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1. Introduction

The aim of this paper is to prove the existence of the strong Bernstein—Gelfand—
Gelfand (abbreviated as BGG) resolution for arbitrary Kac—-Moody algebras,
hitherto known only for the class of symmetrizable Kac-Moody algebras (referred
to as the symmetrizable case). More specifically we have:

Let g be an arbitrary Kac—-Moody Lie algebra over C, with Cartan subalgebra
b, and associated Weyl group W. Then, for any dominant integral weight Aeb*,
there is an exact sequence of g-modules and g-module maps:

(*) 0<—Lmax(/1)<—-co(ﬁ)*—c1(i)<““‘Cp(l)‘—’
where C,(A):= @ MW +p)—p) is the direct sum of Verma modules
weW

Iw)=p
M(w(L + p) — p) with highest weight w(4 + p)— p, and L™*(1) is the maximal
integrable highest weight module with highest weight A (cf. Sect. 2.8).
In particular we obtain Kostant’s famous theorem on ‘n-homology’ for arbitrary
Kac-Moody algebras (known, so far, only in the symmetrizable case).

Now let us describe the contents of the paper in more detail:
Section 2 is devoted to preliminaries and setting up the notation.
Section 3. A resolution as in (*) was first obtained by BGG in the finite case (i.e.
when g is a finite dimensional complex semi-simple Lie algebra); by ‘algebraic’
methods. (For historical remarks, concerning its extension to the symmetrizable
case, see Sect. 3.21.) Later Kempf very beautifully realized, again in the finite case,
such a resolution as a particular global Cousin complex (rather its dual) whose
terms are certain local cohomology modules introduced by Grothendieck; where
recall that given a decreasing filtration {X,} . ; of a topological space X by closed
subspaces and an abelian sheaf & on X, there is defined a complex known as the
global Cousin complex of & with respect to the filtration {X,} (cf. Sect. 2.9).

Kempf considered a particular filtration of G/B by B-stable (closed) subvarieties
and proved the exactness of the corresponding global Cousin complex, when &
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is any effective line bundle #(1) on G/B. The exactness turned out to be a
consequence of (P,) G/B is Cohen—Macaulay (since it is smooth) and (P,) H(G/B,
L(4))=0, for all i>0. Thus the ‘geometric’ properties (P,) and (P,) together
replaced the role of the Casimir operator used crucially by BGG to prove the
existence of their resolution.

Now in the general Kac-Moody case; we work at a time with one Schubert
variety X,:=BwB/B< G/B (instead of G/B) and define a certain filtration
F(w)={F,(W)},», of X,, by closed subvarieties (cf. Sect. 3.2) (which is somewhat
different from Kempf’s filtration). Fix a dominant integral weight 1 and let ¢ (w)
be the global Cousin complex of the line bundle .#,,(4) on X, with respect to the
filtration & (w) (cf. Sect. 3.3). Then the exactness of o (w) (cf. Theorem 3.4) follows
rather easily; since the properties (P,) and (P,) (with G/B replaced by X,,) have
already been established by the author [Ku5] (and also by Mathieu [M]). Our
filtrations & (w) are ‘compatible’ with respect to taking ‘limits’ over we W, where
W is equipped with the usual Bruhat partial order. So taking direct limit of the
‘duals’ of the exact complexes " (w), we obtain an exact complex )" ¥ = X"V (1)
which we refer as the Kempf complex. We further prove that the components of
the Kempf complex " (1) are nothing but C,(J) (i.e. the direct sum of appropriate
Verma modules); the proof of which is somewhat tricky and follows as a
consequence of Lemmas (3.14)—(3.17). Putting these together, the strong BGG
resolution (as stated in the beginning) (cf. Theorem 3.20) follows trivially. Of course
the BGG resolution immediately gives the Weyl-Kac character formula for
arbitrary Kac-Moody algebras (cf. Theorem 3.22), proved in the general case by
the author (and also by Mathieu). Generalization of the strong BGG resolution
(corresponding) to arbitrary parabolic subalgebras of finite type (cf. Theorem 3.27)
can be obtained by a very similar method; considering G/P instead of G/B.

Quite differently, using the combinatorics of the Weyl group, Bernstein—
Gelfand—-Gelfand have defined (cf. Sect. 3.24) a certain complex € = %(4) (with the
same C,(A)’s), which we refer as the BGG complex:

0 — L™X(2) —— Co(A) == C,(A) = ---.

Using our (main) theorem (3.20) (on the existence of a strong BGG resolution)
and following some ideas due to Rocha—Caridi and Wallach, we show that the
BGG complex is exact and moreover any exact complex as in (*) is equivalent to
the BGG complex (cf. Theorem 3.25 for a more general statement). In particular,
the geometrically defined Kempf complex " ¥ is equivalent to the combinatorially
defined BGG complex.

We have not considered, in the paper, the exactness of the local Kempf complex’
or the exactness of the Kempf complex KV in char. p (even though both of these
are true) because we have no immediate applications for these.

Section 4. Let p=ps be a standard parabolic subalgebra of finite type, with
nil-radical u* and maximal reductive subalgebra r (cf. Sect. 2.4). As a straight-
forward (and standard) consequence of the BGG resolution, we extend Kostant’s
famous theorem to arbitrary Kac—Moody algebras; which completely determines
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the Lie algebra homology H,(u™, L™*(4)) as an r-module (cf. Theorem 4.1). We
recall that it was extended to the symmetrizable case by Garland—Lepowsky.

As another consequence of the BGG resolution (rather Theorem 4.1), we prove
(cf. Theorem 4.3) that H?(g,x) =0, for p odd and dim. H??(g,r) =#{we W}:l(w) = p}
(cf. Sect.2.3); thus extending Lepowsky’s result to arbitrary Kac-Moody
algebras. Some other consequences to Lie algebra homology are contained in
Proposition (4.2). Finally we conjecture that (appropriately defined) the integration
map induces an algebra isomorphism: H*(g)— H*(G,C), where G is the
corresponding Kac—Moody group (cf. Conjecture 4.4).

Our dependence on various ideas in Kempf’s paper [K] will be clear to any
informed reader.

2. Preliminaries and notation

We will follow the notation from [Ku5, Sect. 17:

(2.1) Definition (Kac—Moody algebras). A generalized Cartan matrix (GCM)

A =(ay); <; ;< 15 @ matrix of integers, satisfying a; =2 for all ; a;; <0 if i # j; and
a;;=0if and only if a; =0.

Choose a triple (h, 7, V'), unique up to isomorphism, where § is a vector space
over C of dimension 2l-rank 4; n={a;},.;,.,<b* and n¥ ={h}, ., =} are
linearly independent indexed sets satisfying a;(h;) = a;;. o

The Kac—Moody algebra g = g(A) is the Lie algebra (over C) generated by b
and the symbols ¢; and f;(1 <i <) with the defining relations R, — R,:

(Ry) [b,b]1=0; [h,e;]=0y(h)e;, [h, fi]= —ai(h)f;, for heb and all 1 Si<],
(Ry) [e f1=0, b forall 1 i, j <],

(Ry) (ade)' ~%i(e;)=0,forall 1<i#j<1, and

(Ry) (@d f)' ~™(f)=0,forall ISi$j<l

The GCM A4 is called symmetrizable if there exists a diagonal matrix D =dia
d,,...,d;) with all d; > 0 and rational, such that D 4 is symmetric. The Kac—-Moody
Lie algebra g(A) is called symmetrizable if A is symmetrizable.

(2.2) Root space decomposition. There is available the root space decomposition:
g=b® ) g, where g, is the root space corresponding to a and A4, the set

acd = h*\{0}
of roots, consists of all those zeh*\ {0} such that g, + 0. Moreover A=4,0A4_,
!

where A, Z Z,a; and A_ = —A, (Z, is the set of non-negative integers).
i=1

Elements of A, (resp. 4_) are called positive (resp. negative) roots.

(2.3) Weyl group. There is the Weyl group W < Autbh* (associated to g); which is
generated by the ‘simple’ reflections {r;},<;<;, Where rieAuth* is defined by
r:0) = x — x(h;);. The set of roots A is W-stable. Define the set of real roots
A= W-n. Further (W, {r;}, <;<,) is a Coxeter system, hence we can talk of the
length I(w) of any element weW. Set, for any p 20, W®:= {weW: l(w)=p}. We
also have the standard Bruhat partial ordering <in W.
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We define a shifted action * of W on h* by wxy = w(x + p) — p, where p is
any fixed element of h* satisfying p(h;) = 1, for all 1 <i <. (The element w*y does
not depend upon the choice of p.)

For any S < {1,...,1}, let W be the subgroup of W generated by {r;},.s and
define a subset

Wi={weW: A, nwA_c A, \A5} of W, where A5, =A, n{) Za;}.
ieS
The subset W} can be characterized as the set of elements of minimal length in
the cosets Wyw(weW) (each such coset contains a unique element of minimal
length).
The subset S is said to be of finite type if Wy is a finite group.

(2.4) Parabolics. We fix a subset S<{1,...,1} (including S = ¢¥) and define the
following Lie subalgebras of g:

nt= Y g ur=ui= Y gin 8=bs® Y (8.Dg-.)

aeds aed  \AS, xeAS,

r=15=H@ ) (8,@9-o); b*=b+n*; and p=ps=r@u’,
aeAY
where b is the span of {h;}, .

Then r normalizes u* and r is finite dimensional if and only if S is of finite
type.

The algebra b=b" (resp. p) is called the standard Borel (resp. a standard
parabolic) subalgebra. The parabolic subalgebra pg is said to be of finite type, if
S is of finite type. If S is the singleton {i}, then p;:= p,, is called the minimal parabolic
subalgebra corresponding to the simple reflection r;. The subalgebra b is called the
Cartan subalgebra.

(2.5) Kac-Moody groups. Even though there are several constructions of
Kac-Moody groups (giving possibly different groups), and we could have used
either of these, we will stick to the construction due to Tits. Instead of recalling
his construction here we refer the reader to [Ku$5, Sects. 1.2—1.3], where it is given
in the form convenient for our purposes and the notation of which we adopt here
(without explanation). In particular, recall that G denotes the Kac—Moody group
associated to the (Kac—-Moody) Lie algebra g (and a fixed choice of a ‘suitable’
integral lattice hz < h); T (resp. B) denotes the standard maximal torus (resp.
standard Borel subgroup) of G; and, for any subset S ={1,...,l}, P=Ps> B is the
standard parabolic subgroup corresponding to S. If we take S to be the singleton
{i}, for any 1<i<l, then P;=Py, is called the minimal parabolic subgroup
corresponding to the simple reflection r;. If S is of finite type, the corresponding
Py is said to be standard parabolic subgroup of finite type.

(2.6) Opposite Borel subgroup. Recall (see, e.g., [S, Sect. 1.7]) that for any real root
B, there is a unique additive one parameter subgroup U, and a homomorphism
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ug: C— G, such that Uy =u,(C) and tuy(z)t ™' = uy(e?(t). z), for all te T and zeC.
Furthermore, for any ne N (where N = N(T) is the normalizer of T in G), we have
nU,,n‘1 =U,, where w:=nmod TeN/T ~ W. Now let U~ denote the subgroup
of G generated by the subgroups {U,}, where § ranges over all the negative real
roots (i.e. AN A_). The torus T normalizes U~ and let B~ be their semi-direct
product. We call B~ as the standard opposite Borel subgroup.

(2.7) Dominant weights. Any element A of h%:= Homgz(hz, Z) is called an integral
weight, where §; < | is the integral lattice fixed in Sect. 2.5. It is called dominant
if it satisfies A(h;) =0, for all 1 i<,

(2.8) Generalized Yerma modules. For any Aeh*, one defines the Verma module
M(2):= U(g)@? C,, where C, is the one dimensional b-module such that the
ub)

Cartan subalgebra ) acts by the weight A and n™* acts (of course) trivially.

More generally, let S<{1,...,I} be any subset of finite type. Let
Dg:={Aeh*:A(h)eZ,, for all ieS}. There is a natural bijection between Ds and
the set of (isomorphism classes of) finite-dimensional irreducible r = rg-modules
which remain irreducible as gg-modules; given by: any such rg-module Li—its
highest weight (cf. [GL, Proposition 3.1]). For any AeDg, we denote the corres-
ponding irreducible r-module by V(). Now the generalized Verma module Mg(1)
(for any AeDy) is by definition U(g) X) Vs(4), where the t-module structure on

ute)

Vs(4)is extended to a p-module structure by demanding u™* to act trivially on V(4).

Finally for any dominant integral weight 4, define L™**(A) = M(1)/M'(4), where
M'’(4) is the U(g)-submodule of M(A) generated by the elements { f2**1p,}, .,
(v, is the highest weight vector in M(A)). It can be easily seen that L™*(]) is an
integrable (highest weight) g-module and any integrable highest weight g-module
with highest weight A is a quotient of L™*(4). In the symmetrizable case, L™**(4)
is known to be irreducible but its irreducibility is an open question in the
non-symmetrizable case.

(2.9) Grothendieck’s local cohomology ([G, H1, H2,K,...]). Let & be any abelian
sheaf on a topological space X and let Z< Y < X be closed subspaces. Then
H},(X,) (for any p20) denotes the local cohomology (also called the
cohomology with supports), as defined in [H1, p. 219, Variation 2]. If Z is the empty
set, H} ,(X, &) will generally be abbreviated as H}(X, &). Recall that the local
cohomology is functorial in the sense made precise in [K, Lemma 11.3].

We also recall (cf. [H1, Chapter IV, Proposition 2.3] or [K, Lemma 7.8]) that
for any topological space X with a filtration by closed subspaces: X =X, 2 X; 2
X, = ---,and any abelian sheaf & on X, there is associated a complex (i.e. composite
of any two successive maps is zero) known as the global Cousin complex of & with
respect to the filtration (X,) of X:

6 d, d
0~ H(X,#) > Hy 1y, (X, %) = Hy 1, (X, %) = HE 4 (X, 9)> .
a
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We record the following two lemmas for their use in Sect. 3.

(2.10) Lemma. Let A? be the affine space of dim.d over a field k. Then:

@) Hfy(A% 0p:) =0, for p+d and

(b) H{y(A?, 0,,) is “canonically’ isomorphic with ), <okx’;’ --x gs k-vector
spaces; where 0 is the origin of A% @ 5, denotes the lstru::dture sheaf and (x4, ..., x;)
are the coordinate functions on A

For a proof see, e.g., [G, Corollary 3.10] together with [H2, Chap. III,
Exercise 6.11] and [G, Proposition 1.12]. []

(2.11) Lemma. (a) Let K be a (finite dimensional) affine algebraic group over
C with Lie algebra %, let X be a K-variety over C, and let &¥ be a K-equivariant
vector bundle (locally free sheaf) on X. Then for any closed subspaces Y2 Z of
X, the local cohomology HY,(X, %) (for any p 20) admits a natural structure
of a T-module, which is functorial in the following sense:

Let X' be another K-variety over C with closed subspaces Y'2Z', and a
K-morphism f: X’ = X such that Y' 2 f ~*(Y) and Z' 2 f ~*(Z). Then the induced
map: H} (X, ¥)—> HY. ,.(X', f*(&)) is a T-module map.

(b) If we assume in addition (in the first paragraph of (a)) that Y and Z are both
K-stable, then the t-module structure on HY ,(X, &) integrates to give a K-module
structure.

Even though not stated exactly in this form, a proof of the above lemma can
be found in [K, Sect. 11]. (Actually [K, Sect. 11] contains more general results,
but we do not need them)) [] )

3. Kempf and the BGG resolutions

Throughout this section G is a Kac—Moody group (associated to any Kac—-Moody
Lie algebra g), with standard Borel subgroup B, opposite Borel subgroup B~, maximal
torus T, and the associated Weyl group W ~ N(T)/T (cf. Sects. 2.5-2.6).

For any ve W, define the following subsets of G/B:

#,= BvB/B
#° =B vB/B
X,=4,
X =2
and
0X’=X"\%",

where the closure (denoted by —) is taken in G/B with respect to the Zariski
topology on G/B (cf. [S]).
The following is well known
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(3.1) Lemma [KP, Lemma 3.4 and Remarks 3.3-3.4].

Xv= U gv'a
v'Sv
x°= ) @,
vy’

and
B°nX,, is non-empty if and only ifv=<w. [

(3.2) Definition. Fix a we W and define a decreasing filtration & (w) = {F (W)},
of X, by (Zariski) closed subspaces, where

F,w:= ) 2°nX,,
Iw)zp
Of course Fo(w) = X,, and moreover, by Lemma (3.1), F,(w) is the empty set
&, for all p> l(w).

Asin[Kus$, Sect. 1.8], we will always endow X, with the ‘stable variety structure’;
which makes X ,, into an irreducible projective variety over C of dim.l(w). There is
a line bundle (invertible sheaf) £ () on X, associated to any integral weight A (cf.
[Ku5, Sect. 2.2]). In what follows, we fix once and for all a dominant integral 2 (cf.
Sect. 2.7).

(3.3) Definition. Recall from Sect. (2.9) that associated to the filtration & (w) and
the line bundle £ (2), there is a complex called the global Cousin complex
AW 0o HOX Z0) 2 HE oK L) 2

dp—l(w)
i Hg'p(w)/Fp+1(w)(Xw’ LwA)— .

Now we can state our basic

(3.4) Theorem. For any we W and any dominant integral weight A, the sequence
A (w) defined above is exact. []

As a preparation for the proof of the above theorem, we recall the following
lemma, essentially due to Kazhdan-Lusztig, from [Ku6]:

(3.5) Lemma [Ku6, Lemma 3.3]. Let v £ w be arbitrary elements of the Weyl group
W. Then the map

0,,:U,x(#°nX,)-@©B B/B)nX,,

defined by 0, (g,x) = gx, for geU, and xe #°nX,, is a biregular T-equivariant
isomorphism; where U, is the finite dimensional unipotent algebraic group which
is subgroup of G with Lie algebra )  g,,#°nX,, is equipped with the affine

acdsnvd-
variety structure as in [Ku6, Sect.3.2], and, vB”B/B being open in G/B,
(vB"B/B)n X,, is an open subvariety of X,,. [

(3.6) Proof of Theorem (3.4). For any p=0, the locally closed subspace
Fy(w\F,,,(w) (of X,) with the reduced subscheme structure is a disjoint union
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]_] (#°nX,) of non-empty open affine subschemes (cf. Lemmas 3.1 and 3.5). By
vSw
lv)=p

the above lemma (U, being affine) (vB~ B/B)n X, is an (open) affine subvariety of
X,,. Hence to prove that the inclusion #°n X, < X, is an affine morphism, it
suffices to observe (in view of the above lemma) that:

(1) For any two affine open subsets U and V in a variety X, UnV is also
affine (cf. [H3, Chap. II, Exercise 4.3]) and

(2) For any two affine varieties X and Y, the inclusion Y <, X x Y given by
y>(xg, y), for some fixed x,€X, is an affine morphism.

Further, by the above lemma,

codimy_(#°NX,)=dim. U, = I(v).

Now the theorem follows from [K, Theorem 10.9] together with [Kus$,
Theorems (2.16) and (2.23)]. O

(3.7) Lemma. Fix any weW and a simple reflection r; such that rw <w. Let P;
(resp. p;) denote the corresponding (to r;) minimal parabolic subgroup of G (resp.
minimal parabolic subalgebra of g) (cf. Sects. 2.4-2.5). Then all the modules occurring
in the global cousin complex # (w) (cf. Sect. 3.3) have natural p;-module (in particular
b-module) structures and all the maps are p;-module maps. Moreover the action of
the Cartan subalgebra §)  p; integrates to give an action of the torus T on all the
modules (in the sequence X (w)).

Such modules are generally called (p;, T)-modules.

Proof. Since r;w < w (by assumption), the group P; acts on X, (under the left multi-
plication). Moreover, by [S, Sect. 1.11, Lemma 2], the action of P; on X, factors
through the action of a finite dimensional algebraic group, say P;(w), (which is a
quotient group of P;) to give a regular action of Py(w) on X, i., we have a
morphism: Py(w) x X,,— X, making the following triangle commutative:

P(XXW—‘)XW
Pi(W)XXw

Moreover P,(w) can be chosen so that it contains T.
Now the lemma is an immediate consequence of Lemma (2.11), if we observe
that the action of the torus T on X, leaves F,(w) stable for all p=0. [

(3.8) Definitions. Let V be a T-module. It is called a weight module if it is the

(direct) sum of all its weight spaces, ie, V= (P V,; where X(T) is the character
ereX(T)

group of the torus T, and V,:= {veV: t.v=e¥(t)v, for all te T} is the u-th weight
space. '
For any weight module ¥, we define its restricted dual V" by

Ve @ v
erleX(T)
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where V,* is the full vector space dual of ¥,. Of course V" is canonically a
T-module.

A weight module V is called admissible if dimV, < o0, for all e*eX(T). An
admissible T-module V admits formal character chV:= ) dimV,.e"

ereX(T)

For any (noetherian) T-variety X, a closed T-stable subspace Y, and any
T-equivariant locally free sheaf & on X it is known that HY(X, %) are weight
modules under the natural T-action. In particular the restricted dual H}(X, &)
makes sense.

(3.9) Definitions. For any v,weW and p =0, set
HY(X,, 2L, )= Hg(”an/(ﬁX")an(Xw’ ZLw(A))-

By Lemma (3.7) (actually by its proof) HX(X,,%,(4)) is naturally a
(p;, T)-module, for any minimal parabolic subalgebra p; such that r,w <w.

Let w <w and v be arbitrary elements of W. Since X,, < X, (Lemma 3.1) and
moreover, for any p 2 0, F,(w)nX,, < F,(w) (in fact the equality holds), one has
the canonical maps:

¢€,_w' : Hg‘,,(w’)/l-‘p:, 1(w’)(XW’9 _?w,(},)) - H;p(w)/F‘, + ,(w)(Xw, ,Z’w(l)),
and also
ww H (X, L,(A) > HNX,, L)

(As a consequence of Lemmas (3.11) and (3.15), Hy /5, ;o0 (Xws Z.(2)=0 for
n# p and also HY(X,,, Z,(4)) =0, for n £ I(v).)

Further, from the naturality, both of the above maps are b- (in particular T-)
module maps. Taking the restricted duals (cf. Sect. 3.8), we get the following maps:

Yo He e sonEw L)Y = HE oyr,. vy Xwrs Lor(A))

and
¥y HOX,, £,3) > B (X, L,(4)".

These (b-module) maps enable us to define the following b-modules, for any
p=0and veW:

H‘;'p/qu I(G/B’ g(i))v = 11@» Hf?p(W)/Fp+ l(W)(Xw9 °gw(j'))v’
weW
and

HG/B, £(2))" :=lim H(X,, £.(4))".

weW

We also define :

H%(G/B, £(3))" :=lim H°(X,,, Z.(4)",

weW

where W is equipped with the Bruhat partial ordering.

The maps y?, . give rise to a chain map (cf. [K, Lemma 11.3]) denoted y/,, .
from the restricted dual ¢ ¥ (w) of the sequence " (w) (cf. Sect. 3.3) to X"V (w'),
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whenever w S w', ie, the following diagram is commutative:

e , fow)  Gpoi(n) N
Ho(Xw gw(l)) (""("'2 Hgn‘w)/pl(w)(xw’ gw(")) e ‘u—' Hg,,(w)/p,,, ,(w)(Xwa gw()')) -

l l *a,w’ l "C.w’

v So™)  Bpo1¥)
Ho(Xw‘, Lw(A)Y ) Hgow,,,mw,)(xw,, Z.A)Y oD HP X L AN -,

Fp(W')[Fp+1(w)

where the first (unlabelled) vertical map is the canonical map induced from the
inclusion X, = X, and 6,(w) (resp. ¢(w)) is the dual of the map d,(w) (resp.
&(w)) of the complex ¢ (w).

Taking the direct limit of the chain complexes 2 ¥ (w) via the chain maps ¥, .-,
we obtain the following fundamental chain complex /¥ which we refer as the
Kempf complex:

v o,
0 HO(G/B, £(3)" - HY, ;. (G/B, £(@)* & - PN HE ,  (G/B, L) «---
O

As an immediate consequence of Theorem (3.4), we have the following:
(3.10) Corollary. The Kempf complex X"V defined above is exact. []

(3.11) Lemma. For any weW andn,p20, Hy ¢ .. (Xw, £L(4)) is canonically
isomorphic with P HY(X,, £,,(4). (See also Lemma (3.15).)

veW(P)
In particular, taking limits of the restricted duals, we get a canonical isomorphism:

Hyr,.(G/B,2(1)" ~ (B H)(G/B,Z()".

veW(Pp)

Proof. By the definition, F,(w)\F,, ,(w) is a disjoint union I (#°~X,,) of open
vew(p)

(possibly empty) subsets. Now
H;p(w)/pp+ 1(w)(XW’ gw(l)) x I-I;,,(w)\p,,+ ,(w)(Xw\Fp+ 1(W)’ ,S,PW(JL)),

by [K, Lemma 7.7]

~ @ H?"’r\xw(xw\Fp+1(W)’gw(l))9

veW(P)
by the Mayer—Vietoris sequence (cf. [H3, Chap. II1, Exercise 2.4])
~ @ Hy. nx.i0x0) 050 K ws Z.(A),

veW(p)

by [K, Lemmas 7.7 and 7.9]. [

From now on we will freely identify Hp . .  (G/B,£(1)" with
@ H(G/B, £(A))" under the canonical isomorphism given in the proof of the
veW(p)

above lemma.
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(3.12) Definition. For any veW®*! and v'eW®, we define the map
6*":H?*'(G/B, £(A))" —»H’(G/B, £(1))" as the restriction of the map ,, (of the
Kempf complex %" ¥) to H2*(G/B, £(4))" followed by the projection onto the
H?.(G/B, #£(4))" factor under the above decomposition.

One can similarly define a map (for any we W) 6*"(w): H2*(X,,, £ (4))¥ =
H2(X,, 2L(4)" (cf. Lemma 3.11). [

We have the following crucial proposition on the structure of H*Y(G/B, £(4))":

(3.13) Proposition. With the notation as in Sect. 3.9, the b-module structure on
H!®(G/B, £(4))" extends canonically to give a g-module structure and moreover it
is isomorphic with M(v*A) as g-modules; where M(p) (for any uebh*) is the Verma
module with highest weight x4 and the notation * stands for the shifted action of
the Weyl group on h* (cf. Sect. 2.3). [J

As a preparation for the proof of the above proposition, we prove the following
four Lemmas (3.14)—(3.17):

(3.14) Lemma. Let V be a g-submodule of a Verma module M(y) (for any ueh*).
Then V itself is isomorphic to a Verma module M(y') if and only if ch V =ch M(y)
(cf. Definition 3.8).

Proof. It suffices to prove the implication <:

Choose a non-zero vector vye ¥ of weight ' (which exists and is unique upto
a non-zero scalar multiple; by the assumption on ch V). Clearly U(b)v, = Cv,. Let
V' be the g-submodule of V generated by v,. Since any non-zero homomorphism
of one Verma module into another is injective, ¥’ is isomorphic with the Verma
module M(y'). Hencech V' = ch M(y')

=ch V (by assumption).

But V' being a submodule of V, this is possible only if ¥’ =V, proving the
lemma. []

(3.15) Lemma. With the notation as in Sect. 3.9; for any v,we W we have:
(a) HX(X,,, £ ,(4)) =0, unless v<w and p = U(v)
and
) If v < w, HX,, £, )~ HU,, 0y, )@ HYB N X,,, £ (W)l g0 nx,)

as T-modules; where e is the identity of the unipotent group U, defined in

Lemma (3.5), Oy, denotes its structure sheaf, H #("»*) denotes the local cohomology

with support in the singleton {e}, #°nX,, is equipped with the affine variety
structure as in Lemma (3.5), and T acts diagonally on the right side of (b).

Proof. H2(X,, L) =H3\ x_oxynxXuw Lu(4) (cf. Definition 3.9)
~HY, ;. (0B B/B)nX,, £,(A))

(by [K, Lemmas7.7 and 7.9]; since #°nX,, is closed in the open subset
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(vB"B/B)n X,, of X,, by Lemma 3.5)
~HY,) . gy, [Us X (B NX,),00,2L,(2))
(by Lemma 3.5)
~x H?e}(Uw @U‘,) ® HO(Qanwa "gw(;*)lgv ﬁXw)
(by [G, Proposition 5.5 and Corollary 5.6] together with [H3, Chap. II],
Exercise 8.2]; considering the projection U, x (#°n X,,)— U, and observing that
& (A wB- B8~ x,, 18 trivial).
But by Lemma (2.10), H},,(U,, 0y,) =0, unless p =dim. U, = l(v).

Now the lemma follows by observing that #'n X, = &, unless v<w (cf.
Lemma 3.1). [J

(3.16) Lemma. For anyveW, H'®(G/B, ¥(A))" is an admissible T-module. Further

ch(H;"(G/B, £(A)))=e"*"[] (1 —e7%)~1 =ch M(v+2),
ped
where A is the indexed set of positive roots (consisting of positive roots such
that each root occurs exactly as many times as its multiplicity).

Proof. Define a mapé,:U " noU v ' >%" by &,(g)=gvmodB, for geU ™ n
vU v~ L. Then &, is a T-equivariant bijective map. Let us denote by #(1) the
(topological) line bundle on G/B associated to the principal B-bundle:G — G/B,
by the character C_; of B (cf. Sect.2.8). Define a continuous section
S,:B° > L(A):=G xgC_, by s,¢,(9)=(gi,1_;)modB, for geU nvU v}
where 1_, is some fixed non-zero element in C_;, anrd 7 is some fixed element of
N(T) such that smod T = v. (A different choice of # and 1_; only changes s, by
a non-zero scalar multiple.) The section s,, on restriction, gives a regular section
denoted s,(w), of the line bundle %,(4)| 4.y, (cf. Sect.3.2). Since s,(w) is a
nowhere zero section, we obtain that the line bundle £, (4)| 4. ~x,, is trivial and
hence the map:

C[#°nX,]>H# nX,, L () gvnyx) givenby fiof.5,(w)

for any feC[#°n X,,] (Where C[#°n X, ] is the ring of regular functions on the
affine variety #°n X,,), is an isomorphism.

Since | ) X,, = G/B, from the T-equivariant bijection ¢, together with [Ku6,

Sect. 3.2], it is easy to see that

(1) ch(lgn,(cmvnxw]q)_—. [ (-ef
wel ped,nvd,

Since the weight of the section s,(w) is e~ %%, we get:

1) Ch(li}},(H°(Q"an,.z’w(ll)rlgvnxw)"))=e"‘. [T (-e?t.

weW ﬁsZ+ rw3+




Bernstein—Gelfand-Gelfand resolution for arbitrary Kac-Moody algebras 721

Since U, (defined in Lemma 3.5) is biregular isomorphic to its Lie algebra under
the exponential map, we obtain by Lemma (2.10):

h(HGWU,, 05,)= [I  [e'(1—e) ]
yed 4 nvd_
(observe that all the roots in A, nvA_ are real and hence have multiplicity 1),
and hence

1)  chHWU, 05))=e** [] (1—e)

yed 4 oA _
(since Y. y=p—vp, where p is defined in Sect. 2.3).
yed, Avd_
By Lemma 3.15(b), combining I2 — I3, we get:
ch(H'™(G/B, 2(A)")=¢e"* [] 1—e~#)~1.
ped,

" This proves the lemma. []

(3.17) Lemma. For anyv,weW and any simple reflectionr, such that vr, > v we have:

lv)+1 —
HOH oxnamgnx, Ko L(2) =0.

(Observe that by Lemma (3.1), " is an open subset of 0X?.)

Proof. Let n;:G/B— G/P; be the projection, where P; is the minimal parabolic
subgroup corresponding to the reflection r; (cf. Sect. 2.5). Set XZt:=m(X,). It
is realized as a projective variety as in [Ku$, Sect. 1.8]. Then the restriction of =; to
X,, is a morphism onto X' The mapn; on restriction gives rise to a surjective
map #%;:(vB~ P;/B)nX,,—(vB~ P;/P;)n X®. Moreover the fibres of #; are either
P! or single points. By a parabolic analogue of Lemma (3.5) (cf. [Ku6, Lemma 3.3])
(B"vP;/B)n X, is closed in the open subspace (vB~ P;/B)n X,, of X .. Hence by
[K, Lemmas 7.7 and 7.97:

(14) H ;"nxw/((ax")\a"")nxw(x ws L4 w(}'))

x H(;_vPi/B)an((vB_ Pl/B) N Xw’ gw("'))

(Observe that %°u %" = B~ vP,/B; as follows by [PK, Proof of Corollary 2].)

The direct images R#.(%Z,(4))=0, for ¢>0; since A is (by assumption)
dominant and the fibres of #; are either P! or single points. Hence by [G,
Corollary 5.6]:

(IS) Hai_uPi/B)an((vB—Pi/B)an) gw(j‘))
R H(",‘,—v,,‘,,,‘)ﬁ xi‘((vB' P/P)nXF 7.2 ,(2).
Finally by [Ku6, Lemma 3.3(c)] (cf. Proof of Lemma 3.15):
{e) H- o 1pyoxt (0B~ Pi/PYN X, 7 2 (A) = HE,y(U,, &),

for some sheaf & on U,.




722 S. Kumar

But then by [G, Proposition 1.12], H '{’e}(U,,, &)=0, for all p>dim U, = I(v).
Combining 14-16, the Lemma follows. []

(3.18) Proof of Proposition (3.13). We first extend the b-module structure to a
pr-module structure, for any minimal parabolic subalgebra p; >b (1Zi<I):

Let W;:={weW:rw<w}. For any weW, by Lemma (3.7) (See also
Definition 3.9), H?(X,,, £,(4)) (and hence its restricted dual) is naturally a
(p;, T)-module and moreover, by the naturality, the map

ye  HOX,, £,(0)" »H(X,., £,.(3)" (defined in Sect. 3.9)

is a p-module map for any w < w'e W,. But then, the subset W, = W being cofinal
with respect to the partial ordering <, the b-module structure on H!*)(G/B, £(4))¥
extends to a p;-module structure.

Further define a Lie algebra §=§(4) as in Sect. 2.1 by exactly the same
generators and the same relations as g(A4), except the relation (R,). Clearly the Lie
algebra g is quotient of §. From the defining relations for § it easily follows that
any b-module ¥, such that its b-module structure extends to a p;-module structure
for all 1<i<|!, acquires a unique §-module structure extending all the p;-
structures. In particular H'*(G/B, £(4))" is canonically a §-module. The same
argument also shows that HE, /FP“(G/B, £(A))" is canonically a §-module and
moreover all the maps ¢’ and {4,},,, of the Kempf complex K ¥ (cf. Sect. 3.9) are
g-module maps.

Now we prove, by induction on Kv), that the §-module structure on
H'"Y(G/B, #(A))" descends to a g-module structure and moreover as a g-module
it is isomorphic with the Verma module M(v*4):

The case I(v) =0 (ie. v=e¢) is the content of the next Lemma (3.19). Write
v = v'r;, for some simple reflection r; such that v > v'. We first assert that the map

8°v:H?*\(G/B, £(A))” —H".(G/B, £(4))* (defined in Sect. 3.12)

is injective, where p=I(v'). In fact, more strongly, we prove that the
map 8" (w): HE* (X, £, (A))Y - HE(X,,, £,(4))" (cf. Sect. 3.12) is injective, for
any weW:

Consider the triple X" nX,>(0X")nX, > ((6X")\%"")nX, of closed
subspaces of X, (call these subspaces Y, = Y, o Y; resp.). This gives rise to a long
exact sequence as in [K, Lemma 7.6]:

o> HE(Xy £,(A) S HYEL (X, £,(A) > HEHE (X, £ 0(3) .

But, by Lemma (3.17), H',’.:'/,l,s(X w Zw(1))=0. Further, by [K, Lemmas 7.7 and

791, H}!y (X, £,(4)) can be canonically identified with H?*!(X,,, &,,(4)) and

moreover the dual map d¥:HY ; (X, £.(1))" = H.(X,, £,(4))" can be easily
seen to be the same map as 6 (w). This establishes the assertion that 5°”(w) is
injective. '

This, in particular, implies (by the induction hypothesis) that the §-module
structure on H'®)(G/B, £(4))" descends to a g-module structure and moreover, by
Lemmas (3.14) and (3.16), it is isomorphic (as a g-module) with the Verma module
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M (v /). This completes the induction (modulo the next lemma) and hence proof
of the proposition will be completed after we prove the next lemma.

(3.19) Lemma. The §-module structure on H%(G/B, £(A))", defined in Sect. 3.18,
descends to give a g-module structure and moreover, as a g-module, it is isomorphic
with the Verma module M(A).

Proof. This lemma is well known in the finite case. We recall one of the proofs
below (in this case) and the point is that the same proof works in the general case:

Put M = H%(G/B, £(A))". By [K, Lemma 7.7], M can be canonically identified
with H%(%#¢, £ (A)| g.)" - Further, as in the proof of Lemma (3.16), H & LNz
is identified with the ring of regular functions C[U ~J; which is a U~ -module
under the left regular representation.

Let it~ — § be the subalgebra generated by {f;},<;<,- Then n” is naturally a
quotient of #t~; in particular C[LU~]" is a fi”-module. Now the isomorphism of
M with C[U™]", given in the above paragraph, can be easily seen to be a
fi”-module isomorphism. This, in particular, shows that the §-module structure
on M descends to give a g-module structure. It remains to show that it is isomorphic
with the Verma module M(4):

By Lemma (3.16), there exists a unique (upto non-zero scalar multiples) weight
vector v, of weight 4 in M and moreover U(b)v, < Cv,. In particular, there is a
g-module map f: M(A)—> M, taking a fixed highest weight vector in M(4) to vo. We
claim that f is surjective:

It suffices to show that M/U*(n").M (where U*(n") is the standard
augmentation ideal) is one dimensional; which is equivalent to showing that the
space of n”-invariants in H%(G/B, £ (4))~ C[U ] is one dimensional. But since
U~ acts on C[U™] under the left regular representation, the only U~ (or n™)-
invariants are the constant functions. This proves that f is surjective. But by
Lemma (3.16) ch M = ch M(4), which forces f to be an isomorphism. This proves
the lemma and thereby completes the proof of Proposition (3.13). [J

Combining Corollary (3.10), Lemma (3.11), Proposition (3.13), and [Ku5,
Corollary 3.11]; we immediately obtain the following main theorem of this
paper:(The fact, that the maps ¢¥ and J,, of the Kempf complex 5" are g-module
maps, follows from the proof of Proposition (3.13) given in Sect. 3.18.)

(3.20) Theorem (Strong BGG resolution). Let g be an arbitrary Kac-Moody Lie
algebra and let A be any dominant integral weight. Then there is an exact sequence
of g-module maps:

OG—Lmax(/‘i)‘— CO(A)P Cl(’l)"’ (._Cp(l)(_ ey
where C,(A):= @ M(v*4) is the sum of Vermamodules, and L™**(4) is the maximal

veW(p)

integrable module with highest weight A (cf. Sect. 2.8). (The notation * and W%
are as explained in Sect. 2.3.) [

The above result is sharpened (resp. generalized) in Theorem (3.25) (resp.
Theorem 3.27).
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(3.21) Historical remarks. As is well known (and mentioned in the introduction)
a resolution of L™**(4), as in the above theorem, was first obtained by Bernstein—
Gelfand-Gelfand [BGG, Theorem 10.1] in the finite case in 1971, by ‘algebraic’
methods; making crucial use of the centre of U(g).

Later around 1978 (again in the finite case) Kempf [K] realized such a re-
solution as a particular global Cousin complex. In the meantime in 1976
Garland-Lepowsky [GL] proved the existence of the BGG resolution for
symmetrizable Kac-Moody algebras. But they proved only a ‘weaker’ resolution;
in which the modules C,(4) (a priori) only admitted a filtration such that the set
of successive quotients coincides with {M(v*4)}, .y, Which was later shown by
Rocha—-Caridi and Wallach [RW] (by proving ‘algebraically’ an appropriate Ext
vanishing result) to be actually the direct sum of these Verma modules. The proof
of Garland-Lepowsky again was ‘algebraic’ and followed in spirit the work of
Bernstein et al [BGG]. They (Garland-Lepowsky) also crucially used the centre
of U(g) (rather its one ‘special’ element— the Casimir operator; which of course
exists only in the symmetrizable case). In contrast, we have followed the geometric
line of Kempf. []

It will be very interesting to find an algebraic proof for the existence of BGG
resolution in the general Kac—Moody case treated in this paper.

As an immediate (and standard) consequence of Theorem (3.20), we can rederive
the extension of Weyl-Kac character formula to arbitrary Kac—Moody algebras,
proved by Kumar [Ku5, Theorem 3.5] and also by Mathieu [M, Theorem 1]: (Of
course it is a celebrated result due to H. Weyl in the finite case which was generalized
to the symmetrizable Kac-Moody algebras by V. Kac making use of the casimir
operator.)

(3.22) Theorem. With the assumptions and notation as in Theorem (3.20), we have:

( IT1a- e“’)).ch L ()= Y e(w)e"™;

ﬂsZ + weW

where the notation A, is as in Lemma (3.16), and e(w) denotes the signature of w.
In particular (taking A = 0) we have the denominator formula:

[1d=e?)= 3 ewe**. 0O
Bed + weW
Let us recall a purely combinatorial construction of a chain complex, as in
Theorem (3.20); given by Bernstein—-Gelfand—Gelfand. But before that we need to
recall the following elementary lemma essentially from [BGG]:

(3.23) Lemma. Let W be the Weyl group associated to any Kac—Moody algebra.
Then:

(@) Let wy,w,eW are such that l(w;) =l(wy) + 2. Then the number of elements
weW satisfying w, —» w—w, is either zero or two; where the notation v—w means
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that there exists a feA™ (cf. Sect. 2.3) such that w=1yzv and I(w)=1(v)+ 1 (3,
denotes the reflection in W defined by y4(x) = x — < x, 8 > B).

(b) To each arrow w, - w,, one can assign a number s(w,,w,)= + 1 in such a
way that for every square (wy,w,,wi,W,), the product of the numbers assigned
to the four arrows occurring in it is — 1; where one calls a quadruple (w,, w,, w3, w,)
of elements of W a square if w, »>w, >w,, w; > w3 > w,, and w, £ ws.

(c) For any dominant integral weight i and any v,weW, dim Homy(M(v*A),
M(w=xA)) <1 and equality occurs if and only if v = w.

Of course any non-zero homomorphism of one Verma module into another is
injective.

Proof. (a) and (b) are nothing but Lemmas (10.3) and (10.4) (respectively) in [BGG].
(Even though they prove in the finite case, their proof works in the general situation
without any change.) A proof of (c) is given in [RW, Sect. 8] in the symmetrizable
case, but the same proof is valid in our general situation. []

Fix a dominant integral weight A and also, for any we W, we fix an embedding
i, M(wxl) = M(4) (cf. Lemma 3.23(c)). The embeddings {i,},.n 8ive rise to
uniquely defined embeddings i, ,.:M(v'*1) = M(v+4), for any v<v'. So, by
Lemma 3.23(c), any g-module map f:C,, ,(4) > C,(4), for any p 2 0, (Where C,(4)
is as in Theorem 3.20) can be written in the form
(*) f=13 flo,w)i,

vrw
l(v)=p

for some unique complex numbers { f(v, w)};zf) w and conversely, ie., given any
complex numbers {f (v, W)}}’(f,‘l » () defines a g-module map:C,, (1) - Cy(4).

(3.24) Definition. Taking f (v, w)=s(v, w) in () (Where s(v, w) is as in Lemma 3.23(b)),
we get a maps,:C,,,(4)— C,(4). As a consequence of the definition of s(.,.) and
Lemma 3.23(a), one can easily see that the following sequence € is a complex:

0 L™(7) & Co(A) = Cy ()= v+ = Cpy (D)= -y
where ¢ is the standard quotient map.
We will refer to € as the BGG complex. (]

By making essential use of Theorem (3.20), we prove the following sharpening
of Theorem (3.20). This (sharpened) result in the symmetrizable case is due to
Rocha—Caridi and Wallach [RW, Sect. 9] and our proof is adopted from theirs.

(3.25) Theorem. With the assumptions and notation as in Theorem (3.20); any chain
complex

~ §

é: 0 L™(2) & Co(A) = Cy(A) = - - €,y ((A) = -

is exact if and only if the following holds:

P... For any p 20 and any weW®* 1), A and also £+ 0.
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Further any exact complex € as above is equivalent to the BGG complex €
(defined in Sect. 3.24), i.e., there are g-module isomorphisms {u,},  ,, making the
Sollowing diagram commutative:

L™ (3) < Co(A) 2 C(3) = -
9. e Uw  Um
L™ (1) <& Co(A) <= C,(3) < ....

In particular the BGG complex € is exact.

Proof. The assertion that, for any exact complex &, holds, follows from an
argument identical to the proof of [R, Lemma 10.1]. Further, by an argument
identical to the proof of [R, Lemma 10.5 and Corollary 10.7], it follows that for any
chain complex € satisfying 2, there are g-module isomorphisms {u,}, > , making
the diagram 2 commutative. In particular taking for ¢ an exact complex,
guaranteed by Theorem (3.20), we obtain that the BGG complex ¥ itself is exact.
Now using the exactness of € and the existence of the isomorphisms {Hp}, we
obtain that any complex % satisfying & is exact. This completes the proof of the
theorem. [

(3.26) Remark. As a consequence of the above theorem, the geometrically defined
Kempf’s complex o v (cf. Sect. 3.9) is equivalent to the combinatorially defined
BGG complex €. In particular (in the notation of Definition 3.12) the map §*':
H?*Y(G/B, £(A))" - H%(G/B, £(4))" (for any ve W®* ) and v'e W®) is non-zero
(and hence injective) if and only if v'—v. A particular case of this when v =v'r;,
for some simple reflection r;, was established geometrically in Sect. 3.18. [0

The following theorem provides an extension of Theorems (3.20) and (3.25) to
arbitrary parabolic subalgebras of finite type. In the symmetrizable case it was
proved by Rocha—Caridi and Wallach [RW, Theorem 12] in 1981, making an
essential use of a parabolic analogue of the weak BGG resolution (in this case)
proved by Garland—-Lepowsky [GL, Theorem 8.7]. Earlier in 1976, in the finite
case, Lepowsky [L1] had proved the first part of the following theorem again by
making crucial use of the presently stated result of Garland—-Lepowsky.

Proof of the following theorem is similar to the proof of Theorems (3.20) and
(3.25); if we work with G/P (instead of G/B). The details are omitted.

(3.27) Theorem (Parabolic extension of the strong BGG resolution). Let g be an
arbitrary Kac—Moody algebra (associated to a l x | GCM) and let S< {1,...,1} be
any subset of finite type (cf. Sect. 2.3). Then, for any dominant integral A, there is
an exact sequence of g-module maps:

0 L™ (A) < Cy(A) - Ci(A) - =« Co(A) = -+,
where C5(A)= @ Ms(wel), Wi, Ms() are as defined in Sect.2. (Observe

weWé
Hw)=p

that for any we W}, weAeDg.)
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Further any exact complex, as above, is equivalent to the parabolic analogue €°
(defined by Lepowsky [L1, Sect. 4]) of the BGG complex ¥ (defined in Sect. 3.24).
In particular the complex %° itself is exact. []

(3.28) Remark. 1t is likely that the restriction in the above theorem, that S is of

finite type, is unnecessary; provided we define Mg(w*1):=U(g) Q) VE**(w=*A).
Ulps)

4. Applications-determination of certain Lie algebra homologies

As consequences of Theorem (3.27), we derive some results on Lie algebra
homology:

The following theorem generalizes a result of Garland-Lepowsky [GL,
Theorem 8.6] from symmetrizable to arbitrary Kac-Moody algebras. As is well
known, in the finite case, this is a famous result due to Kostant [Ko]. It may be
mentioned that the author gave a proof of the result of Garland-Lepowsky (i.e.
the following theorem in the symmetrizable case) in the spirit of Kostant’s proof;
by proving an expression for the ‘Laplacian’ [Kul, Theorem (2.1) and
Corollary 2.3(a)].

(4.1) Theorem. With the assumptions and notation as in Theorem (3.27), the Lie

algebra homology H,(u™, L™*(1)) (for any p = 0) is t-module isomorphic with the

direct sum P Vs(w= ) of (inequivalent) irreducible x-modules Vg(wx 1) (defined in
1

weWg
Sect. 2.8) wlzlivir?%ghest weight w A; whereu™ = ug and r = r5 are defined in Sect. 2.4.

(Observe that since r normalizes u~ and L™*(1) is a g-module, the Lie algebra
homology H,(u~, L™*(4)) has a canonical -module structure.)

Proof. Follows by a standard argument from Theorem (3.27). [J

As a consequence of the above theorem, we obtain the following: (We omit
the details of the proof as the proof of (a) and (b) parts below is identical to the
proof of the corresponding results in the symmetrizable case [Ku3,
Proposition 1.5]; and the (c) part follows by first proving the vanishing of
Ext (M(w= ), L™*(u)") for all weW, by using [RW, Sect. 7, Theorem 2] and
Theorem (4.1), and then using Theorem 3.20.)

(4.2) Proposition. (a) For any Aeb* such that A+w=+0 (for any weW),
H,(g, M(2))=0, for allp=0.
(b) For any weW, H, (5, M(w*0)) ~ A?~'™)(})), as C-vector spaces; where A"(h)
denotes the n-th exterior power of §.

In particular H (g, M(wx0)) =0, for p <I(w).
(c) For any dominant integral A + u, we have:

Ext2(L™*(4), L™ (u)")=0, forall pz=0;
where, for a module N, N° is as defined in [DGK, Sect. 4].
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In particular, if u 0,
H?(g, L, (1)) = Hy(g, L™ (W) =0, forall p=0. O

As another consequence of Theorem (4.1), we obtain the following result which
was proved by Lepowsky [L2, Corollary 6.7] in the symmetrizable case.

(4.3) Theorem. Let g be an arbitrary Kac—Moody Lie algebra, and let t = tg be the
subalgebra (defined in Sect. 2.4) corresponding to any finite type S. Then, the Lie
algebra cohomology with trivial coefficients, H?(g,x)=0 for p odd, and

dim.c H?(g,r) =#{weWj:l(w) = p}.

Proof. Follows by an argument identical to the one given in [Kul, Remark 3.3];in
view of Theorem 4.1. [J

Finally it seems reasonable to make the following conjecture; which was proved
in the symmetrizable case by the author [Ku2, Theorem 1.6]:

(4.4) Conjecture. Let g and tg be as in the above theorem. Then the integration map
f:C(g,t5) > C,«(G/Ps,C), defined in [Ku2, Sect. 1.3], is a co-chain map which
induces isomorphism in cohomology.

The validity of the conjecture, in particular, will imply that the integration map
induces an algebra isomorphism

[[1:H*(g)-H*G,C). O
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