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. Existence of Certain Components in the Tensor Froduct
of Two Integrable Iighest Weight Modules
for Kac—Moody Algebras.

SIIRAWAN KUMAR

ABSTRACT. The aim of this note is to show the existence of certain components in the tensor
product of two integrable highest weight g—modules, where g is any syminetrizable Kac—Moady
_ algebra.

1. Introduction

In [Ku,] we proved the Parthasarathy—Ranga Rao—Varadarajan (henceforth called the
PRV) conjecture, in fact its strengthened form due to Kostant, for any (finite dimensional)
semi—simple Lie algebra g. ‘The aim of this paper is to show that the analogous result is true for
any symmetrizable Kac—Moody Lie algebra. - More precisely, we have the following theorem:

Let g be a symmetrizable Kac—Moody Lie algebra with associated.Weyl group W and lel
V(A) and V(u) be two integrable highest weight (hence irreducible) g—modules (with highest
weights A and p respectively). We assume that X is regular (see remark 3.8(a)). Then for eny
w € W, the integrable highest weight g—module V(X ¥ wg) occurs with multiplicity czactly one
inside the g—submodule U(g) - (e)‘ eewu) (cf §2.1) of V(A)® V(u), where X+ wu denotes the
unique dominant weight in the W—orbit of A + wp (cf. §3.2).

Throughout the paper, we follow the notation of [Kul; §§1-2] and [Kuz; §§0—1] often
without ?xplanation. But we make one deviation in that the maximal integrable highest weight
g—module with highest weight A will be denoted by V™2*(1) (in contrast to the notation
L™%(1) introduced in [Kul; §1.5]). Of course, as is well known, in the symmetrizable case (i.c.,

g is symmetrizable) VT2X(4) is irreducible and in this case we will just write V(}) for
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VvMa3X(1). The weights in this paper will be implicitly assumed to be integral. We will assume
familiarity with the contents of [Ku,).

The main results of this paper (with only a brief sketch of the proofs) were communicated to
P. Polo in a letter dated September 20, 1987, in response to his letter. I take this opportunity to
thank him for his letter. Earlier I had not intended to publish the detailed proo.fs, since they are
similar to the proofs in the finite case as in [Kuz]. However, the interes.'t shown by some

mathematicians in seeing the proofs has prompted me to write this note.
§2. Cohomology of Certain Line Bundles on G/B'x G/B
In this section we work in the general (not necessarily symmetrizable) Kac—Moody setting.

(2.1) The varieties 2~ and the line bundles L, ey ). For any two sequences (not
y b

necessarily reduced) o= (r; ,...,r. ) and o =(r; ,..,I; ) of simple reflections, define Z_ _ as
it Wy 0,10

the Bott—Samelson—Demazure—Hansen variety (as in [Kul; §2.1]) got from the sequence

o G/B x G/B defined by

(or0) : = (ril',... T T e )- There is a map 0u,'ru : Zu,

’lm 3 T

(p; 1-sPy 2 Pi enBs Jmod Bm+n'——'((Pi Py Jmod B-(Pi =Py Py Py )mod B),
1 'm 1 'm 1 'mi

for p; (1<s<m)eP;, and p; (1¢s” <n)eP. .

I S 50 Jg¢

For any integral weights A and p, we havea line bundle £ (A m ) got by taking the
tensor product of the line bundles 1r:£u(,\) and ;L‘(U ru)(,u) on 2, (cf [Kuy; §2.2]), where 7,
is the canonical projection: Zn’m ~ 2y (el [Ku‘l; §2.1]).

The line bundle £, (A g ) (as a topological line bundle) can also be thought of as the pull
back via - of the line bundle £(X A p) on G/B = G/B (cf. {Kuy; §1.1}).

Now we can state the following crucial:
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(2.2) Proposition. Let u:'(ri R & ) and vo = (r. ,..r1. ) be arbitrary sequences of simple
_ I 'm b
reflections. Let {s,s + 1,...,t} ¢ {1,...,m} and {s’,s’ + 1,..,t*}  {1,...,n} be (possibly emply)
subsets such that (ris,...,rit) and (er’ ""’rjt/) are reduced sequences. Then for any dominant

reqular A, dominant u, and p > 0; we have:

?

HP(Z, L (Dep)en, [ LtJ-Z

y U U Z 7 = Uu.
v,r0’ “o,r0 R g om(q ))]) 0

o g=s %4 gy

Recall from [Ku; §2.1] that Zn(q),m (and Z is a divisor in Zn,m' -

v.m(q’))

(2.3) Remark. The restriction in the above proposition, that X is regular, is essential. Consider,

eg., A=0, visreduced,and s=1, t=m. g

Proof of the above proposition is similar to the proof (given in [Kul; §4]) of the analogous

proposition. We indicate some of the necessary changes:

Step I. The canonical bundle

n

m
xL (0m~—p)el U Z Uu 2 )
Zor oa(0 2 ) ZU,qu=1 ok~ g =y omla !

K

This is essentially [Kul; Lemma 4.4]. We just need to observe that L rl7(0 8 -p)x
E(u,m)(_p ):

Step II. First prove the proposition in the case when v is reduced and s =1, t = m, the proof in

this case being almost identical to the one in [Ku,; §4).
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Step III. We first observe that the line bundle @, - [-Z ] is the pull back
Zy @)t

W;(OZD[“Zn(q)})' where 7_: _Zo,m — Z,, is the canonical projection (cf. §2.1). Hence, by the

projection formula, for any p O:

. . . .
P _ VA u z :
R WD*(ED,I'U(/\ 2 ‘u) ® OZD,m[ (qis D(q)rmU q’:S’ D’m(q, ))])
t p v
N — U ®0 -V z e
OZD[ q=s ZU(Q)] °R WD*(EDIm(/\ 8 u) ZU,m[ q’'=s’ n,l‘o(q )])

But by [Kul; Proposition 2.3], applied to Z,, we obtain that the sheaf
¢

Rprn*(Ln’m(z\ 8 p) e OZD m[— ql):s:Z“-‘v(Q’)]) =0, forall p> 0. Further, by the "invariance",
t ’
it is easy to see that me([n,m(’\ @ p)o® ozo,m[— ql}:s:ZU,W(Q’)]) is the locally free sheaf S on

Z,, associated to the standard principal B-bundle with base Z_ by the representation

’

S:=C ,oH%Z_.L (1)®0, [- U
- ro’“ro Zm q’=s’

sequence associated to the morphism T, degenerates at E2 and hence we have

Zm(q’)]) of B. In particular, the Leray spectral

t t’.
wPez. L (hapel, [-(U Z vu Z A =
0,10’ “v,t0 Zom q=s o(q),m Q' =s’ o,ro(q’)

t
2 0.
v Zn(q)]) , forall p20

HP(z ,Se0, [~
v Zn q=s

Now follow the inductive argument exactly as in [Kul; §4], but replace the line bundle £())

Lhroughout by the locally free sheaf S which is (by definition) associated to the B—module S.

This completes the proof of the proposition. "
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(2.4) Corollary. The map 00 0 Ly o G/B = G/B, defined in §2.1, is a rational resolution

onto its image, provided we assume that v and v are reduced sequences.

(We will see in the proof below that the image of g, rp denoted X . where v = m(n)

lw'

-and w = m(tv) [Kul; 2.6}, does not depend upon the particular choice of the reduced

decompositions v and tv of v and w respectively and moreover X, \ acquires a natural
projective variety structure.).
In particuler, for any locally free sheaf T on XV W we have:
]
*
Hp(lew, 7) z-Hp(Zn’m, gep)P

foral p20.

Proof, For .a.ny reduced sequence v, the canonical map 00 : Zn — Xv is a birational morphism
[Kuy; §2.1], where X _:=BvB/B ¢ G/B is the Schubert variety. Further we have the following
commutative diagram:

00!‘0

Z, y— G/B x G/B

To l lrl

Z — G/B

» where 7, is the projection on the first factor. By the definition of the map

0 Xow=_U_ (g,ng), where g = g mod B. In particular Xv,w does not depend upon

»
0,10 ' v,w gE)\v

the choice of the reduced o and to and moreover by the Tits pfoperty XV wC XV x X for
some large enough w’ (depending upon v and w). Hence X acquires a (natural) projective
varicty structure as the subvariety of X« X_..

From the above diagram Xv,w fibers over X, with fiber X“',. In particular 00,“) isa
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birational morphism and X, w isanormal varicty (since X, and X are normal varieties; cf.
b
(Ku,; Theorem 2.16] or [M]). Now the assertion that the map 0 rp is a rational resolution
’

follows easily from proposition (2.2) in view of the following lemma due to Kempf:

(2.5) Lemma. Let X and Y be two proper schemes over a Noetherian ring and._let f:X—Y
be a morphism. Suppose further that f*UX = 0y and there exists an ample line bundle £ on Y ‘
such that HP(X,£*(L™) =0, forall p> 0 and all sufficiently large n then Rpf*(ﬂx) =0, for
al p>0. u '

(2.6) beﬁnjtion. Forany w e W, fix a reduced sequence to with m(to) = w and define for any
integral weights A, 4, and any p>0:
HP(X £ (Aap)) : = o wP(z, . L, (ew)’,
ww 2e20 o,r0’ o tp
where the directed set 20 is as in [Kul; §2.6] and + denotes the full dual.

Using [Kul; Lemma 4.6], it can be seen that Hpg).(w,[w(Agu))' does not depend upon the
particular reduced decomposition v of w. Asin [Kul; §§2.6 and 2.11) it is easy to see that
I{p(XW,EW(Auu))' acquires a natural integrable g~module structure. Further, for any w’ < w,
there is a canonical g—module map '(gof. from the restriction) :

Hp()'(w,,[w,(,\mu))' — Hp()-(w,[w(,\mu))'. With this notation, as a consequence of proposition

(2.2), we obtain the following:

(2.7) Theorem. For any dominant regular A, dt_')minant p, and any w’ < we W, we have:
(a) Hp().(w,tw(,\uu))' =0, forall p>0.
(b) The canonical map: Ho(f(w,,[ (Aep))” — I{O()_(w,[w(,\ﬂu))- is injective.

w'

3

Proof. (a) of course follows inimediately from proposition (2.2). To prove (b); we can assume

" that fw’) = {(w)—~1, where { denotes the length. Hence it suffices to show that the restriction

map:

B2 ol N81)) — B 5, £y A0

is surjective, for any sequence v and any 1< i< n; where r is any reduced sequence of length
n with m(tv) = w: Now considering the long exact sequence associated to the sheaf exact

sequence (tensored over 0y with the locally free sheaf £, m(,\Eu)):
ol !

0—0 2 ] — 0 — 0, — 0
oo oo(i) Zowo Lo ofi)

and using proposition (2.2), we get (b). -
3. Proof of the Main Theorem

The following basic proposition provides a bridge between representation theory and

algebraic geometry.

(3.1) Proposition. Let g be any (not necessarily symmetrizable) Kac—Moody algebra. Fiz o
dominant regular A, dominant u, and weW. Then HO()-(W,'L'W_(,\M))' (defined in §2.6) is
g~module isomorphic with the g—submodule U(g) (e/\ ® ew“) C Vma.x(/\) ® Vma'x(u), generated by
the e!.ement. e/\_@ ew#; where ey (resp. 'ewﬂ) denotes any non—zero highest weight vector in

max
(

VI3X()) (resp. an eztremal weight vector in V p) of weight wp).
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Proof Forany ve W, there exist large enough (depending upon v and w) wlw’Sw" €W

such that:

(+) X, O X, * X e X

”-
, w

The first inclusion is already observed in the proof of corollary (2.4). After making the choice of
w’, choosea w* suchthat X, CIng., for any g€ G such that g mod B € X , which'again
is possible by the Tits property. With such a choice of w*, we have Xv x Xw, C Xv w' (sce the
proof of corollary 2.4), thus establishing (*).

Observe that V, L= [VP3X()) @ VP3X(1))* is canonically a G x G—module. For any
fe V/\)# define a map ¥{f) : G x G — ITomg (€, C) ® Ilomc(tﬂ, €) by

(HD)(ey 8)Mey 0 ¢,) = (g7, 83 )0(e, o),

for ey €€y C v™aX(3y and e, € [# ¢ VIX(y), where [/\(resp. C#) is the highest weight space
in V(1) (resp. V'®*(1)). As is easy to see, the.map ¢(f) gives risc to a continuous section
W) of the line bundle L(Agy) on G/Bx G/B. The pull back of y{f) via 0 (for any v,

o € 201), induces a map '

0
Vot Vau— B2y o Loppa)

) Wt

(The fact that 4 (), forany feV, w is indeed a regular section is easy to see.)
Also consider themap 0, = 0_:Z xZ — G/B x G/B defined as the Cartesian product
of themaps 0 :2 — G/B and 0 :7% — G/B (cf. [Kuj; §2.1]). - Analogous to the definition
0
of the map ¢n,m’ wegetamap ¥, x ¥ : V/\)#——o (2, = Z,, Ln(,\)gtm(u)), where Ln(,\)
is the line bundle on Z defined in [Ku,; §2.2].

N

Choose a rediced sequénce b (resp. m*) with m(v) = v (resp. m{ro*) = w*). Then there
are reduced subsequences m < o’ <’ such that m(mw’) = w’ and m(r) = w.
By virtue of corollary (2.4) and [Kul; Proposition 2.14], there are canonical restriction maps

7 and 71y (goi from the inclusions (+)) making the following diagram commutative:

v

A p
1bn,l'u' i 1bu o
0 0, - 0,3
H (Zﬁ,m"tn,m'(’\“)) ;0 H (anzm, ,En(/\)EEm,(u)) ;0 Il (/;n,m,fn.m(/\ra/t))
1 2

The composite map 7Ty © 7y is surjective by proposition (2.2) (see the proof of Theorem

2.7) and hence 10 is surjective. Further the map ¢D x ¢m, is surjective by

[Kulg Proposition 2.14] and hence the map ¥ 1o 18 surjective.

Now we determine the kernel of the map ¢n,m:

The subset {(bv mod B, bvb’w mod B) : b, b’ € B} of X.v,w is open and dense. 'me this
it is easy to see that the kernel Kn,ro of the map ¢u,ru (since v dnd to are reduced) is given
by: Kn,m ={fe [vmax(/\') ® Vmax(u.)]* : f restricted to the linear span E(BvB)(e, ® ew#) of
BvB(e, @ ew#) is identically zero}.

Hence by dualizing the surjective map Yy o WE get that

lm’

IIO(Zn)m, En’m(,\wu))* % E(BvB)(e, ® ew#), for any reduced v and ro.

Further by an analogue of [Kul; Corollary 4.7], for any sequence b, IIO(ZU,m, Eu,m(’\m“)) is

isomorphic with HO(Zn o' Lo m(/\ﬂu)), for some reduced subsequence v, of v. Hence
1 1
0.5 - lim 0 *
I (X, L,(00ap)) 1=— H(Z . C  (Aep)" =U(g) - (e) ®e,

el uv,r0’ “u,o u)' R

(3.2) DeLnition. -Let C: = {x¢ I]E; : x(ai) > 0, for all the simple co—toots ai‘} denote the
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dominant chamber andlet Y:= U wC. Then Y is a convex cone and moreover for any
wewW

X€Y,(Wx)nC isa .single point denoted x (cf. [K; Proposition 3.12]). In particular, for any
dominant integral weights A, 4, and any w e W, thereisa unique dominant integral weight

XA+ wp inthe W—orbit of A + wpu n

We recall the following complete reducibility result:
(3.3) Theorem [K; Theorem 10.7(b)]. Let g be a symmetrizable Kac—Moody algebra. Then any
integrable g—module V in the category 0 is completely reducible, i.e., V can be (unigquely)

written as (a g—module):
V= en,v(0),

where the sum runs over all the dominant integral weights 0 and nOV(O) denotes the direct sum of
| V(0), ntimes.
We call n, (which is a non—negative integer) the multiplicity of V() in V.
Observe that for any two integrable highest weight g—modules V()) and V(x), the tensor
product V(A) e V(u) is in the category 0 and of course it is integrable. In particular, the

multiplicity of any V() in V()) @ V(z) makes sense. n

. The following generalization of Joseph’s result to arbitrary (not necessarily symmetrizable)

Kac—Moody algebras is essentially due to P. Polo (unpublished; letter to the author):

(3.4) Theorem. For any w'e W and dominant integral u; the U(n)—module map:

U(n) — V’Jvlax(u), defined by x — x € has kernel precisely equal to the left U(n)~ideal
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k _+1
Y umx

re
aeh |

where X, is any non—zero root vector in g corresponding to the positive real root a (observe
that the real root spaces are one dimensional), Cwu is an extremal weight vector of weight wp in
Vma‘x(u), V::a‘x(u) 1s U(b)—submadule of Vma'x(u) generated by €y and ka is defined as

Jollows:

kg=Kb(w)=0, if (a,wpy 20"

=—(a", wy), otherwise. n

By a proof identical to the proof of the corresponding result in the finite case

[Kuz; Proposition 2.4], we obtain the following (as a consequence of the above theorem):

(3:5) Proposifion. For any dominant weights‘ MAp oand any we W

Homy(€, e VE&¥(u), V(T wp)
is one dimensional. n

(3.6) -Proposition. Assume that g is symmelrizable. Then for any integral weight A, dominant

integral p, ‘and w € W we have:

T EYRL,0m) =0, V(0) e Homy(€, o V., (1), V(9)

(as g—modules), where the sum runs over all the dominant integral 0, and we put the trivial



36

p—module structure on Homb(t/\ eV (1), V(0).

(Actually there is an analogous result valid for any Hp, but we will have no occasion to use

it.)
Proof By the definition of the direct image sheaf, there is a natural is()mo_rphism (for any v, 1)

.0 ~ 10
F :H (Zn,ru’ Ln,m(/\mz)) * H (ZU, rn*(CU,m(z\xu))),
where T, isasin §2.1.

Now take r reduced such that m(r) = w. Then by [Ku,; Theorem 2.16 and Lemma 4.5].
the sheaf T*(L, o(A8)) is the locally free sheaf K, () on Z, associated to the standard
principal B—bundle with base Z,, by the B~module MW i = C_/\ ® HU(XW, Lw(p)). Taking the
direct limit of the dual of the isomorphisms Fu we get an isomorphism
Foul(X,, £, (dew) H(G/B, 4,)", where HU(G/B, 4,)" is by the definition

lim

— HO(ZU, }(w(n))*. Further by [Kul; Proposition 2.14), HO(XW, £,(1)) is isomorphic with
0eW :

Vw(p)*. Now the proposition follows from [M; Proposition 15] (see also [KP; Theorem 1]). -

Combining propositions (3.1), (3.5), and (3.6) we readily obtain the following main theorem

of this paper:

(3.7) Theorem. Let g be any symmetrizable Kac—Moody Lie algebra. Fiz any dominant regular
A ond dominant p. Then, for any w e W, the g—module V(X F wi) occurs in the
g-submodule U(g) - (ey @ ewp) of V(A)® V(u) (cf. §3.1) with multiplicity ezactly one. -
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(3.8) Remarks. ‘
(a) It is very likely that the restriction, in Theorems (2.7) and (3.7), that A is regular can

be removed by suitably modifying our proposition (2.2). Observe that in the finite case we did

" not have such a restriction.

(b) A note "Construction du groupe de Kac—Moody et applications,” written by O.
Mathieu has appéared in C.R. Acad. Sci Paris, t. 306 série 1 (1988), where some of the main

results of this paper are announced. -

Finally by an argument identical to the proof of [Kuz; Proposition 2.13], we obtain the

following:

(3.9) “Proposition. Ifin Theorem (3.7), we further assume that p a(so is reqular. Then

V(XA +wp) does not occur in U(g) - (e, ® ew,#), Jorany w’ < w. -
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