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1. Introduction

This short note is a continuation of [K]; the notation of which (cf. [K; §0])
we adopt here often without explanation. In particular, recall that G is any
complex semi-simple simply-connected algebraic group with a fixed Borel sub-
group B and complex maximal torus T<B. Let go>b>} be the Lie algebras
of Go>Bo T respectively. We have the associated Weyl group W, and D <h*
denotes the set of dominant integral weights. For 1eD, V(1) denotes the (finite
dimensional) irreducible g-module over C with highest weight A. Further, for
any integral weight A, 1 denotes the unique element in D in the W-orbit of 1.

We will also assume familiarity with the contents of [K], but let us recall
the following main theorem of [K]; which was conjectured by Parthasarathy-
Ranga Rao-Varadarajan (in short PRV): (Actually we proved a strengthened
version of this conjecture, due to Kostant; cf. [K; Theorem 2.10}.)

1.1 Theorem [K; Theorem 2.10]. Let g be a complex semi-simple Lie algebra.
Fix A, ueD and any weW. Then the irreducible g-module V(A+wu) occurs with
multiplicity at least one in V()@V(x). O

Now the aim of this note is to prove the following refinement of the above
theorem ; which was conjectured recently by D.N. Verma (cf. [K; Remark 2.127).

For any Aeb*, let W,:={weW: wi=41} be the stabilizer of 1.

1.2 Theorem (A refinement of the PRV conjecture). Fix A, ueD and consider
the map n: W\W/W,— D, defined by n(W,vW,)=A+vpu, for any veW. Then,
for any we W, the irreducible g-module V(L +w ) occurs in V(A)Q®V (1) with multi-
plicity at least equal to 4 n~ ' (n(W, wW,)), where 4 denotes the order. [

As an immediate consequence of the above theorem, we obtain the following

1.3 Corollary. With the notation as in the above theorem, the number of irreduc-
ible components m,_, of V(A)®V (u) is at least as much as the order of the double
coset space W\W/W,. (Observe that Wy,=W,={e}, if we assume A and u to
be both regular) [
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1.4 Remark. As shown by a table in [K; Remark 2.12], the multiplicity of
V(Z+wp) in V(A)@V(u) could be strictly greater than 4 5~ '(y(W, wW,)) in
some cases. []

The following proposition provides an interesting class of tensor product
of two irreducible representations, where the inequality in Corollary (1.3) is
actually an equality.

1.5 Proposition. If we assume (say) V(u) to be a miniscule representation, then
for any irreducible representation V (1),

m}.,uz :H: VV}.\W/VVu

(Recall that an irreducible representation is called miniscule if all its weights
form a single W-orbit.)

Proof. For any A, ueD, clearly
m; ,=dim Hom, (V(1)*, V(y)), where nis the nil-radical of b.

By Joseph’s theorem [K; Theorem 2.5], applied to the lowest weight vector
of V(A)* (actually this particular case of Joseph’s result is due to Harish-Chan-
dra), we have for any V(u) (not necessarily miniscule):

dim Hom, (V (A)*, V(1) =dim{ae V(u): X3 *<***>a=0, for all positive roots o},

where X, is some non-zero root vector corresponding to the root o.
Now assuming V(y) to be miniscule and applying Joseph’s result again;
this time to the (extremal) weight vectors of V(u), we get:

m,,= %S,
where
§=S8, ,={Ww=wmod W,eW/W,: {af, A+wu>=0
for all the simple co-roots of}.

We next observe that the canonical orbit map y: W/W,—»W\W/W,, re-
stricted to S; is injective:

Let ve W, and we W be such that both of w and vweS. Let r; be a simple.
reflection in W, such that v;:=r; v<v, then, by the definition of S,

0=, A+vwpy=<v" o, A+wud
=—{vy tef, A+wud <0

(The last inequality is due to the fact that vy 'aY is a positive co-root and
weS.) :
Hence we get (since A(a})=0):
VW=D WH (*)

In particular v; weS. Now repeating the above process with v replaced by
v; and so on (cf. Lemma 2.1), we get (by (*)) vw=w. This proves the assertion
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that the map 7|5 is injective. In particular, we obtain m; ,< 4 W\W/W,. So
the proposition follows from Corollary (1.3). Actually the inequality m; ,
= # W\W/W,, in this case (ie., V() is miniscule), can be directly obtained
by observing that weS, for any element w of minimal length in its double
coset W, wW, (use the fact that V(u) being miniscule <a’, u>= — 1, for any root
o; cf. [B; Exercise 24, p. 226]). [ '

2. Proof of Theorem (1.2)

In this section we fix once and for all A, ueD. Let P, (resp. B,) denote the parabolic
subgroup BW, B (resp. BW, B) of G. (In view of the following lemma it is indeed
a subgroup.)

2.1 Lemma. For AeD, the subgroup W,c W (defined in §1) is generated by
the simple reflections it contains. '

This lemma is well known; see, e.g.,, [B; Chap. V,§3.3]. O

X>X Lemma. The double coset space W)\ W/W, parametrizes the G-orbits in
G/P, x G/E, bijectively, where G acts diagonally.

The correspondence is given by W, wW,—G. (1 mod P, w mod F,); where (by
abuse of notation) w also denotes any lift of w in the normalizer N(T) of the
torus T.

Proof. As is easy to see, the map: G/P,xG/F,—»P\G/E, defined by
(g, mod P, g, mod B)—P, (g7 " g,) P, induces a bijection from the set of the
G-orbits in G/P, x G/E, with the double coset space P\ G/F,. Now the lemma
follows from Borel-Tits [BT; Corollaire 5.20]. O

For any weWand A, ueD, X, (resp. X%, where P stands for the pair (B, B,))
denotes the closure of the G-orbit G. (1 mod B, w mod B) in G/B x G/B (resp.
the closure of the G-orbit G. (1 mod B, wmod B)) in G/P,x G/B); %f(AKw)
is the restriction of the external tensor product £F(AX ), of the line bundles
FFP(A) on G/PB, with £*(u) on G/E, (where £F+(4) is associated to the one
dimensional representation €_, of P, cf. [K; §1.1]), to the subvariety X7 ;
and %, (AXy) is the pullback of LF(AKu) via the projection: X, —X? (got
by the restriction of the canonical projection n: G/B x G/B— G/P, x G/E). With
this notation we have the following:

2.3 - Lemma. For any we W, the canonical pullback map
¢: HO(XS, X ARW)»H(X,, £, (AR ),

got from the map 1z, is an isomorphism.

Proof. Since =~ '(X?) is a G-stable closed irreducible~subva~riety of G/B x G/~B,
by Lemma (2.2), there exists a we W such that n~ *(X5)=X,. Since njg,: X

w
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— X% is a (smooth) proper morphism with connected fibres, we obtain that
the canonical map:

H(XY, £30RW) —»H (X, £, (AR )

is an isomorphism.
Clearly X,, is a subvariety of X,(ie, w<w) and hence, by [K; Theor-
em 1.5(c)], the canonical restriction map:

HO(XﬁU gw(’ll't))_)Ho(Xw’ agiu(’l;u))

is surjective. But the map n|y_: X,,— X% being surjective, the induced map
¢ is injective.
So we obtain the following commutative triangle:

HO(XW,KV('{#)) —»\ HO(X\wgw(Alu))
\3 (4
. ¢
HO(X3, &5 (AR )

The surjectivity of ¢ follows from the surjectivity of the other two maps
in the above triangle. This proves the lemma. []

24 Lemma. Fix weW and let w be an element of the least possible length
in the double coset W; wW, (even though we do not need, such a w is unique).

Then the g-module V (3. +W p) does not occur in H°(X,, L, (AR w)*, for any v<w.

Proof. The proof of this lemma is analogous to the proof of [K; Proposi-
tion 2.13]; whose notation we adopt freely. By [K; Theorem 1.5(c)], we can

B . . .
assume, without loss of generality, that v— w. With the notation as in the
proof of [K; Proposition 2.13], it suffices to prove:

(@) (vy, p°>>0:

It is easy to see that {vy, §°>=0. Now, if possible, assume that {vp, > =0:
Then e,,=e,,, ie, v"'wyu=p and hence v~ 'weW,. In particular W, wW,

=W, vW,; which is a contradiction to the assumption that w is of minimal
length in its double coset. This proves (a).

(b) (vp, p*>21—<A+wu, f*>; provided (A +wp, p> <0:

Since {vp, f>=—<{wy, B>, it suffices to prove that {4, f">=1. If not; let
{2, B*>=0. Then the reflection corresponding to B, vge W, and hence W, wW,
=W, vy wW, =W, vW,; which again is a contradiction to the choice of w. This
proves (b), and thus finishes the proof of the lemma. [

Fix a weW and let {W, w, W,, ..., W, w, W,} be distinct double cosets such
that n(W, w; W,)=A+wy, for all 1 i< n; where » is as defined in Theorem (1.2).
With this notation, we have the following crucial:
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2.5 Proposition. The irreducible g-module V(1 + w ) occurs in

HO(U Xw,gr(/lu)'lox,,)*

i=1

i=1

with multiplicity exactly equal to n; where Xﬁ,‘,cG/Plx G/E, is the subvariety
and IP(ARpy) is the line bundle on G/P,x G/F, defined earlier, and the union

U XP < G/P, x G/F, is taken with the reduced subscheme structure.

Proof. We assume, by induction on k, that V(i+wg) occurs in
- k
HO(Y,, LP(AR )y, )* with multiplicity exactly equal to k, where Y,:={) X% .

The case k=1 is the content of [K; Theorem 2.10 and Proposition 2.9], in view
of Lemma (2.3). '
Consider the exact sheaf sequence:

O*jyk(ylwl)_’(gykﬂ_’(gyk_’(): <)

where fy, (Y, +,) is the ideal sheaf of the closed subvariety ¥, in ¥, .. -
On tensoring the sequence (&) with the locally free sheaf L*(ARuly, .,
and taking cohomology, we obtain the following long exact sequence:

0> H (Yer 1, H, (Y DO LT (AR Wy, )
= H°(Yes 1, 7AWy, ) > HO (Y, LT AR WY,
= H'(Yer 1, F (Yies DO LT AR Wy, ) - - (#2)

But, as is fairly easy to see,

-fyk(Yk+ 1)=jyk(Y;<UX£k+l) j}'kn)'(ak (Xﬁ:kﬂ)
where the intersection Y,nX% wi.; 18 the scheme theoretic intersection, and the
sheaf &, ~xp , (X X? ), which is defined on X% _, , is extended to the whole

of Y,,, by defining it to be zero on the open set Y.\ X2 In particular,
we get by [H, Chap. II1, Lemma 2.10]:

Wi+1”®

H?(Y, . 1:jyk(Y;c+ 1)@»7?(}».#)“,(”)

~HP (X£k+l’ jl"knf(&,k ( Wk+l)® wkﬂ(l,u-)), for all pgo (I)

Similarly, consider the long exact sequence correspondmg to the sheaf
sequence 0-Hnxe,, (X wk+1)_’(9XP =0y, nxg, , —0:
0—H XL, . Fronzs,, (Ko, )OLE, . (AKIK)

SHOXL,, LE ., GRW) »H (LK, 2P 0= Wl nxe, )
SHY(XE, ., I, (K, YO L, (AR W) —O. ()

k+1



310 S. Kumar

(The last zero is due to the fact that H' (XWH‘, Zr . (ARu)=0; by [K;
Theorem 1.5(b) and remark 1.6(a)].)

Now by an argument identical to the proof of [R;; Theorem 3] (see also
[R,; corollary 1.11]), together with [MR,; Theorem 1] and [MR,; Proposi-
tion 4], the intersection Y,~X%Z  is reduced. Since Y,nX?  is a G-stable

Wi+ 1 Wic+ 1

closed subvariety of G/P, x G/E,, we can write it as the union U Xf,’j, for some
ji=1

v;e W, In fact since X, ,  is mapped onto X%, _, , under the canonical projection
n: G/Bx G/B— G/P,x G/F,, we can choose the v;’s so that for any j, v;Sw,. ,.
Of course we can assume that Wiy, is of rninirnal length in its double coset.
Further, by Lemma (2.2), the X% s (for 1<i<n) are all distinct and moreover
by Lemmas (2.3), (2.4), and [K; Theorem 2.10 and Proposition 2.9] no X% can
contain any X%, for 1<i+i'<n Hence Y,nX?% is properly contamed in
Xt . and consequently V;<Wgyi, for any 1<j<m. But then, by Lemmas (2.3)
and (2.4), the isotypical component in H°(Y,n X5, , #* (AR Wiy, nxz, , ) corre-
sponding to the irreducible module V(A+wu)* is 0. In particular, from the
exact sequence (%), the isotypical component. in H(X? Wit 19
Frenit,, Kn, JOLY, , (ARW) corresponding to V(A+wp* is 0 and
V{Ll+wu)* occurs with multiplicity one in HY(XE, ..,
Hnxg,, l(X e )@ (AR ). Now the induction gets completed from the
exact sequence (&%) and the isomorphism (I). This proves the proposition. []

(2.6) Remark. The above proposition provides a refinement of the strengthened
PRV conjecture, due to Kostant (cf. [K; Theorem 2.10 and Proposition 2.9]).

(2.7)  Proof of Theorem (1.2). Write n~ ! (y(W; wW,)) as the set of distinct double
cosets {W, wy W,, ..., Wy w, W,}. By Proposition (2.5), it suffices to prove that
the canonical restriction map

C

¥: H°(G/P,x G/B,, #*(ARu)—H° (Q LPARY)| - )

i=1

is surjective. :

To prove this, we use char. p methods: we denote by the same symbols
G, P, X! , #7(1Xw) the corresponding objects defined over an algebraically
closed field of char. p>0. We first observe that the line bundle #*(1Xly) on
G/P, x G/B, is ample. Further all the subvarieties X <G/P, x G/F, are “simulta-
neously compatibly Frobenius split” (cf. [MR,; Theorem 1] together with

[MR,; Proposition 4]). In particular, the union U X .= G/P,x G/P, is compati-
i=1
bly Frobenius split. Now the assertion, that the map y is surjective in char. p,
follows from [MR ; Proposition 3]. But then, by semicontinuity, ¥ is surjective
in char. 0.
This completes the proof of Theorem (1.2). O

Acknowledgement. 1 wish to thank A. Borel for his suggestions to improve the exposition.
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Oblatum 18-111-1988

Note added in proof

I learnt from G. Lusztig that he has recently obtained a different proof of the PRV conjecture
(i.e, Theorem 1.1); by using his results on the intersection homology of generalized Schubert
varieties associated to affine Kac-Moody groups





