf. §1.2).

(3.3) Lemma. With the notation as above, the canonical P'-fibration
n;: G/B — G/P; is G-equivariantly isomorphic with the projective bundle
of the rank-two vector bundle on G|P;, which is obtained from the principal
P-bundle G — G/P, by the representation V, defined above.

Proof. We have the following commutative diagram:

/B PG, W)

G/P,
where 7, is the canonical projection, and 6, is defined by ¢,(g mod B) =
[g,v,] (where v; is some fixed nonzero highest weight vector in ¥, and
[g, v;] denotes the class of the element (g, v;) in P(G x, V})).

It is easy to see that 6, is a G-equivariant homeomorph'ism. 0

Let us recall the following consequence of the equivariant Thom iso-
morphism (which can be viewed as a generalization of Bott-periodicity).
(Even though a more general statement is true, the version given below is
sufficient for our purposes.)

(3.4) Proposition [29, Proposition 3.9]. Let p: E — X be a T-
equivariant rank-two vector bundle on a compact space X , and let P(E) de-
note the corresponding projective bundle. Then K .(P(E)) is a free module
over K (X) with (free) generators 1 and the Hopf bundle H € K (P(E)),
where, recall that, the Hopf bundle H is the dual of the canonical line
bundle on P(E).

In particular, the canonical map K (X) — K (P(E)) is injective.

So we can identify K.(X) with its image in K,(P(E)).
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As a consequence of the above proposition and Lemma 3.3, we get the
following: .

(3.5) Corollary. Forany n€Z, and 1 <i <1, K(n7 (X, (P)))
is a free module over K.(X,(P;)) with (free) generators 1 and the Hopf
bundle H,(n), where X, (P,). is definedin (1,,).

(3.6) _Definition. For any n € Z, and 1 < i</, define an operator
D, (n): Kp(m; (X, (P)) = Kp(m; ' (X,(P))))

I"- n

by :
Dri(n)(a + H(n)t)=0 foro,te€ K (X,(P)).

(3.7) Lemma. Forany n € Z_and any 1 < i <[, the following
diagram is commutative: '
Kp(n7'(X

n+1

TD,‘_(n+1) TD,,.(n)

Kp(n] ' (X,,,(B))) —— Kp(m; ' (X,(P))
where the horizontal maps are the canonical restriction maps.
Proof. It suffices to show that H(n + 1) = Hy(n). But this
is clear from Lemma 3.3.

(3.8) Definition. For any simple reflection r,, define an operator
D, : K. (G/B) — K. (G/B) as the inverse limit of the operators D, (n):

Kp(n; (X, (P))) = Kp(m (X, (P))) (cf. Lemma 3.7).
It can be easily seen that the operator D, does not depend upon the
particular choice of the ith fundamental wefght p;, €ven though the iso-
morphism of Lemma 3.3 does depend on the choice of p; (as V; depends
upon the choice of p,;).
Now, for w € W, define D, : K .(G/B) — K (G/B) as the composite

D,=D,  o---0oD, ,where w=r, ---r;, isareduced decomposition.
i i 1 m

(P)) — Kp(z7 (X, (P))

27 (X, (P)

We will sée, during the proof of Theorem 3.13, that D, does not depend
upon the choice of the reduced decomposition of w.

Of course, quite analogously, one can also define the operators (again
denoted by) D, : K(G/B) — K(G/B).

(3.9) Remark. Similar operators on R(T) (see Definition 3.17(b)),
introduced by Demazure-[7, §5], provided motivation for our definition
of the D, ’s. '

Clearly D_ satisfies the following:

i

(3.10) Lemma. sz,-:Df,-'
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(3.11) Definition (Weyl group action on K (G/B)). Recall that the
Weyl group W can be canonically identified with N (T)/T , where N (T)
denotes the normalizer of T in the standard unitary form K of G (cf.
§1.3). Now W actson G/B~K/T by

(nmod T).(k mod T) = (kn” 'Y mod T,
, for nmod T € W ~ Ny (T)/T and k € K.

Clearly the action of W on G/B commutes with the action of T on
G/B, and hence we obtain a left action of W on K, (G/B) (and also on
K(G/B)). (Since K. is a contravariant functor, action of the element
w € W on K (G/B) is induced from the action of w™" on G/B.)

(3.12) Definition (the localization map). For any n > 0, let
7,0 Kp(X,) — KT(XHT ) be the canonical restriction map; where XnT 1s
the set of all the T-fixed points in X,, and X, = X,(B) is as de-
fined in_ (I,;). Since the maps {?n}nZO are compatible, we get a map
9: Kr(G/B) — K1((G/B)").

Now the map i: W ~ N (T)/T — (G/B)", given by w +— w™"
mod B, induces a homeomorphism; provided we put the discrete topol-
ogy on W . Moreover, by [29, Proposition 2.2], K,(W) can be canoni-
cally identified (as an algebra over R(T)) with the R(T)-subalgebra of Q
(cf. §2.17) consisting of precisely those maps W — Q which have image
C R(T). Hence, on composition of  with the induced map i*; we get
an R(T)-algebra homémorphism

7: K,(G/B) - Q.

Now we can state our second main theorem of this paper.

(3.13) Theorem. Lei G be an arbitrary (not necessarily symmetriz-
able) Kac-Moody group with Borel subgroup B . Then the map 7: K(G/B)
— Q. defined above, has its image precisely equal to W (see Definition
2.19).

Let y be the map 7, considered as a map K (G/B) — Y. Then the
map y is an R(T)-algebra isomorphism. Further the action of the Weyl
group element w € W (Definition 3.11) and the operator D, (Definition
3.8) correspond, under y, to the action of 6, and y,, respectively (cf.
Proposition 2.20). : '

Moreover K7.(G/B) =0 for odd values of p.

(3.14) Remark. A  characterization of the R(T)-‘basis’
{t" i= vy (W")}yew of Kp(G/B) (cf. Proposition 2.20) will be given
in Proposition 3.39.



576 BERTRAM KOSTANT & SHRAWAN KUMAR

As a preparation for the proof of the above theorem, we have the fol-
[owing.

(3.15) Lemma. Forany n>0, K(X,,X,_)=0 for p odd, and
KNX,, X,_,) isafree R(T)-module for p even.

In particular, K5(X) =0 for p odd, and K7.(X,) is a free module over
R(T) for p even.

Moreover, RankR(T) K (X)) =#{weW:I(w)<n}.

Proof. By [29, Proposition 2.9],

Ko(X,, X, ) ~KNX,\X,_)~ €D Ki(BwB/B).

I(w)=n

Further the T-space BwB/B is T-equivariantly homeomorphic with
the T-module n, :=@,cs Awa 8, - (The homeomorphism is established

by the exponential map.) Hence, by the Thom isomorphism [29, Propo-
sition 3.2], K7.(BwB/B) ~ K}.(pt.) as R(T)-modules. This gives the first
part of the lemma. -

The second part follows from the first by induction on n and the long
exact sequence associated to the pair (X,, X,_,) [29,82]. O

(3.16) Remark. Let P be any standard parabolic subgroup of G.
Then the above lemma remains true (by the same proof; in view of the
Bruhat decomposition for G/P) for X, replaced by X (P) (cf. (L,,)).
In this case '

Rank, ~ K (X,

reny K (X, (P)) =#{w e Wsl tl(w) < n}.

We recall the following:

(3.17) Definitions. (a) Atiyah-Hirzebruch homomorphism .  Let
B: R(T) — K (G/B) be the additive map, which takes et e X(T) to
the G-equivariant (in particular a T-equivariant) line bundle on G/B as-
sociated to the principal B-bundle G — G/B by the character et B —
C\{0} . (Although ¢* is a character of H , it is extended to the whole of B
by defining it to be identically one on the commutator subgroup [B, B].)
Of course B is a ring homomorphism, but it is not an R(T)-algebra ho-
momorphism. One also has f,: R(T) — K(G/B), which is the composite
of B with the canonical homomorphism K.(G/B)— K(G/B).

Further, we define amap B : R(T) =¥ c Q by B(f) = f-1; where
1 is the multiplicative identity of ¥ and - is as defined in (I,;). Let
B,:R(T)— I® =¥ be the composite of B with the canonical map ¥ —
Z3pq ¥, where Z is a R(T)-module under the standard augmentation
map er: R(T) — Z (which takes every f € R(T)— f(1)).
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It is easy to see that

(Lg) B(f)y)=y'-f foranyye Q, and f € R(T).
In particular, '
(Iyo) BNG,)=w™'f forweW.

By (I), B is an injective ring homomorphism.
(b) Demazure operators [7]. For any simple reflection r;, define

1 ezl _ eril—a,.

Lr.(e'l) = for &' € X(T),

r; —a

i T l—emw
and extend additively to R(T). (It is easy to see that L ( '1) € R(T).)
Now set, forany we W, L =L, Lr_ ; where w = r T is any
reduced decomposition. Then, by Proposmon 24, L, does not depend
upon the particular choice of the reduced decomposmon of w.

Now we have the following

(3.18) Lemma. The following diagram is commutative:

£, K.(G/B)

RV

Further the maps B and B commute with the Weyl group actions and
moreover, for any w € W and a€ R(T), B(L,a)=y, - (Ba).

(As a consequence of §3.19—Assertions I and 111, we also have oL, =
D,op.)

Proof. Fix any v € W and a representative ¢ for v in N, (T). For
any integral weight 4, let C, denote the one-dimensional representation
of B with the character.e’. Then forany t€ T and x € C, (in the line

bundle (e')),
LD, x) = (0, x) = (8, (0 t5).x) = (8, e (1)x).

This gives that (7 o ﬂ(e’l))(év_l) = ¢"*. In particular, by (L), the
commutativity of the above triangle follows.

The assertion that f commutes with W-actions follows from (L) »
and the assertion y, - (Ba) = F(Lwa) follows from (I,4) and (I,4). Of
course the map S commutes with the W -actions.
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With these preparations, we now come to the

(3.19)  Proof of Theorem 3.13. The proof is slightly long and will be
broken up into several subassertions:

Assertionl. Themap 7 is injective: It suffices to show that §,: K(X,)
- K (X nr ) is injective for all n € Z_ : By the localization theorem [29,
Proposition 4.1], the localized map 7,: Q®p 7 K7(X,) = Q®p 1 K1 (X, )
is an isomorphism, where (as in §2) Q = Q(T) is the quotient field of
R(T). But,by Lemma 3.15, K(X,) isafree R(T)-module, and hence the
canonical map K (X,) — 0® R(T) K (X,) is injective. Now the following
commutative diagram proves the assertion:

¥

Kp(X,) I, K (xT)

[ 1

Q ®pry Kr(X,) —y:‘* Q ®r(ny KT(XnT) O

Corresponding toany 1 <i </, thereisa Hopf bundle H, € K (G/B),
which is the inverse limit (over n) of H,/(n) € KT(ni_l(Xn(Pi))) (see
the proof of Lemma 3.7). Also recall the definition of the map g from
Definition 3.17(a). _

Assertion II. The element H, € K (G/B) is the same as B(e” "),
where p, is the ith fundamental weight (cf. §1.2): Let us fix a nonzero
highest weight vector v, € V;, where V, is as defined in Definition 3.2.
Consider the following commutative diagram:

0,
G x5 Co; —— #}(G xp V) — Gx, ¥,

| | |
G/B —— P(Gx, V) —— G/P,

where the maps 6, and 7%, are as defined in the proof of Lemma 3.3, the
vertical maps are the canonical projections, ft}"(G X p V;) is the pull-back of

the bundle G x, V; via the map 7,, and 6 ; 1s induced from the canonical
inclusion G X, 'Cv,. —>Gxg V.

Now, from the definition of the Hopf bundle, it is easy to see that
Image 9,. C H,.* (where H,.* is the dual of the Hopf bundle). Further,
since éi 1s an injective map, we have Image 9,. = Hl.*, i.e., the bundle
G x g Cv; represents the element H[* € K(G/B). But Cv; has character
(as a B-module) e”i. This proves Assertion II.
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Assertion III.  For any simple reflection r; and 1 € K (G/B), (D, 1)
=y, - (77): We have the following commutative diagram:

K (G/P) ="~ K (G/P)T)

K (G/B) —— K.((G/B)T).

Let T € K;(G/B) be in the image of K(G/P). Then D,t =
Also, by the above diagra'r'n, P(t)(w mod B) = p(7)(wr, mod B)
- 7(1)(6,,) =?(r)(6r‘_w) for any w € W . Hence, by (I5), Yy (y1) = _y( )

Further define Q" = {y € Q: y(5,) = w(d,,) forall w e W}. Now

(wy)=w(y, -y'), forany y € Q" and any ¥’ € Q (by Proposition

2 22(1)) In partlcular to establish Assertion III, it suffices to show that
Yp (7(H,)) = 0, where H, is the Hopf bundle as in Assertion II:

By Assertion 11, Lemma 3.18, and the identity (1,q), we get

(I3) Y(H,)(9,) = e P for any w € W.

Hence, by (I;4), Y, (7(H))=0

Remark. Since the map 7 is injective (by Assertion 1), we get (by
Proposition 2.4) that the operator D, (see Definition 3.8) is well defined,
i.e., it does not depend upon the partlcular choice of a reduced decompo-
sition of w .

Assertion IV, Imagey c ¥: Fix any 7 € KT(G/B) and we W, By
making successive use of Assertion III, we get that

w (PT) =7(D,, 7).

In particular, [y, -(77)1(3,) = 7(D,,7)(4,) . But, of course, 7(D,1)(d,) €
R(T) and hence 7(t) € ¥ by the deﬁnltlon of ¥ (cf. Definition 2.19)
and the structure theorem (Theorem 2.9).

Assertion V. Givenany w € W, there exists an element 8" € K, (G/B)
such that 5(8%)(8,,) = HueAmw-l'A (1-¢€"), and 38" )(8,) =0 if [(v) <
l(w) and v #w: Let /(w) = n and consider the exact sequence

0= Ko (X,, X)) — Kp(X,) — Kp(X)') = 0,

w

where X, := Uioy<n .ogw—1 (BUB/B).
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(The facts that K,(X,, X') and K7 '(X)") are zero follow from the
proof of Lemma 3.15.)

Now K (X,, X') ~ K, (Bw™'B/B) ~ Kp(n,-i) (see the proof of
Lemma 3.15). Recall from {29, §3] that there is the Thom isomorphism
¢.: K (pt.) S K (n 1) . By the definition ¢,(1) = A, , where E =n__,,
p: E — pt. is the projection, ¢: pt. — E is the zero section, and A;z is
the Koszul complex on E formed from p*(E) and the diagonal map
6: E—p*(FE).

Since K (n, 1)~ K (X, Xw) we can think of ¢ _(1) as an element
of K.(X,, Xw) and hence by restriction, we get an element ¢ (1) €
KT(X) Lift ¢ (1) to an element ¥ of K (G/B) (whlch is possible
by Lemma 3.15). By the projection formula [29, §3}, ¢" ¢, f = fA_((E),
for any f € K (pt.), where

A (E) = S_ (-1 A (E) € Kp(pt.),
. k
Now it 1s easy to see that
7(8*)(8,) = 9.(D), =Y (-1 ch (A (EY)
{w ! mod B} P
= H (1-¢")

(where ch denotes the character) and by the choice of 3%, 7(19“’)(5“) =
¢*(1)l =0 if /(v) </(w) and v # w.

{v™ ! mod B}

Assertion VI YK (G/B)) D ¥: Fix any y € ¥. We will construct,
by induction on n, certain elements 7, € K.(X,) satistying:

C,(n) (7(r,) —w)(©6,) =0 forall /[(w)<n, and

C,(n)

T =7
nIXn—l

n—1°

Existence of 7, satisfying C,(0) and C,(0) is trivial. Assume (by
induction) the existence of 7, (satisfying C,(n) and C,(n)). Arbitrarily
choose an element 7, € K(X,,,) such that 7, = 1, (use Lemma
3.15). Now, for any v € W of length n + 1, we have (from Assertion
IV and Propositions 2.20 and 2.22(b)) (¥(%,) — w)(8,) = f"€""" for some
S € R(T), where €”” =[], cp ny-1a (1-€"). Nowput 7, =%, —
Ciyenst [ (O ), where © is as constructed in Assertion V. It is easy

Xy

satisfies C,(n+ 1) and C,(n +1).

n+l

to see that Tptl
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By property (C,), the sequence (I'n)n20 defines an element t €
K, (G/B). Further 7(t) =y, since '

7(1) = w)(4,) = (¥7(r,) — w)(4,) foranyn > I/(w)
=0 by C,(n).

Assertion VII. . 7 commutes with the Weyl group actions: Observe that,
for any w € W, one has a commutative diagram:

K;(G/B) —— K,((G/B)")

b e

K,(G/B) —— K ((G/B)")

where w”™ (resp. W”) denotes the map induced from the action of w on
G/B (resp. the action of w on (G /B)T) . This easily proves the assertion.
Now putting Assertions I-VII together, we get Theorem 3.13. O
As corollaries of Theorem 3.13, we deduce the following results.
(3.20) Corollary. With the notation and assumptions as in Theorem
3.13, let P = Pg be the standard parabolic subgroup of G correspond-
ing to any subset S C {1, .- ,;1}. Then there is'a unique R(T)-algebra
isomorphism yP making the following diagram commutative:

,
K (G/P) —4— ¢°

s 0

Kr(G/B) ——
where ¥ is as defined in Definition 2.26, and my is induced from the
canonical projection np: G/B — G/P.

In particular, the map n; is injective with its image exactly equal to the
W,-invariants in K;(G/B). Taking P = G, we get that [K (G/B)]” ~
R(T).

Further K7(G/P)=0 forodd p.

Proof. - The assertion, that K?(G/P) = (0 for odd p, follows from
‘Remark 3.16.

Since the map y commutes with the Weyl group actions, it suffices
to show that the map n; is injective with its image exactly equal to the

Wi-invariants in K, .(G/B):
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For any w € W, we have the commutative triangle:

G/B - G/B

G/P
where w: denotes the action of w on G/B asin Deﬁnmon 311, In
particular, Image nP C [KT(G/B)
We first prove the injectivity of 7t : We have the following commuta-

tive diagram, in which both the horlzontal maps are injective (by §3.19—
Assertion I):

K (G/P) “—— K, ((G/P)")

K, (G/B) “—— K,((G/B)")

where nP is induced from the map 7, : (G/B) (G/P)T. But the map
tp is surjective; in fact under the isomorphism i: W — (G/B)T (given
in Definition 3.12) and a similar isomorphism ig: W \W — (G/P)T , the
map 7, is the canonical projection W — W \W . In particular, the map
A ﬁ; is injective and hence, by the above diagram, n; itself is injective.

Finally we prove the surjectivity of n; onto [KT(G/B)]WS or (what
is the same as) the surjectivity of yo n; onto ¥° . To achieve this, we
first of all observe that in §3.19—Assertion V if we take w € WSl (cf.
§1.1), then we can in fact choose 8" € n,(K(G/P)) (and satisfying the
requirements in Assertion V). Now the desired surjectivity of ‘))0771; follows
by an argument similar to the proof of Assertion V1.

(3.21) Remark. Recall that the structure of ¥ s given in Lemma
2.27.

Actually one can improve upon the above corollary further.

{3.22) Definition. Fix a subset S c {1, ---,/}. Let © be a subset
of W with the following properties:

(P,) © isleft Ws-stable, and

(P,) whenever w €© and w' <w, then w’' €©.

To any such ©, we can associate a (left) B-stable subspace Vg C G/ P
defined by

Vo= | (Bw™' Pg/Py).
weo
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By Property (P,), Vg is closed in G/Pg, and conversely any (left)
B-stable closed subspace of G/Pg is V,, for some appropriate choice of
©. In particular, the Schubert varieties XS ;= BwP/P C G/P are such
examples.

Let Qg denote the Q-algebra of all the maps © — Q. There is of
course the restriction map rg: Q — Qg . Define ‘P‘; = re(‘PS) .

Now we have the following corollary of Corollary 3.20.

(3.23) Theorem. With the notation and assumptions as in Corollary
3.20, assume, in addition, that © is a subset of W satisfying (P|) and
(P,) as above. Then there is a unique R(T)-algebra isomorphism yg = yg ,
making the following diagram commutative:

P
K (G/P) —1— ¥

i b
, ,
Kp(Vo) —2— ¥g
where jg is induced from the inclusion jg: Vg < G/P.
Proof. We first observe that the map jé is surjective: Fix 7 € K.(Vg)
and construct (by induction on r) elements 7, € K, (X, (P)) satisfying

(1) and

T"l = TI 5
Xy(PINVg Xa(P)NVg

@) Ty, =t

Having constructed %, € K .(X,(P)) as above, let
T €K (X, (P)U(X,,,(P)N V)
be an (in fact unique) element such that ¢’ nell,

n+1 g, ) w1 (P
. . ' .
. The existence (and the uniqueness) of 7, , is guaranteed from

~ !
=1, and 1

T

|X"+ (P)NV,
the follo%ving Mayer-Vietoris exact sequence:

0— K (X, (P)U(X, (P)NTVy))

— K (X, (P) ® K (X, ((P)NVg) = K (X, (P)NVg) — 0.
(The exactness of the Mayer-Vietoris sequence is known for any cohomol-
ogy theory; see, e.g., [9, Chapter I]. Also use the fact that K’T’(XH(P) nh)
as well as K’T’(Xn(P) U (X, (P)N V). = 0 for odd p; cf. the proof of
Lemma 3.15.)

Now let 7, | € K (X, ,(P)) be an arbitrary element such that

~ !
Tn+l .

T
141y (P10, (PNve)

This completes the induction.
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By property (1), the element 7 € K (G/P), determined by the com-

patible sequence (%,),, of course satisfies %|V = 7, which proves the
(5]

surjectivity of jg .
So it suffices to prove that yP(Ker jg) = Ker(rg) . Consider the follow-
ing commutative diagram arising from the localization maps:

* Kp(G/P) —— Ko(G/P)T)

jél : lfé

-~

Kp (Vo) —2— K (V)

By the localization theorem, the localization maps ?P and Jg are
both injective (see the proof of §3.19—Assertion I). Hence Ker jg =
(#")~(Kerj5) . This readily gives that ¥ (Ker Jo) = Ker(rg) .

The following lemma gives the structure of ‘I’f;. .

(3.24) Lemma. ¥ = = [yemine RIDrgle” - ¥™)).

Proof. We first claim that for any w ¢ O, re(e” -y"¥) = 0: For -
(e’ w®)(d,) = w¥(3,).-(v 'p) =0, if ve® (by Proposition 2.22(b) and
property (P,) of ©). Further let

I Zf rele =0 forsome f* € R(T).
weB

(We allow infinitely many of f“’s to be nonzero.) If possible, pick a
w, € © such that [ £0 and w, is of smallest length with this property.
Now evaluating the identity (I,,) at 5w0 and applying Proposition 2.22(b),
we get a contradiction!

So the lemma follows by using Lemma 2.27. O

Now we can prove the nonequivariant analogues of Theorem 3.13,
Corollary 3.20, and Theorem 3.23 using the corfesponding results in the
equivariant case.

- We first prove the following:

(3.25) Proposition. The canonical map & Z Qpry Kp(G/B) —
K(G/B) is an isomorphism, where Z is considered as an R(T)-module
under the standard augmentation map R(T) — Z (given by the evaluation
at 1).

(3.26) Proof. We break the proof into the following four assertions:

Assertion I.  The canonical map &,: Z®pry K1 (X,) — K(X,) is an
isomorphism for any n > 0. We prove it by induction on n. We have, by
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Lemma 3.15, a commutative diagram with exact rows:
0 = Zpy Kp(Xopyis X)) = ZBpiry Kp(Xyyy) = Z®pp Kp (X)) — 0
0 — K(X,

nelr Xp - K(Xpp1) - K(X,) -0
(The top horizontal sequence is exact because K (X,) is a free R(T)-
module.) Further, by [29, Proposition 2.9],

Ky(X,,,,X)~ . K, (BwB/B),

n+l2 n
H{w)=n+1
and the same is true with K, replaced by K . Hence, by induction on n
and the five lemma, it suffices tc show that the canonical map

(+) Z ®p 1) K7(BwB/B) — K(BwB/B)

is an isomorphism for any w € W .
We have the following commutative diagram:

1d @,
Z®pry Kr(pt.) =20, Z @ Kr(BwB/B)

~

| |
K(pt)  —%—~  K(BwB/B)

where the maps ¢, are Thom isomorphisms (cf. §3.19—proof of Assertion
V), and the left vertical map is an isomorphism since K.(pt.) ~ R(T).
This establishes the claim and hence Assertion L

Assertion II. The map §&: Z®R(T) K, (G/B) — K(G/B) is surjective.
Take any o = (g,) € K(G/B), where g, € K(X,). We assume, by
induction on n, that we have constructed 7, € K (X)) satisfying:

dl(n) T”IX,,_, n—1°2

d,(n) e,(1,)=0,,
where ¢, : K.(X,) — K(X,) is the canonical map.
One has the following commutative diagram (in which both the hori-
zontal rows are exact):
n
0— K (X X,) —— K (X

n+l? “"n n+1)

I [

0— KX, ,X) —— KX s

n+l? “"n n+1) — K(X,,) — 0.

— L K (X,) —— 0
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Now cho~ose any 1, , € K (X,,,) such thAat 1T, =1,- We‘can
wrlt_e 8n+1(rn_+1)_o'n+l = Nu15(%,,1) fpr some ©, , € K, (X, ,, X,) (since’
1y 1is surjective; cf. proof of Assertion I). Put 7, , =1, —n/(%,. ,);

then 7,(7,, () = M(%,,) — M (T,,) = 7,, and ¢,,,(7,,,) = 0,,, +
Mal3(Eppt) — €M (T,51) = 0, - So the induction is complete.
But then (7,), defines an element 7 € K .(G/B) such that é(1®1) = 0.
Assertion II1.  Recall the definition of t“ from Remark 3.14. Then
for any n >0, {r"’IX Vwy<a 15 an R(T)-basis of K1(X,), and rw|X =
0 for any l(w) > n . Take any /(w) > n. Since the localization rﬁap
K (X,)— KT(XnT) is injective (cf. proof of Assertion I in §3.19), to prove

that ‘c"’lx = 0, it suffices to observe that y(t“)(d,) = v"“(d,) = 0 for any

I(v) < n (by Proposition 2.22(b)).

Since the restriction map K(G/B) — K, (X,) is surjective, {rw,X }wy<n
spans (over R(T)) K, (X,) (by Theorem 3.13 and Proposition 2".20(0)).
Further, by Lemma 3.15, K, (X,) is a free R(T)-module of rank =
#{w € W:Il(w) < n} and hence by (a subsequent) Lemma 4.5 the as-
sertion follows.

Assertion 1V. The map ¢ : Z Qg K. (G/B) — K(G/B) is injective.
One has the canonical injective maps:

5:KT(G/B)HﬁKT(Xn) and 51:K(G/B)«—»ﬁK(Xn).

n=0 n=0
Consider the following commutative diagram:
Z Qg K(G/B) 5 K(G/B)
l1d@s Lo
&) fof %]
L@ pry (Lo K7 (X)) = [T—o K(X,)

X"Hi‘;o(z ®r(r) KT(Xn))/

where the map 6 is the canonical map, and & =[] &, (cf. Assertion I).
By [5, p. 62, Exercise 9] the map & is an isomorphism and, by Assertion
I, the map £ is an isomorphism, and hence £o 6 is an isomorphism.

So, to prove that & is injective, we need to show that Id®4 is injective:

Let 1 ® © € Ker(Id®J) for some z € K,(G/B), ie, 1®7, =0
as an element of Z® R(T) K, (X,) for all n, where 7, is the restriction
of 7 to X,. By Proposition 2.20(c) and Theorem 3.13, we can write
1=3, "7 forsome (unique) f* € R(T), where 7" is as in Assertion
III. By Assertion III, we obtain that f“ € R*(T) for all w € W, where
R*(T) is the standard augmentation ideal of R(T). Fix a finite set {f’}
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of generators of the R(7)-module R™(T), so that we can write Y=
> fla’*" forsome a’*" € R(T). Define the element ¢/ =Y a’"“71" €
K, (G/B). Then 1 = S/t andhence 191 =Y/ ®7 =0. This
proves Assertion IV,

Now putting Assertions I-IV together, we get Proposition 3.25.

(3.27) Remark. An identical proof, as above, gives the following gen-
eralization of Proposition 3.25. '

The canonical map Z® r) Kr(Ve) = K(Vg) is an isomorphism, where
Vo C G/ P is any B-stable closed subspace as in Definition 3.22.

In fact one can similarly prove that for any subtorus T' C T, the canon-
ical map R(T") Oy K1 (Vo) = K1 (Vo) is an isomorphism.

As an immediate consequence of Theorem 3.13 and Proposition 3.25,
we get the following nonequivariant analog of Theorem 3.13.

(3.28) Theorem. With the notation and assumptions as in Theorem
3.13, there is a unique Z-algebra isomorphism y,: K(G/B) — Z ®rry v
making the following diagram commutative:

K/ (G/B) —/— ¥

| |
K(G/B) —— Z®pqp ¥
where the vertical maps are the canonical maps.

Moreover the action of the Weyl group element w € W (Definition 3.11)
and the operator D, (Definition 3.8) correspond, under y,, to the action of
Id®d,, and 1d®y,, on Z®g )V respectively. (Observe that the actions
of J,, and y,, being R(T)-linear, Id®J, and Id®y, make sense.)

Further K?(G/B) =0 forodd p. O

We also obtain the following nonequivariant analog of Theorem 3.23 as
a consequence of Theorem 3.23 and Remark 3.27.

(3.29) Theorem. With the notation and assumptions as in Theorem
3.23, there is a unique Z-algebra isomorphism Ye.1 making the following
diagram commutative:.

Kr(Ve) —2— ¥

! !

: N
K(Ve) —7——1’ Z®R(T) \Pe

9.1

If we take © = W, we of course get the above theorem for G/P .



588 BERTRAM KOSTANT & SHRAWAN KUMAR

(3.30) Remark. By virtue of Theorem 3.13 (resp. Theorem 3.28),
study of the R(T)-algebra K (G/B) (resp. Z-algebra K(G/B)), together
with the Weyl group action and the operators D, , reduces to an algebraic
(or combinatorial) problem of understanding the R(T')-algebra ¥ along
with the action of the ring ¥ on ¥ (which is defined purely and explicitly
in terms of the Weyl group and its action on R(7)). In particular, the
product (as well as the Weyl group action) in K (G/B) in terms of the
{t¥}-*basis” can explicitly be determined from the E-matrix by Proposi-
tion 2.25. Further, the action of the operators D, on K (G/B) can be
determined by Proposition 2.22(d). Of course the structure of ¥ as an
R(T)-module is given by Proposition 2.20.

Similarly, by Theorems 3.23 and 3.29, the study of K.(Vg) (in par-
ticular K (G/P)) and K(Vg) reduces to the understanding of the R(T)-
algebra ‘I’g . Recall that the structure of ‘I’é (as an R(7)-module) is given
by Lemma 3.24.

It may be mentioned that the proof of Theorem 3.13 (and consequently
Theorems 3.23, 3.28, 3.29, and Corollary 3.20) did not require the struc-
ture theorem (Theorem 2.9), provided we replace the R(T)-algebra ¥ by
the algebra (IT, ., R(T)y")c Q. O

The proofs given above can be adopted to the T-equivariant singular
cohomology Hy(.) = Hy(.,Z) (with integer coefficients) to obtain the
following results: Recall the definition of the ring A and a basis {&"} weW
of A from [19, §4]. Now let A, =3 S,&, C A, where S, = S(b) is
the symmetric algebra of the weight lattice b; (cf. §1.2).

(3.31) Theorem. Let G be an arbitrary (not necessarily symmetriz-
able) Kac-Moody group with Borel subgroup B. Then:

(a) There is a ‘natural’ S, ~ Hy.(pt.)-algebra isomorphism n: H7(G/B)
— A, such that the action of the Weyl group element w (resp. the analog
of the BGG operators) on Hy.(G/B) corresponds under n to the action of
d,, (resp. x,) on A, defined in [19, §4.17].

More generally, there is a ‘natural’ S;-algebra isomorphism
ne: Hp(Vg) — A‘;e, where Vg is as defined in Definition 3.22, and Ai,e

is the image of A‘; (which is the set of Wg-invariants in A;) under the
map rg defined in [19, §5.14].

(b) The canonical map 2 H7(G/B) — H(G/B) is an isomorphism,
where Z is a S;-module under the canonical augmentation map S, — Z
(given by the evaluation at 0). '

More generally, the canonical map Z. ®Sz H;(Ve) — H *(Ve) is an iso-
morphism.
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(3.32) Remarks. (a) The fact that 5 is an isomorphism (as in The-
orem 3.31) has recently been obtained by Arabia [1], but he takes the
complex coefficients.

(b) Combining (a) and (b) of the above theorem, we can easily deduce
[19, Theorem (5.12), Corollaries (5.13), and Theorem (5.16)], in fact over
Z and for arbitrary Kac-Moody groups. (In [19] we had the symmetriz-
ability restriction’on G.) In particular, we obtain here a very different
(and conceptually better!) proof of these results than given in [19]. O

Now we want to characterize the ‘basis’ {t*} of K (G/B) given in
Remark 3.14. Recall that we are denoting the (standard) complex maximal
torusof G by H.

(3.33) Definition [33]. For a (finite-dimensional) H-algebraic vari-
ety X over C (i.e. H acts on X such that the action H x X — X 1is
algebraic), we denote by K 0(H , X) (resp. K,(H, X)) the Grothendieck
group constructed from the semigroup whose elements are the isomor-
phism classes of H-equivariant locally free sheaves (resp. H-equivariant
coherent sheaves) on X . (We have preferred to use the notation K,(H, X)
instead of Thomason’s G (H, X).)

(3.34) Bott-Samelson-Demazure-Hansen varieties. Fix v € W and

a reduced decomposition v = r; R Let v denote the sequence

(r, s r ) of simple reﬂectlons and (for any 1 < j < m) »v[j] :=
1

(Vi s s ¥ ). To the sequence b, there is associated a smooth projec-
1

tive H—vanety Z, over C of dimension m (called the Bott-Samelson-
Demazure-Hansen variety), and a continuous map 6,: Z — G/B (see,
e.g., [21, §2.1] in the form convenient for our purposes). Further, denot-
ing v’ = o[m — 1], there is an H-equivariant P'-bundle g2, — 2,
which is the pull-back of the P'-bundle 7, : G/B — G/P, under the

composite map Z i G/B h G/P; . Moreover, the P'-bundle T, 1S
the projective bundle of a rank-2, H -gquivariant algebraic vector bundle
(i.e. H-equivariant locally free sheaf) on Z,, .
In particular, making successive use of Proposition 3.4 for the p-
bundies:
z i, 7

v v{m—1]

- Zu[m—Z] o Zu[l] - {pt-} ’
and an analogous result for X 0(H , ') [33, Theorem 3.1], we easily obtain
the following:

(3.35) Proposition. With the notation as above, the canonical map
K°(H, Z,) — K,(Z,) is an isomorphism.
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For any H-equivariant locally free (more generally coherent) sheaf %
on Z , the cohomology spaces Hk(ZD , ) are finite dimensional H-
modules. Let ch H k(Zu , ) € R(T) define its character. As is standard,
define

2z, ) =S (1) chH (2, ) e R(T).
k

Clearly x(Z,, ) extends to give a R(T)-linear map KO(H, Z,)— R(T).

Fix v and v asin §3.34, and take any 7 € K (G/B). Then, by the
above proposition, the element 6: (r) in K(Z,) can also be thought of
as a (unique) element in KO(H , Z,). In particular, x(Z_, 6,(t)) makes
sense. Also the operation which takes a vector bundle to its dual, gives
a map *: K (G/B) — K, (G/B). Similarly the ring R(T) admits an
involution (again denoted by) *; defined by e* e for any fex (T).

With this notation, we have the following.

(3.36) Proposition.. Fix any v € W and a reduced decomposition
v=rper Then, for any © € K.(G/B),

X(Z,, 6,(x1)) = *([y, - »(D1(S,)),

where v is the sequence (r, , -, r ), and the map vy is as in Theorem
l

3.13. In particular, x(Z,, 6. (*1)) ‘does not depend upon the partzcular
choice of reduced decomposztzon of v. Also

x(Z,, 65(Be™)) = +(L, (),

for any &' € X(T), where 8 and L, are as defined in Deﬁnmon 3.17.
Proof. We first prove that

(*) X(Zu > 6.3 (x1)) = X(Zu[m_l] s u[m 1](*(D 7))).

im

A

Write

* 7 * '
(132) T=7TI~ T +I{imnimr ’

where H, is the Hopf bundle defined in §3.19—Assertion II, and T,
e K (G/P, ).

Let ¥ be an H-equivariant locally free sheaf on Z , (o' :=o[m— 1]).
By the Leray spectral sequence for the P'-bundle n.:Z, — Z, and the
projection formula, we get :

(L) HYZ,, 1) ~ H(Z,,, &) forall k.
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Further the line bundle 6:(*Hi- ) on Z_ , which can canonically be

given the structure of an algebraic line bundle, is of degree —1 along the
fibres of 7, (by §3.19—Assertion II). Hence by a result of Grothendieck, -

the direct images Rknu,.(GZ(*Hi )) =0 for all kK > 0. In particular, by
the projection formula,

Rn, (6;(+H, ) ® () ~ (R*m, (6;(+H, ))) ®F =0.
So, by the Leray spectral sequence,
(I,) HYZ,,6.(+H Y®7n.()) =0 forall k>0,

Now combining (I,,)-(L;,) and using the definition of the operator
D, (Definition 3.8), we obtain (*).

mMaking successive use of (), together with Theorem 3.13, we get the
first part of the proposition. .

The assertion about x(Z_, 0: (B (e_A))) follows from Lemma 3.18 and
(L) .

2?3.37) Definition. Forany v € W and 7 € K, .(G/B), define the ‘vir-
tual’ Euler-Poincaré characteristic ¥(X,, 1) == x(Z_, 0: 7) € R(T), where
v=rpeer 1s a reduced decomposition, v is the sequence (rl.l , rl.m) ,
and X, is the Schubert variety BuB/B C G/B.

By the above proposition, 7(X,, 7) is well defined, i.e., it does not
depend on the particular choice of reduced decomposition of v .

(3.38) Remark. Asin[21, §1.8], we put the “stable variety structure”
on X,. Now take 1 € K, .(G/B). If T is in the image of the canonical

map KO(H, X,) — K, (X,) then, by [2]1, Theorem 2.16(3)] (or [22]),
X(X,, 1) =x(X,, T), where T is any element in KO(H, X,) such that £
goes to 7 under the above map.

It is likely that, in the arbitrary Kac-Moody situation, K O(H s X,) —
K (X,) is always surjective (e.g. it is surjective in the finite case; as we
will see in the next section, Theorem 4.4). In any case, any element in the
image of the Atiyah-Hirzebruch homomorphism g of course comes from
K'H, X,). _

As a corollary of Proposition 3.36, we have the following characteriza-
tion of the ‘basis’ {t"'} of K,(G/B) given in Remark 3.14:

(3.39) Proposition. The ‘basis’ {t"},., of K (G/B) satisfies the
Jollowing

HX,-,+1) =6

v, wt
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Moreover, if {3} is any indexed set of elements in K (G/B) satisfying
XX, -1, ) = Oy o then T = Y forall we W .

In particular, in the finite case, the basis {a,}, ., of the Z-module
K(G/B) given by Demazure |7, Proposition 7] is related to our basis {t*}

as follows:
-1
e(xt” Y=a, foranyweW,
where ¢:' K .(G/B)— K(G/B) is the canonical map.
Proof. The assertion that ¥(X, -1, #7) = 9, ., follows from Propo-

sition 3.36 together with the definition of 7° (i.e., y(z¥) = w“). Con-
versely, write

Y =" " (xt") forsome [ € R(T).
v

Then %(X,-1,*¥") = . But, by the assumption, F(X -1, *t") =

8, , and hence 7 =" forall w.

4. Consequences of the main results in the finite case

(4.1). Unless otherwise stated we will assume, throughout this section,
that we are in the finite case, i.e., G is a finite-dimensional, semisimple,
connected, simply-connected, complex algebraic group, and we denote by
G, (instead of K) any (fixed) maximal compact subgroup with a maximal
torus 7 and let H be the complex torus C G which is the complexifica-
tion of T'. We denote the longest element of W by wy.

The main aim of this section is to show that some of the important
(though known) results in K-theory of G/B (in the finite case) can be
easily deduced from our Theorems 3.13 and 3.28.

(4.2) Definitions. Let R(G,) denote the representation ring of the
compact group G, . Asin [15, p. 11], define a map

9: R(T) 8y, R(T) = K (Go/T), by p(f®8)=f.(g),

where f is the Atiyah-Hirzebruch homomorphism defined in Definition
3.17(a). (Of course the notation f.B(g) means the multiplication by f €
R(T) in the R(T)-module K (G,/T).) It is easy to see that the map ¢
is well defined, i.e., it factors through R(T) ®r(a,) R(T).
We also define a map ¢: R(T) ®r(c,) RT)-YcQ,byo(feg) =
. f.B(g), where the map B: R(T) — ¥ is as defined in Definition 3.17(a).
~ Recall the definition of the Demazure operators L, on R(T) from
Definition 3.17(b). The action of L, (and also the Weyl group action)
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clearly commutes with the R(G,) ~ R(T)W-module structure on R(7T'). In
particular, we can define the operators Id®L,, and Id®d,, on R(T)® R(Gy)
R(T).

The following lemma follows fairly trivially from Lemma 3.18.

(4.3) Lemma. The following diagram is commutative:

"R(T) @y R(T) —f— K (G,/T)

N/

where v is the map given in Theorem 3.13.

Moreover, forany w € W and x € R(T)®R(GO)R(T) (po(Id®d,,))(x) =
w-g(x) (resp. (Po(Id®4,))(x) =4, (@(x))) and 9o(Id®L,) =D, o9
(resp. (@o(IdQL ))(x) =y, (@(x))), where w - ¢(x) denotes the action
of w on K (Gy/T).

Now we can prove the following, which was conjectured in [15, p. 11].
We thank V. Snaith from whom we subsequently learnt that it was already
proved by John McLeod [23]. Recently Kazhdan-Lusztig [18] also have
given a proof independently.

(4.4) Theorem. With the assumptions as in §4.1, the map ¢, defined
in Definition 4.2, is an isomorphism.

Proof. 1In view of Theorem 3.13, we need to prove that the map @
is an isomorphism. Now the image of @ is an R(T)-submodule of ¥,
which is stable under the action of y, ’s. So, to prove the surjectivity of
@, by Proposition 2.22(d) it suffices to show that ™ (where w, is the
longest element of W) belongs to the Image of #:

Let {e,},c; be the basis of R(T) over R(G,) ~ R(T)", given
by Steinberg [32, Theorem 2.2]. Define the matrix F = (-f;),w)v,weW’
where f . = we,. By [32, §2], the determinant of F, detF =

(=D)le™? W2 yhere I = [Tea (1-¢€").
We want to find elements (p, ), in R(T) such that

(135) a (pr ® ew) = Wwo

which is equivalent, by Proposition 2.22(b), to solving the matrix equation
in p (over R(T)):

(136) p.F=q,
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where p is the row vector (p,, ),y > @and q is the row vector with zeros
everywhere except in the wyth column, where it is equal to :,y“"’(&,wo) =
< . The equation (I,;) has a unique solution for p as a vector over the
quotient field Q(7T) of R(T) given by

F
(137) p= q-m’

where F = (fv,w) is the matrix with fv,w equal to the (up to sign)
determinant of the matrix F°'" obtained from F by deleting the wvth
column and the wth row. '

We next observe that det F*'* is divisible by 2"V2~! (in R(T)
for any v, w € W. To prove this, we use the Vandermonde determinant
type argument:

Fix a positive root v, and let r, € W be the reflection through the
hyperplane given by the root v. Write W\ {r v, v} as the disjoint union
of ‘the orbits under the left multiplication by r,. Of course there are
(|[W|/2)—1 such orbits. Since for any v, wew, ry'u'ew, ——'u'ew, is di-
visible (in R(T)) by 1—e” , we get (by subtracting the rV'u' th column from
the v’ th column) that det F**" is divisible by (T, (1 —eNITIUD-1

g im=1 (Observe that we have used the fact that R(7") is a unique
factorization domain and, for distinct v, v’ € A . » the elements 1 — e’

and 1 —¢"” are relatively-prime in R(T).)

Hence by (I;;) the vector p has its entries actually in R(T), which
proves the surjectivity of the map @ .

Replacing q by any other row vector over R(T), one easily obtains
(from I,;) that the map @ is injective.

(To prove the injectivity of @, one can also use the following general
lemma, which can easily be proved by using the determinants.)

(4.5) Lemma. A surjective linear map of any two free modules of the
same finite rank, over any commutative ring with identity, is an isomor-
phism.

Of course as an immediate consequence of Theorem 4.4 together with
Proposition 3.25 one obtains the following result, which was conjectured
by Atiyah-Hirzebruch {3, §5.7] (who had checked its validity case-by-case
for all the simple, simply-connected groups except for E, E;, and Ej)
and later proved independently by Seymour [30], Snaith {31], and Pittie
(28]. (They all used Hodgkin’s spectral sequence.)

(4.6) Theorem. Withthe assumptions asin§4.1,the Atiyah-Hirzebruch
homomorphism B,: R(T) — K(G,/T), defined in Definition 3.17(a), gives
an isomorphism Z®R(GO) R(T) — K(Gy/T).
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In particular, B, itself is surjective.

One can also easily deduce the following result due to Hodgkin [14]
from Theorem 4.4. We do not give the details here since they would
appear elsewhere; where we intend to study K *(GO) for the unitary form
G, of a general Kac-Moody group. '

(4.7) Theorem. With the assumptions as in §4.1, K *(GO) is a torsion-
free Z-module. .

We give below an alternative description of the operators D, (defined
in Definition 3.8) in the finite case: For an H-variety X , recall the defini-
tion of KO(H, X) and K,(H, X) from Definition 3.33. In particular (in
the finite case), KO(H, G/B) and K (H, G/B) make sense; where H is
the complex torus (acting on G/B by the left multiplication). Since G/B
is smooth, as a particular case of [33, Theorem 5.7], we have the following.

(4.8) Proposition. The canonical map KO(H, G/B) — Ky(H, G/B)
is an isomorphism.

For any H-stable closed subvariety Y of H-variety X, let &, denote
the structure sheaf of ¥ extended to the whole of X by defining it to be
zero in X \ Y. Since &, is an H-equivariant coherent sheaf on X, it
determines an element [, ] € K,(H , X). In particular, taking X = G/B
and Y = Schubert variety X, (= BwB/B) we get, forany w € W, an
element [F,]=[F, 1€ K,(H, G/B).

Recall the filtration given in Definition 3.1:

=X, CXyCX C - CX4ngp=0G/B.

Since each X, is a H-stable closed subvariety of G/B, X, \ X,_| isa
disjoint union of affine cells {BwB/B},,,_, , and moreover the action of
H oneach BwB/B can be linearized; by the H-equivariant analog (which
is available because of the equivariant machinery developed in [33]) of a
result due to Grothendieck [11, p. IV-31, Proposition 7] we get

(4.9) Lemma. The elements {(O,]},,cw Sorm a R(T)-basis for the
R(T) =~ R(H)-module K,(H, G/B).

In particular, Ky(H, G/B) is a R(T)-free module of rank =|W|.

One of course has a canonical map {: KO(H, G/B) — K, (G/B), where
K.(G/B) is the topological equivariant K-group as in §3.

(4.10) Proposition. The map (: K°(H, G/B) — K, (G/B) defined
above is an isomorphism.

Proof. Recall the definition of the map ¢ :R(T)®R(GO)R(T)—> K, (G/B)
from Definition 4.2. From the definition of ¢, it is clear that Image ¢ C
Image (. In particular, by Theorem 4.4, { is a surjective map. But
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K, (G/B) (resp. KO(H, G/B)) is a R(T)-free module of rank |W| by
Lemma 3.15 (resp. Proposition 4.8 and Lemma 4.9). Now, by Lemma
4.5, the proposition follows. O

As a consequence of Propositions 4.8 and 4.10, we can canonically iden-
tify K (G/B), KO(H, G/B), and K,(H, G/B) with each other.

(4.11) Propesition. Fix a simple reflection r; and let P, be the corre-
sponding minimal parabolic (cf. §3.2). Then the operator *D * (where x
is as in Proposition 3.36, and D isasin Deﬁmtzon 3.8) is the composite:

Ky(H, G/B) —% K(H, G/P) ~K°(H, G/PI.) L, K°H, G/B),

where n;: G/B — G/ P, is the canonical projection, m; = 2= IR* 7,1,
and = is the canonical pull-back.

Proof The 1dea of the proof is quite similar to the proof of Proposmon
3.36: For 1€ K" (H G/B), write
(Lyg) st=n)(c) + H.al (") for, <" e K(H, G/P).

(Recall that Hl is the Hopf bundle defined in §3.19—Assertion II.)
Hence
: T= n:(*‘r-) + (*Hl.).n:(*r”).
By the projection formula, we obtain:

(Iyy) m, (7) = *' + (7, (+H))).(x7").
But ’
(140) 71.'1-!(*}1[-) = O:

(see the proof of Proposition 3.36).

Combining (I;4)-(L,,), we get the proposition. O

Recall the definition of the basis ([&,]),, of K (G/B)~ K,(H, G/B)
from Lemma 4.9.

(4.12) Lemma. Forany w € W and simple reflection r,,

«[@,] fwr,<w,
«[@, 1 otherwise.

D, (+16,)) = {

Proof. Using the normality of X, and x,(X,), it is easy to see that
T, [G,1= @, (X, )] as elements of KO(H G/P) Now the lemma follows
from Proposmon 4.11, if we observe the following simple fact:

Let n: X — Y be a surjective H-equivariant smooth morphism of
smooth projective H-varieties, and let Z C Y be a closed H-stable sub-
variety. Then 7°(&,] = [, 4,], where n": K*(H, Y) — K°(H, X) is
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the canonical map, and [&,], which is an element of K,(H, Y), can also
be thought of as an element of KO(H , Y) under the canonical isomor-
phism with K(H, Y) (cf. Proposition 4.8). O

Recall the definition of the R(T)-basis {Tw}wew of K, (G/B) from
Remark 3.14. In particular, we have a Z-basis {7’ := ¢&(1")} of K(G/B),
where ¢: K (G/B) — K(G/B) is the canonical map. We also have another
Z-basis {a;” =¢e(x[@,])},, of K(G/B) (in the finite case) (cf. Lemma 4.9).

The following proposition describes how the basis {alw } transforms
with respect to the basis {7]'} of K(G/B).

(4.13) Proposition. Forany ve W,

— w” wo
0'1 _Zm'u wrl ?
w

where the matrix M = (m, ), ,cw Isdefinedas m, ,=1ifv>w,
and m, , =0 otherwise. :

In particular, o] =1,°.

Recall from [8, §3] that the transpose of the inverse matrix A s
precisely the Mobius function associated to the pair (W, <).

Proof. By Proposition 3.39,
(I,) *@,]= Z *(‘X(Xwow, [ﬁv]))rw._ “o as elements of K, (G/B).

But, by Proposition 3.36 and Remark 3.38,
(L) *(X (X » [F]) = Wy - (P (HE,100)(8,)

where y is the map defined in Theorem 3.13.
Further, by making successive use of Lemma 4.12 (see also the proof
of Proposition 4.16), we get

(Lsz) , —1 -1
*[ﬁwo] ifv w,<w w,, e, w<v,

D)=
Combining (I,,)-(1,5), we obtain

Zev [ﬁ ] Tl °+Zev [ﬁy’y w)])( )) v wo’

w<v wtv

*[F,] for some v =v'(v, w) <w,, ifw>v.

where ev: R(T) — Z is the augmentation map (cf. §3.17).
Now the proposition follows by the following simple lemma.
(4.14) Lemma. Forany w e W, ev(y(*[@,])(d,)) =0 unless w =
Wy, in which case it is 1.
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Proof. Let us resolve the H-equivariant coherent sheaf &, on G/B
by H-equivariant locally free sheaves (which is possible since G/B is
smooth):

(6) 0-F =F_ = —FH->FH—-0,-0.

n n—1 1

It is easy to see that

.

v (y(HE,1)3,)) = ev(418,13,)) = Y (1) rank 7,

where rank“f"‘;c denotes its rank as a vector bundle. If w = w,, ie.,
G, = @’G/B ,then & can be taken to be zero forall & >0 and & = @’G/B .
Hence the assertion follows in this case. So assume that w < w,, i.e., X,
is properly contained in G/B. Now taking a point g € (G/B)\ X, and
localizing the above sequence (&) at g, we get the lemma.

(4.15) Remark. It will be interesting to see how the basis {+[&, ]}
of K(G/B) itself transforms with respect to the basis {t"}. 0O

Recall the definitions of the W x W matrices B and £ from Corollary
2.7 and §2.21 respectively. Of course, by Proposition 2.22(c), one has
E = (B[)—l. To conclude this section, we give another expression for
the matrix E in the finite case. Even though this expression again is in
terms of the matrix B, but an interesting feature is that it does not require
inverting B ; instead it involves the Mdbius function.

(4.16) Proposition. E'= DB .M™', where the matrix M is defined

in Proposition 4.13, the scalar 9 :=Tl,¢, (1-€"), and B' = (b, ), wew

wew

is given by b, , = v b

~1 —-1).
wow™ ', WeV

Proof. Fix any v, w € W. Then, by (I5), one has

Yy

(I44) yu_l'yw—l = Zb’U,Ulavl_I (Z bw’wlé‘wl—l) ’
w,

Making successive use of Corollary 2.5, we get that y .y, =y, -1,
for some u € W satisfying u <w™' and l(v_lu) = l(v—l) +(u).

Now for any sequence of simple reﬂecti_ons = (r[.l R rl.k) , one of
course has y_ = Yn(w) for some (unique) n(w) € W, where y_ is, by

definition, y, ---y, . Further, by induction on k - k', it is easy to see
ll g

%
that if o = (r, ,---, 7, ) is a subsequence of w, then n(v) < n(w).
7 Jr

k
These two observations together imply that y, -..y,,-+ =y, if and only

‘LUO
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if vw, < w . Hence, equating the coefficients of 5% in both the sides
f (1,,), we get (by Proposition 2.6):

_ /9 ifvw,<w™',
va v '(Ul : )= / 0 n
o 0 otherwise,
i.e., (replacing w by wow_l),
-1
wa (v} by,

Hence ZB.B' = M. Now the proposition follows from Proposition
2.22(c).

(4.17) Remarks. (a) As mentioned in Proposition 4.13, (M~ )t
precisely the Mobius function.

(b)4 Recall the definition of the W x W matrix C from [19, Corollary
4.5], and define a matrix C' = '(c;’w) by c;,w = v_l(cwow"_l jug-1) - BY

)_{1/9 ifv>w,
Lww T otherwise.

proof exactly as above, one obtains that C “l_p'= (]_[Ve A V)C' , where
D is as defined in [19, §4.21]. ’
(4.18) Corollary (of Proposition 4.16). Forany v,we W, @.b,
e R(T). ’
Proof. By Propositions 4.16 and 2.22(a), entries of the matrix & B’
are in R(T). Further, for any w € W, (wZ)/< € R(T). This proves
the corollary.

5. Appendix

In this section, G is an arbitrary Kac-Moody group. :

The aim of this appendix is to show that the structure theorem {19,
Theorem 4.6] is false (in the sense made precise below) in general over Z,
unlike the corresponding structure theorem (Theorem 2.9 in this paper)
for ° K-theory

Let bz C h* be the weight lattice (cf. §1.2) and, for any prime p, let
bz =Z,8, bz (where - z, is the prime field). Recall the definition of

QW from [19, §4.1] and certam elements x,, € @, from [19, Proposition
4.2], and let R, be the subring of Q,, deﬁned by

R,={xeQ,:x-5,CS;},
where S, ;= S(b;) , and - is defined by the same formula as (I,).

*We thank A. Lascoux for a conversation which helped us to arrive at (b).
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It is easy to see that (for any simple reflection r;) x, , and hence x,,
for any w € W, belongs to R, . Now define a S;-submodule

Ry =Y S;x,CR,.
weWw
From [19, Proposition 4.3] it follows that ﬁz is in fact a subring of
R, ,and by [19, Theorem 4.6] RZ/IAQZ is a torsion group.
The question we are interested in is whether R, = R, :
Let (Rz/ﬁz)p denote the p-torsion elements in Rz/ﬁz, ie.,

(Rz/ﬁz)p ={x e RZ/EZ: px = 0}.

By analyzing the proof of Theorem 2.9 (as given in §2.13), together with
[19, Theorem 4.6(a)], we obtain the following.

(5.1) Lemma. Fix a prime p. Then (Rz/ﬁz)p = 0 if both of the
following two conditions are satisfied:

(a) none of the simple roots o, are zero mod p, Le., no a, considered
as an element of b, is 0, and
'p

(b) the canonical representation W — Aut(b; ) is irijective.
14

We also have the following very simple lemma, which does not use our
19, Theorem 4.6}, instead uses [19, Lemma (6.2) and Remark 5.17(a)].

(5.2) Lemma. Fix a prime p. If the characteristic homomorphism
S(h;p) — H'(G/B,Z,) is surjective, then again (Rz/ﬁz)p =0.

Also if S(b;) —» H*(G/B, Z) is surjective, we have R, =.RZ.

Finally we have the following (classical) result due to Minkowski.

(5.3) Lemma [24].5 For any odd prime p and any n > 2, the kernel
of the map SL(n,Z) — SL(n, Z) has no elements of finite order, where
SIL(n, Z) of course is the special linear group.

Now combining Lemmas 5.1-5.3, we obtain the following. -

(5.4) Proposition. With the notation as above, we have the following:

(a) Let G be of finite type. Then (RZ/ﬁZ)p = 0 for any odd prime p .
(b) R, =R, for G ofype 4, (121), C, (1>2), Dy, (I>1),
and E.
(€) (R, /ﬁz) , # 0 in the following cases:
(c,) p=2,and G oftype B, (1>23), Dy, (122), G,, F,,
E,, and E.

>We thank A. Borel for providing this reference.

L



T-EQUIVARIANT K-THEORY 601

(c,) p any odd prime, and any Kac-Moody group G which is
not of finite type.

(c;) p=2,and any Kac-Moody group G which is not of finite
type, provided no simple root is 0 mod 2.

Proof. (a) follows from Lemmas 5.1 and 5.3, and (b) follows from
Lemma 5.2 for G of type 4;,, C,. To prove the result for D,, +L and
, observe that no root is 0 mod 2 and moreover ¢: W — Aut(bzz) is
mjectlve for these. Injectivity of ¢ for D, , follows from the explicit
description of W and its action on f);; see, €.8., [6, Planche IV, p. 257].
Injectivity of ¢ for E, follows from the fact that the subgroup of W
consisting of all the elements of even length is a simple group (cf. [6,
Chapter VI, exercise §4-no. 2(d)]). Now use Lemma 5.1.
To prove (c), we first observe that for any prime p (including p = 2)
if the representation ¢: W — Aut(bZ ) is not injective but no simple root

is O mod p, then (RZ/RZ) #0:
Take w # e € Kerg. Then clearly %(511; —d,) € R,. We claim that

30,9, ¢ R, . For, otherwise, write

(*) 1(6,-6)=">_ f,x, forsome f €S,.

vEW

By [19, Proposition 4.3(c)], f, =0 for all v with /(v) > /(w). Equating
the coefficients of J,, in both the sides of (%), we get (by [19, Proposition

4.3(c)]) [l, = fw‘(]_[yewA_r1A+ e, HuewA_ﬂA+ v =pf, . So reducing
‘mod p, we get Hu =0 (v, denotes v reduced mod p), which contra-
dicts the assumptlon that no snnple (and hence no real) root is O mod p.
Further 6, -9, GRZ, since RZ isaring and 4, € R by [19, (L) 1.
Since any G, which is not of finite type, has an 1nﬁn1te Weyl group,
(c,) and (c;) immediately follow. In the cases covered by (c,), no root
is O mod 2, whereas ¢: W — Aut(bgz) has indeed nontrivial kernel since

the longest element of the Weyl group (in these cases) acts by —1 on b; .
So (c,) also follows.
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