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0. Inﬁoducfion

Let g be an arbitrary (not necessarily symmetrizable) Kac-Moody Lie-algebra
with Cartan subalgebra b, associated group G, Borel subgroup B, maximal
torus T (Lie T=}), and Weyl group W (see Sect. 1). For any weW, let X,

denote the Schubert variety BwB/B — G/B. Associated to any sequence w
=(%,,...,1;) of simple reflections, there is Bott-Samelson-Demazure-Hansen
variety Z_ and a map 6, Z_— G/B (cf. §2.1). Also, for any integral Aeh*, there
is a line bundle #(A) associated to the principal B-bundle: G— G/B by the
character e, in particular, by restriction to X, (resp. pulling back to Z_ via
6,), we get a line bundle £, (1) on X (resp. £, (1) on Z,) (cf. §2.2).

Our main interest in the paper is to understand the algebraic geometry of
X', over char. 0, and to prove the Demazure character formula. More specifi-
cally, we prove the following results (cf. Theorems 2.16, 2.23 and 3.4). For any
weW:

(1) X, is a normal variety.

(2) For any dominant integral A, H*(X , %, (4)=0, for all p>0 and the
canonical restriction map: H°(X,, %, (1) > H°(X ,, #,(4) is surjective, for any
v=w.

(3) For any reduced expression w=r;, ...r; , the map 0, Z —X,_ is a
rational resolution (cf. §2.20), where w is the sequence (;,,...,7 ). In particular,
X, is Cohen-Macaulay and H*(Z_, 6% ¥)~H"(X,,,%), for all p=0 and any
locally free sheaf & on X,
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(4) Demazure character formula: For any integral 4, x(X,,%,(4)=D, ("),
as elements in Z[R(T)], where x(X,,%,(4) denotes the alternating sum
Y. (=1)’ch H?(X,,,%,(%), Z[R(T)] denotes the group algebra on the group of
characters R(T) of T, ch H?(X,, ¥, (A)eZ[R(T)] is the formal T-character of
the (canonical) T'module H?(X,,.%,(4), and D, is the Demazure operator:
" Z[R(T)] - Z[R(T)] defined in §3.3.

We also prove projective normality and arithmetic Cohen-Macaulay prop-
erty of X5, in the case when g is symmetrizable. One easily extends all the
above results-(1) through (4)- to any parabolic subgroup of finite type (cf. § 1.3).

It should be mentioned that, in the case when g is finite-dimensional
(henceforth called the finite case), all these results are known (in fact over
arbitrary char.). See [J, S, RR, R and A]. (Demazure had earlier “proved”
these results in this case but, in trying to generalize these results to infinite
dimensional situation, V. Kac noticed a serious gap in his paper.) All these
proofs proceed, except in [RR], via downward induction on I(w) starting from
the element of maximal length. In [RR], smoothness (actually only normality)
of G/B has crucially been used. Our work provides (I believe ) a new proof in the
finite case as well. In particular, we do not make use of any char. p methods
(e.g. Frobenius splitting) at all.

Amusingly, as a particular case of (1) (cf. §2.25), we can derive (using a
result due to Lusztig) the following famous result due to Kostant:

“The nilpotent cone A4 <End ¥V, where V is a finite dimensional vector space
over C, is a normal variety.’

As a consequence of these results, we extend the Weyl-Kac character
formula and the denominator formula to arbitrary Kac-Moody algebras (cf.
Theorem 3.5). More specifically, for any dominant integral A and the ‘maximal’
integrable highest weight g-module (1) (cf. § 1.5), we have: -

Z E(W) ewu +p)

w

max _ﬂ——_
(a) ch I™*(J)= Y
and weW
®) Y ewyerr—r=T] (1 —e fym1P
A weW © peds

(mult f is the dim of the §-th root space).

(Of course, in the symmetrizable case, (a) and (b) above was proved by Kac
using the Casimir operator.)

So far we don’t know if I™**(J) is irreducible in the non-symmetrizable case.
In case this is true, there will (obviously) be a unique integrable highest weight
g-module (with highest weight 1) and ‘radical’ would be zero in the non-
symmetrizable case as well, thus extending the result of Gabber-Kac.

We also get an extension of Borel-Weil-Bott theorem in arbitrary Kac-
Moody setting. More precisely, we prove (Theorem 3.10) that, for any integral
A such that A+p is dominant (appropriately defined, cf. §3.8) the G-module
H?(G/B, #(A))* is isomorphic with the G-module HP*'™(G/B, #(w(A+ p)—p)),
for all peZ and weW. In particular, the G-module H?(G/B, £(A))* gets de-
termined for all p=0 and all 1 belonging to the Tits cone (cf. §3.8 and §3.11).
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There are essentially three main ideas in our paper: One is our cohomology
vanishing proposition 2.3, which is very crucial to our work. I believe that this
proposition may be of interest elsewhere as well. Our proof of the proposition
uses, among others, a result of Grauert-Riemenschneider (Theorem 4.1) and a
precise knowledge of the canonical bundle of Z .

Now a construction of Borel-Weil (cf. §2.5) gives, for any dominant integral
J and any integrable highest weight g-module V(1) (with highest weight 1), an
injective map ,: V,(A)*—>H°(X,, %, (1), where V,(A)=V(J) is the Schubert
module defined in §2.5. Further let w=r, ...»; be any reduced expression and
define w to be the sequence (7, ...,% ). Dualizing the map Y, gives rise to the
following commutative triangle:

HOZ,, Lo —2 V(1)

HO(X,,Z,(A)*

where J* is the dual of the map ¥, §_ is induced from the map 6,: Z_,— X,
and ¢,, is defined to be the composite y*of,. It is easy to see that all the maps
in the above triangle are surjective.

Now our second observation is that if ¢, is not an isomorphism for some
w, then ¢, also fails to be an isomorphism for ail v=w (cf. §2.14).

Further define H°(Z, Z(1))* as the direct limit of H°(Z_, £, (A))* over an
appropriate directed set (cf. §2.6). Finally we prove (cf. proposition 2.11) that
HY%Z_,#(A)* is an integrable highest weight g-module with highest weight 1.
In particular, we can take for V(1) the g-module H°(Z _, #(1))*. But then if ¢_
is not an isomorphism for some w, then this would lead to a surjective g-
module map: H%Z _, Z(A)* onto itself, which is not an isomorphism. A
contradiction! So ¢, is an isomorphism, for all weW. In particular, the canoni-
cal map: H°(X,, %,,(2))—~ H°(Z,, %,(%) is an isomorphism and so is the map:
(- HY(X,,, Z,,(A) (cf. §2.14). '

These observations, together with some standard facts in algebraic geome-
try, prove all the assertions (1) through (4).

Acknowledgements. My most sincere thanks are due to N. Mohan Kumar for numerous con-
sultations in algebraic geometry, to C.S. Seshadri for giving a simple proof of lemma (4.6)
(presented here), to P. Slodowy for his detailed comments on the earlier manuscript to improve the
exposition as well as for pointing out that I needed to be more careful in handling the variety
structure in the non-symmetrizable case, and to D.N. Verma for helpful conversations. My thanks
are also due to R.V. Gurjar, V. Mehta, M.V. Nori, S. Ramanan, S.E. Rao, and V. Srinivas for
some helpful conversations.

1. Preliminaries and notations

(1.1) Kac-Moody Lie-algebra g, its root space decomposition, and Weyl group .
[K,, M]. A generalized Cartan matrix A=(a;), <, ;<; 15 a matrix of integers,
satisfying a;,=2 for all i; q;;=0 if i=j; and a;;=0 if and only if a;;=0.
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Choose a triple (h,n,z"), unique upto isomorphism, where b is a vector
space over € of dimension /+4co-rank 4, n= {a}1<,<,cb and n¥={h}, <; <,
<l are linearly independent indexed sets satisfying o, (h) aj;. o

The Kac-Moody algebra g=g(A4) is the Lie- algebra (over ) generated by b
and the symbols e; and f, (1 Li<I) with the defining relations: [b,b]=0; [k, €]
=o;(h) e, [hf]=—o(h)f; for heh and all 1=i<l; [e,f]=6;h; for all
1<i,j<l; and (ade)' ~ “i(e)=0= (adf)'~ wi(f), for 1si#j=1

We will, as usual, denote the universal envelopzng algebra of g by U(g).

There is available the root space decomposition g=b@® > g, where g,
acd =h*\{0}
is the root space corresponding to aeb*\{O} and 4, the set of roots, consists of

all those aeh*\{0} such that g,+0. Moreover 4=A4_U4_, where 4,
!

cY Z, o;and 4_=—A, (Z, is the set of non-negative integers). Elements of
i=1
A, (resp. 4_) are called positive (resp. negative) roots.

There is a Weyl group WcAuth* (associated to g), generated by the
‘simple’ reflections {1}, c;<;, where r,eAuth* is defined by r(x)=x—x(h)a;.
Also A is Westable. Define 4"¢= W-n. Further (W, {r}1<i<)) is a Coxeter system,
hence we can talk of the length of elements of W. We denote the length of
weW by [(w). We also have the standard Bruhat partial ordering <in W.

(1.2) Group associated to g [G, K,, KP,, KP,, Ma, MT, Sl,, SI,, T,, T,].
Garland, Kac-Peterson, Marcuson, Moody-Teo, Slodowy, Tits,... have con-
structed groups associated to the Kac-Moody Lie-algebra g. Although these
groups could be different, the associated flag varieties (‘G/B or G/P’) are
essentially the ‘same’. Since we would mainly be interested in the flag varieties
G/P (rather than G itself), we can use either of these constructions of G.
However, we will stick to the associated group G given by Tits.

We fix (once and for all) an integral lattice h,<b (i.e. b, ®, C=h), satisfy-
ing: (1) h, ebz, for all 1<i<! and (2)b} =Hom(bz, Z)(<=b*) contains {oc}1<l<,
Clearly b} is W-stable.

Of course, b, canonically gives rise to a root base as in [S],]. One can
define a group G with subgroups B and N satisfying the following properties
(cf. [S1,1):

(1) The pair (B,N) is a Tits system in G, i.e.,

(a) G is generated by B and N

(b) The intersection T=B NN is normal in N

(c) The quotient W=N/T is generated by a set S={s;}, ., of involutions,
such that s;BwWcBwBU Bs,wB and s, Bs;+B for any 1 <i<l and weW.

(2) The group T is isomorphic with b, ®, C

(3) The system (W,S) is isomorphic to the Coxeter system (W, {r}, ;<)
(defined in § 1.1). Under this isomorphism, the action of W on T is induced by
the action of W on b, (via(2)) and s, corresponds with . So, from now on, we
can (and often will) identify (W, S) with (W, {r,}).

(4) The group T acts naturally on the subalgebra n= ) g, of g as well as

aed 4
on the completion 7 of n with respect to the filtration {n?},,, where
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w= Y g, (For a=) moed,, we define height a=) n;.) Thus there is a
heighte > p
natural action of T on the prounipotent proalgebraic group U corresponding
to f: ‘
U=limU,,
—
P

where U, is the unipotent algebraic group with Lie-algebra n/n”.
The group B is now the semi-direct product B=T< U.
Moreover any such group G is unique up to isomorphism.

(1.3) Parabolic subgroups. For any S<{1,...,1}, put P=R=BW,B, where Wy
is the subgroup of W generated by {r},.s. In particular when S=§, F;=B. The
'subgroup T (resp. B) is called the standard torus (resp. standard Borel), and B
the standard parabolic subgroup corresponding to the subset Sc{1,...,1}. If W; is
a finite group, we call § a standard parabolic subgroup of finite type.

(1.4) Bruhat decomposition. For any S<{l,...,1}, define a subset Wi={weW:
Ad,nw™r4_cA4 \4%}, where 45 =4, ) Za, Now Wi can be character-
ie§
ized as the set of elements of minimal length in the cosets wWg(weW) (each
such coset contains a unique element of minimal length). The group G can be
written as a disjoint union:
G= ) Uwk,

weWg
so that
G/B= ) UwR/R.

weWg

For any weW and S<{1,...,1}, denote X¥ = U UvP/P, where P=R..
v=w

(1.5) Analytic and Zariski topologies on X* [Sl,]. (See also [K,, KP,, KP, and
T,}) For any Aeb} (cf. §1.2) which is dominant, ie., A(h)=0 for all 1<i<],
define L™*(1)=M(4)/M'(A), where M{(1) is the Verma module (associated to g)
with highest weight A and M’(%) is the U(g)-submodule of M(1) generated by
the elements {f*®)+ 1y}, ..., = M(}) (v, is the highest weight vector in M(%)).
It can be easily seen that I™*(}) is an integrable (highest weight) g-module and
any integrable highest weight g-module V(1), with highest weight 4, is a
quotient of L™*(4) [GL; Proposition 6.2].- Of course, as is well known, in the
case when g is symmetrizable, I™**(1) is the (unique) irreducible quotient L(1)
of M(2). '

Fix any dominant 1ebj, which further satisfies: (1) A(h;)=0, for all ieS and
(2) A(h)>0, for all ie{l,...,}\S. We will call any such 4 dominant regular
with respect to S(or P=R). The set of all the dominant regular (with respect to
S) 4 will be denoted by D3.

Fix leD? as above. Let IP(4) denote the projective space associated to the
vector space L™*(2). Define an embedding i(1): G/P<>IP(J), by gmod Prsgu,,
for geG. It is shown [S1,] that, for any we W, i(1)(X?Y) is closed in IP(1) with
respect to the analytic (as well as the Zariski) limit topology on IP(1) and
i(A)(X?%) is contained in a finite dim. projective space IP’<IP(1). It is further
shown [S},; Proposition 2.5] that the analytic (as well as the Zariski) topology
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on X? (ie. the topology got by restricting the topology of IP(A) via the map
i(4)) does not depend upon the particular choice of 1eDj.

(1.6) Realizing X as projective varieties [Sl,]. (See also [K,, KP,, KP, and

T,].) For any 1eD? and weW, we put a complex (projective) algebraic variety

structure on X¥ as the subvariety of IP(1) via the embedding i(A). Equipped
with this variety structure, we denote X* by XP(4).

‘ For any dominant A, uebj, there is a (uniquely defined) g-module map

dy,ut LA+ p) > L™(4) @L‘“a"(#),
which takes v, , v, ®v,, where v, (similarly v, and v,, ) is some fixed non-
zero highest weight vector in L™*(1). (In the non-symmetrizable case, we do
not know, if d; , is an embedding.) This gives rise, for any u, u 'eD? and weW,
to a variety morphlsm dW.: XTE(p+p)— Xo(p) x Xo(y), and hence by pro-
jection, a (variety) morphlsm XP(u+ u)—»XP (1), which is set theoretically the
identity map. In particular, for any 4, peD?, 1>pu (ie. A(h)>u(h) for all i¢S)
we get that the (set theoretically) identity map: XZ(A)— XE(y), which is of
course a homeomorphism in Zariski as well as analytic topology, is a (variety)
morphism. In particular, the morphism: X*(4)— X% (u) is birational and they
have the same normalization, ie., there is a (unique) normal variety X’ r
together with finite birational morphlsms XP > XP(2) and XF — XP(w), maklng
the following diagram commutative:

/\

XA - X ()

(1.7) Lemma. Fix weW. Then there is a positive integer n(w) such that, for
A, peD? satisfying A(h), u(h)>n(w) for all ie{l,...;}\S, the variety structures
XP(2) and XT(u) on XT are the same. '

Proof. Define pseD? to be any element satisfying pg(h)=1, for all i¢S (of
course pg(h)=0, for ieS). Consider the sequence of varieties and morphlsms
(cf. §1.6):

=X, (Bps)— X5 (2ps) _’_Xw(Ps)-

By the Noetherian property and the fact that X%(kps) have the same
normalization for all k=1, it is clear that there exists a n(w)>0 such that the
variety structure XP(npg) on X% is the same for all n2n(w).

Now let AeD? be arbitrary, satisfying A(h)>n(w) for all i¢S. Choose
n(>n(w)) such that npg> 1 We have the commutative triangle:

XP (npg) —— XE(A)

N/

X2(n(w) ps)

This proves the lemma. [J
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(1.8) Stable variety structure on XF. The variety structure on X given by
X% (4), for sufficiently large AeD? (ie. sufficiently large A(h;), for all i¢S), is
called the stable variety structure on XE. From now on, we will always equip the
space XL with the stable variety structure, unless otherwise explicitly stated.

The complex algebraic variety XP is an irreducible, finite dimensional,
projective variety. Further, dim X’ is equal to the length of the (unique)
element we Wy such that wew Wj.

Recall that, in the case when g is symmetrizable, Tits [T,] has proved that
the variety structure X2(1) on X’ does not depend upon AeDj. It is likely that
the same is true in the non-symmetrizable case as well, but I don’t know a
proof. In any case, as observed in §1.6, the normalization of XF(1) does not
depend upon AeD}.

(1.9) Convention. Unless otherwise stated, g will denote an arbitrary (not nec-
essarily symmetrizable) Kac-Moody algebra with its associated group G over €
(as defined in §1.2), (standard) Borel subgroup B, and (standard) maximal torus
T. The group of characters of the torus T will be denoted by R(T) and the group
algebra Z[R(T)] will be denoted by A(T) When S is the empty set, we generally
abbreviate X by X ,.

2. Algebraic geometry of Schubert varieties — The main r_esﬁlts

(2.1) Construction of Bott-Samelson-Demazure-Hansen desingularization [T,]
and [S1,]. For any sequence w=(r; ,...,7, ) of simple reflections, we denote by
Z,, the Bott-Samelson-Demazure-Hansen variety (over €) defined below.

For any 1<j<n, let F, be the minimal parabolic subgroup of G containing
B and the simple reflection 7 . (In the notation of §1.3, it is the parabolic
subgroup corresponding to the singleton set {i;}.) The group B"=BX...XB
acts on B X...XF, from the right as follows:

(pl’""pn)(bD""abn)=(p1b15b1_1p2b25"',b;—ilpnbn)’ fOI‘ pjePij

and b;eB. Now put
Z,=B X..XF/B"

The group B, (in particular the Borel subgroup B) acts (from the left) on Z,,
as the left multiplication (only) on the first factor.

For any 1<j<n, denote by w[j] (resp. w(j)) the subsequence (r,,...,r;)
(resp. the subsequence (r;,,...,%,...,%)). There is a canonical projection =
=Ty Lo Zop 8IVEN DY (g, ... ,pn)modB" Pys-- ,pj)modB’ Also there is
a canonical. inclusion 1—1,1,(]) Z py—Z,, defined by (py, ... sDjs -5 P,) mod B"~ t

—(py,...,1,...,p,)mod B". It is easy to see that the above maps = and 7 are well
defined, i is an embedding, and = is a surjective smooth morphism of smooth
projective varieties. In fact m,, ,, is a IP*-fibration. As a consequence, Z,
the total space of successive (totally n) IP'-fibrations, starting from a point. (In
particular, Z_ is a smooth projective variety of dimn.) .

Define a map 6,:Z,—G/B by 0,(p;,...,p,)mod B")=(p,...p,)mod B. The
map 6, is B -equivariant, where B, acts on G/B as the left multiplication. If w
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is a reduced sequence, ie., w=r, ..., is a reduced expression then 0,(Z,)=X

1

and 8 is a birational morphism of Z_ onto X .

(2.2) Line bundles on G/B and Z_. Fix Aeb} (cf. §1.2) and let £(4) be the line
bundle on G/B associated to the principal B-bundle: G —» G/B by the character
e *. T—C* (Although e~* is a character defined on T, we extend it to the
whole of B by defining it to be identically 1 on the ‘unipotent radical’, the
commutator subgroup [B,B], of B.) (The twist A—e~* is introduced only to
keep the correspondence of dominant regular with ‘ample bundles’) More
generally, for any finite dimensional B-module M, we denote by Z(M) the
vector bundle on G/B associated to the B-module M. For any weW, by Z,(4)
(resp. &,(M)) we mean the line bundle #(4) (resp. the vector bundle ¥ (M))
restricted to the Schubert variety X, < G/B. (The constructions in this para-
graph are only in the topological category.)

By [Sl,; §2.7], for any leDg and any weW, the line bundle Z, (1) is an
algebraic line bundle with respect to the variety structure X, (1) on X, in
particular, %, (4) is an algebraic line bundle on the (stable) variety X ,. Now
write any Aebj as a difference 1=p— 4/, for some p, 'eD3. By [Sl,; §2.7], as
topological line bundles, £, (D)~ 2L, (1) ® (L, (1)*), where £, (1)* denotes the
dual of the line bundle %, (), and hence (for any deb}) £, (1) is an algebraic
line bundle on the (stable) Schubert variety X . It is easy to see (see the proof
of [Sl,; Lemma 3 of §2.7]) that if we write A=v—v' (for v, v'eDJ), then the
algebraic line bundles &, (1) ® %, (v) and &, (v® ¥, (1) are isomorphic. So
the algebraic line bundle ., (4) does not depend upon the particular decom-
position of A.

Now, for any sequence w=(r,,, ..., ), we define .Z,(4) to be the line bundle
on Z_ got by pulling the line bundle #(4) via the map 6. (The notation
&L, (M) will have a similar meaning.) Since %, (M) can also be defined as an
associated bundle (associated to a finite dimensional representation of B") on
Z,, it is easy to see that ., (M) is an algebraic vector bundle on Z_, which is
B -equivariant (in the algebraic category), see [Sl,; §19]. Hence
H¥*(Z,,%,(M)) is canonically a P, (in particular a B)-module, for all p=0.

Now we can state one of the most crucial propositions of this paper, the
proof of which is slightly long and will be taken up in the fourth section.

w

(23) Proposiﬁon. Let w=(r,,,...,n;) be any sequence and let 1<j<k<n be
such that the sequence (1;,...,1,) is reduced® (cf. §2.1). Choose any dominant
Aebi (ie. A(h) =0, for all 1 <i<l). Then, with the notations as above, we have:

k
HP (zm, 2, (N®0,, [ Yy ZW’]) =0, for all p>0.
q=J

We also have: H?(Z,, %, (A)=0, forall p>0.

(As is standard, ¢, denotes the structure sheaf of Z_ and Oy, L —Y], for
any hypersurface Y < Z_, can canonically be identified with the ideal sheaf of Y
inside Z_.) [J

! This assumption is essential. Take, e.g., m=(1;,7) and j=1, k=2
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(2.4) Corollary. Let w be any sequence. Then, for any 1<j<n and dominant
Aeb3, the canonical map: H°(Zm,$m(/1))—>H°(Zm(j), Lp;)(A) 1s surjective.

Proof. Consider the exact sheaf sequence (corresponding to the hypersurface

Z, iy <Zy):

w(j) 0_,@Zm[_z ]—)@Zm——)(ﬁzm(j)—»(),

w(j)
On tensoring with the (locally free) sheaf %, (1), we get the exact sequence:
0> L (D@0, [ —Z4)] = Ly(A) = Ly (A —0.

Considering the corresponding long exact cohomology sequence, together
with the above proposition, we get the corollary. []

(2.5) The Borel-Weil homomorphism. Fix a dominant Aehj and fix any integra-
ble highest weight g-module V(1) with highest weight A. (For symmetrizable g,
there is only one such V' (1), but for non-symmetrizable g it is not known to be
unique, cf. § 3.7.) The representation V(1) can be integrated to give a represen-
tation of the group G. For weW, denote by V, (A) the ‘Schubert module’
.U(d)v,,, (which is a U(b)-submodule of V (1)), where v,,, is the unique (up to a
non-zero scalar multiple) vector ¢ V(1) of weight wl and b=h@n is the Borel
subalgebra. '

Recall that the line bundle #(1) on G/B can be identified with GX,C%,
where C, is the one dimensional B-module with character e*, C¥ is its dual,
and B acts (from the right) on G x C* by (g,f)-b=(gh, b= f).

For any weW, define a map y: V()*—>H%X,,%,(4) by (where V(1)*
denotes the full dual of V(1)):

lllw(f)(gmodB)=(g,lﬁ(f)g)lmodB, for feV(})* and gmodBeX,,
where J/(f): G— C¥ is the map defined by:
W (W= 1)), for geG and veC,=V ().

(As a B-module, €, can be thought of as the highest weight space in V(1).)

It is easy to see that ¥, is well defined, i.e., if g mod B=g' mod B then Y _(f)
(gmod B)=y (f) (g'modB). Also, for any feV(A)*, ¥ (f) gives a regular
section of the bundle £, (1) with respect to the variety structure X (1) on X,
in particular, ¥, (f) gives a regular section of the bundle &, (4) with respect to
the (stable) variety structure on X . Further, let g,eG be any element such
that the left multiplication by g, keeps X, stable and g, lies in some parabolic
P of finite type (e.g. g,€B) then g, acts on H*(X,, %, (1) (see [Sl,; §1.9]). In
this case, it is easy to see that ¥ (g,/)=g,( ,f), for any feV(A)*.

Let K, be the kernel of ,. Then BwB/B being dense in X, K,
={feV(A)*: w='bf)v,=0, for all beB}, where v, is a non-zero highest weight

vector of V(4), Le, .
K, ,={feV(4) ZfIVW(A)EO}~
In other words, the map y, factors through V, (4)* giving rise to an

injective map _ '
v, V,(W*~H(X,,Z,2).
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(2.6) Definition of H®(Z_,Z(4)*. Let W denote the set of all possible
sequences w=(r,,...,r;) (as in §2.1). We define a map m: W-»W by
m(t,...,1)=",...1, . Further we define a partial order < in I by demanding
p<w if v is obtained from w by deleting some entries from w. Clearly (IB, <)
is a directed set, ie., given w,,w,eIB, there exists a we W such that w, Sw and
w,sw. '

For any v <w, there is a canonical embedding Z ,<—Z_, which is composite
of maps of the type i, (cf. §2.1), and this embedding is B-equivariant.
Hence this embedding gives rise to a (canonmical) B-module map:
HY(Z,, L, (A)* —»H%Z,, %, (A)* (which is injective, for dominant 1, by succes-
sively using corollary (2.4)). Now define:

HYZ,,, Z(W)* =1_i%H°(Zm= Lol

me

Of course H°(Z , #(A)* is a B-module. Moreover, for any fixed 1<i<|,
the sequences w=(r; ,...,7 ) such that r, =, are cofinal in 2B and for any such
w, the line bundle &£ (1) on Z_ is P-equivariant (see §2.2) and hence
H%Z ., %(A)* is a B-module compatible with the B-module structure on it. In
fact, we have a stronger proposition (2.11).

(2.7 Definition. Let M be a finite dimensional b-module. For any simple
reflection 7, 1<iZ1, define a finite dimensional p; (in particular ab)-module
9, (M) [J; §2] to be the largest finite dimensional U(p,)-module quotient of the
induced module U(p;) X M, where p, is the parabolic subalgebra b+ Cf..

U(b)

Now take an arbitrary sequence w=(r, ..., ) and define:

@m(M)=@,il...9,i (M).
The following is an interesting fact to know.

(2.8) Lemma. For any finite dimensional b-module M and any sequence w(not
necessarily reduced) H®(Z,, %,(M)) is U(b)-isomorphic with the dual module
(2, (M*)]*. '

Proof. We first observe that for any simple reflection 7, the B-module
H°(Z,,%,(M)) is isomorphic with the B-module [, (M*)]*. To prove this; it
suffices to assume that b is the standard Borel subalgebra b, (spanned by
{e;,h;}) of the Lie algebra sl,(i) (which is a subalgebra of g spanned by

{e.fi,h}) and M is the cyclic b, -module (also called a string module) F(u,v),
uniquely determined by its highest weight u and lowest weightv [J; §2]. It can
be easily seen that F(u, V)~ Eu—v/2)®C,,,,, where E(u—v/2) is the (finite
dimensional) irreducible s, (i)}-module with highest weight p—v/2 and €, is
the one-dimensional b, -module associated to the character u+v/2. Now, by [J;
Lemma 2.5],

(D, (F(u, W ]* = E(u—v/2) ®[2,(C}, ,,2)]*.
Similarly

H°(Z,,%,(Fu,~Eu-v2)@H%Z,, %, (~(u+/2)).
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But then, combining [J; §2.4] and [A; §4], it is fairly easy to see that
[2,(C}k,,,2)]* is sl,(i)-isomorphic with H%(Z, , %, (—(1+v/2))). This proves the
lemma in the case when w consists of a single reflection.

Now the general case, ie. w=(r,,...,r;) is arbitrary, follows easily by
induction on the length n of w and the Leray spectral sequence, corresponding
to the map n,(,;: Z,— Z,, (cf. lemma 4.5).

(2.9) Remark. As a consequence of the above lemma, proposition (2.3), and
lemma (4.6), we deduce that, for any finite dimensional b-module M, 9 (M) is
b-isomorphic with 2,(M), provided v, w are reduced sequences with m(v)
=m(w). An ‘algebraic’ proof of this, in the finite case, was given by Joseph [J;
Proposition 2.15F.

(2.10) Lemma. Let w be a reduced sequence, then H%(Z_, % (A)* is a cyclic
U(b)-module generated by an element of weight m(w) A (where m(w) is as defined
in §2.6).

First Proof. An argument exacﬂy similar to [J; §2.10] (see also [J; §2.17]),
together with lemma (2.8), provide a proof of the above lemma. However, we
will give a different proof in more detail:

Second Proof. The affine space BwB/B sits canonically as a Zariski open subset
of Z, and hence the canonical map: H°(BwB/B, &, (A)*—H%Z_, % (A)*
(w=m(w)) is surjective.

Let U, be the subgroup of U (cf. §1.2) generated by the one parameter
subgroups {Ug}pca, nwa.» Where UycU is the one parameter group corre-
sponding to the positive (real) root f. It is known [Sl,; §1.8] that U, is a
closed subgroup of U isomorphic, as an algebraic variety, to the affine space of
dim /(w). Moreover the map: U,—BwB/B, defined by gogwmodB is an
(algebraic) isomorphism. '

Define a section ~ s,e H*(BwB/B, #,(1) by sow=@uw,v_)e(BwB
x C_;)mod B, for ueU,, (where v_, is some fixed nonzero vector of C_),). It is
easy to see that gs,=s,, for all geU, and moreover s, is of weight —w(d).
Now clearly H°(BwB/B, #,(4) can be identified (as a U,-module) with
C[U, IR Cs,, where C[U,] is the affine ring of the variety U, which is

C

thought of as a U,-module via the left regular representation and U, acts
trivially on €s,. Now the restricted dual €C[U,_]", which is finite linear span
of all the T-weight spaces of the full dual C[U,]* (the torus T normalizes U,
and hence there is a natural action of T on C[U,] and therefore on its dual
C[U,]*), can be canonically identified with the universal enveloping algebra
U(u,) (u,=LieU,). Moreover, under this identification, the u,-module struc-
ture is nothing but the left multiplication. See, e.g., J.C. Jantzen’s Bonn lecture
notes ‘Representations of Algebraic groups I’ - Chapter 7. (Of course C[U, ]*
is a U -module. Although the restricted dual C[U,]" is not a U, -submodule,
it can be seen that it is a u -module) In particular C[U,]" is U(u,)-cyclic,
generated by 1. Hence H®(Z_, %, (A)* is a cyclic U(u,)-module, generated by
an element of weight w . In particular H°(Z_, %, (2)* is U(b)-cyclic. [

(2.11) Proposition. Fix a dominant A Then H°(Z_,%(2)* is an integrable
highest weight g-module, with highest weight ], compatible with the P-module
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structure on it, as described in §2.6. In particular, in the case when ¢ is
symmetrizable, H*(Z , %L (A)* is the irreducible quotient L(}) of the Verma
module M(2), of highest weight A.

Proof. By Kac-Peterson [KP,; Corollary 1.1] (see also [CPS; Proposition 3.57),
N=H%Z_,#(4)* is an integrable g-module, compatible with the P-module
structure, for all 1<i<I, on it given in §2.6 (Although in [KP,], symmetriza-
bility is tacitly assumed, this particular corrollary goes through without the
symmetrizability assumption.) _ _

It remains to show that N is a highest weight module with highest weight
A. From lemma (2.8), it is easy to see that N has at the most one (upto a non-
zero scalar multiple) vector v, +0 of weight A and moreover the weights of N

{

are contained in the cone A1— ) Z, o, Further, by corollary (2.4), N has at

i=1

least one vector v,+0 of weight 1. Let M=U(g)-v,=N. Fix weW and a
reduced decomposition w=r, ...r, . Denote by w the sequence (7, ..., ). Since
N (resp. M) is integrable, the weight space N, ; (resp. M ;) corresponding to
the weight w is one dimensional and hence N, c M. But, by lemma (2.10),
HY(Z,, %, (A)* is a cyclic U(b)-module generated by an element of weight w A.
Further, by corollary (2.4), H%(Z_, #,(A))* injects inside N, and hence we get
H°(Z,, L, (A)*<M.

But now let w=(y,,...,7, ) be any sequence (not necessarily reduced) and let
D=("i,-1’ ...,rijk) be a maximal reduced subsequence of w, such that the canoni-
cal map: -H%(Z,, %, (A)—H(Z,, #,(4) is an isomorphism. The existence of
such a v is guaranteed by a subsequent corollary (4.7). Now since N is a direct
limit of H%(Z,,, £, (A)*, the proposition follows. []

ing:
(2.11y Cdrollary. The weight spaces of H*(Z ,, #(A)* are all finite dimension-
al.

(2.12) For any reduced sequence w, the map 6,: Z_ — X (w=m(w)), defined in
§2.1, is surjective and hence the canonical map H°(X,, %, (4) > H%(Z,, %, (4)
is injective. Dualizing and composing with the dual of the map ¥, (defined in
§2.5), we get a surjective map

¢n: HYZ,, L (A)* >V (H V().
Taking the direct Iimif, we get a g-module map
(%) ' ¢: HY(Z,, Z(N)* > V().

But since V(%) is (by assumption) a highest weight module, ¢ is in fact a
surjective map. Now we can determine the structure of the g-module
H°(Z_,, £(1)* We have the following:

(2.13) Lemma. The g-module H°(Z, L (A)* is isomorphic with the g-module
() defined in §1.5.

As an immediate consequence of the above proposition, we get the follow- .
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Proof. First of all the g-module I'™**(}) is integrable. Further any integrable
highest weight g-module V(A) with highest weight A is a quotient of I™**(}) (cf.
§1.5). Now, by (), we get a surjective g-module map: H°(Z_, Z(A)* - [™**(A).
Hence, from character consideration together with proposition (2.11), we get the
lemma. [

(2.14) Proposition. Fix any dominant Aeby and take for V() the integrable
highest weight g-module I™*(}). Then, for any reduced sequence m with m(w)=w,
the surjective map (defined in §2.12)¢_: HY(Z,, Lo (A)* - [2%(2) is an isomor-
phism, where L2*(}) denotes V, (%) for V(A)=L"**(J).

In particular, the canonical map: H°(X,, %, ()= H%(Z,, %, (1) and the
map ¥ ; [P*()* S HO(X ,, £, (%), defined in §2.5, are both isomorphisms.

Proof. Assumé, if possible, that ¢, is not an isomorphism, for some reduced v.
Then there exists a uebh* such that the dimension of the y-weight space

dim[H(Z,, Z,(A)*],>dim [L7™(A)],,
where v =m(v). Now, for any reduced w=v, the canonical map (induced by ¢

and ,): HOZ,, 2,00 L2())

_HO (Zm gp(/’"))* _)Lr:ax(i) is Surjective_

And hence we have dim[HO(Zm,,Sfm(/l))*]#>dim[L";“"(,l)]#, for all reduced
w=>p. From this, together with lemma (4.6), it is easy to see that
dim [H%(Z ,,, £(A))*],>dim [L™*(1)],, which is a contradiction to lemma (2.13).
The second assertion follows trivially from the following commutative tri-
angle:
/1))* Lmax

s

HO(X,,, £, (A)*

where * is the dual of §, and the map 8, is induced from the map 8,:
Z,— X, defined in §2.1. (The map §, is clearly surjective.) []

(2.15) The line bundles £[L(X). Given any parabolic P=F and any Aeb}
satisfying A(h;)=0, for all ieS, we define a line bundle #*(1) on G/P as the line
bundle associated to the principal P-bundle: G— G/P via the character e~ *:
P C*. For any weW, we denote by £F(4), the restriction of %#%(1) to the
variety XY =G/P (cf. §1.4). It is easy to see that £F(4) is an algebraic line
bundle on X7 (cf. §2.2).

With these notations, as a consequence of the above proposition, we deduce
the following one of the main theorems of the paper.

(2.16) Theorem. Let g be an arbitrary Kac-Moody Lie-algebra with associated
group G (cf. §1.2) and Weyl group W and let P=FE, be any standard parabolic
subgroup of finite type of G (¢f. §1.3) (e.g. P is the Borel subgroup B). Then for
any vEweW and any dominant Aeb} satisfying A(h,)=0, for all ieS, we have:
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(1) The canonical map: H(X?, £F(A)— HYXE, £(1)) is surjective.

(2) (8) X2 is a normal variety.

(b) Further, in the case when g is symmetrizable, the linear system on X?
given by any £*(1), for dominant regular A with respect to P (ie. A(h)>0 for
i¢S){(cf. § 1.5) imbeds X as a projectively normal variety.

(3) For any p=0 and any locally free sheaf & on X%, the canonical map:
HY(X? #)—>HP(Z,,05 (%)) is an isomorphism for any reduced sequence w
with m(w)=w (where 6%, is the morphism 0,: Z,— X, followed by the canonical
morphism X ,— XT).

In particular, HP(XE, #2(1))=0, for all p>0 and the canonical map

Vi [T~ HO(XE, £5(0)
is an isomorphism.
(The map ¥ is defined analogous to the definition of the map ¥/, in § 2.5.)

Proof. First we consider the case when P=B. Since L}*(1)=Ii*(1), by propo-
sition (2.14), the assertion (1) follows.

In view of proposition (2.14), normality of X follows immediately from the
following lemma:

(2.17) Lemma. Let f: X—Y be a desingularization of a projective variety Y
(i.e. X is a smooth projective variety and f is a birational surjective morphism ).
Assume that there is an ample line bundle & on Y such that the canonical map:
HO(Y, ¥ —H°(X, f*%") is an isomorphism for all n=n,, where n, is some
fixed positive integer. Then Y is a normal variety.

Proof. Consider the exact sheaf sequence on Y:
0—0y—f, (OX-—-),@—’O,

where 42, by definition, is the quotient sheaf f, 0,/0,. Tensoring this sequence
with (locally free sheaf) " and taking cohomology (and using the projection
formula), we get:

0— HO(Y, ") —» HO(X, f* "~ H°(Y, 9Q &™) —» H\(Y, £") ...

But & being ample, by a theorem of Serre [H; Chap. III, § 5], there exists a
fi,>0 such that H'(Y, ¥") =0, for all n>7,. In particular, by the assumption,
H°(Y, 2@ £") =0, for all n2max(n,,7,). But then, & being ample, we conclude
that 2 itself is 0, i.e, Oy~ f, Oy, proving the lemma. []

To prove the projective normality; it suffices to show that for dominant
A, A'eb¥, the canonical map :

H°(X,,Z,WQH°X,, &, ) > H(X,, Z,(4+1))

is surjective. We have the following commutative diagram:
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HO(X,, £,(M)@H (X, £,(1) — H(X,,, £, (14 1)

o |

(D)... [Lr QLM (] ——— LA+ A)]*
[L™HA)@L™()]* — [+ ]

where the two top vertical maps are induced by ¥,, and are isomorphisms by
proposition (2.14); the two bottom vertical maps are the canonical restriction
maps and hence are surjective; and the bottom horizontal map is given by
dualizing the canonical g-module map (cf. § 1.6)

induced b d=d, ;;: L™ (A+2)-> L™ (D)QL™(X),
induce
g V40, Q0,,

where v, is some non-zero highest weight vector in L™*(4).

But the map d is injective in the case when the Lie-algebra g is symmetriz-
able since, in this case, I™®*(1+ ') is known to be an irreducible g-module. So
in this case {i.e. g is symmetrizable) the bottom map in the diagram (D) is
surjective. This proves 2(b).

To prove (3); we recall the following lemma of Kempf (in the form con-
venient for our purposes). See, e.g,, [D,; § 5, Proposition 2].

(2.18) Lemma. Let X and Y be two proper schemes over a Noetherian ring and
let f: X—Y be a morphism. Suppose further that f, Oy =0y and there exists an
ample line bundle & on Y such that H?(X, f*(#")=0, for all p>0 and all
sufficiently large n then R? f (04) =0, for all p>0. []

Proof of Theorem (2.16) continued: Applying the above lemma to the map 0_:
Z,— X, and taking some dominant regular 1eb} (ie. A(h)2=1 for all i) we get,
by proposition (2.3) and part 2(a) of this theorem, that R?6,.0, =0, for all
p>0. Now (3) follows easily from the projection formula and the Leray
spectral sequence associated to the map 6,: Z_ — X together with proposition
(2.14).

Now we come to the general case; when P is an arbitrary parabolic of
finite type. Consider the projection #: G/B—G/P. Since P is of finite type, P/B
(which is the same as X, , where w, is the maximal element of Wy W) is a
finite dimensional smooth projective variety. Clearly #~!(X?) is (left) B-stable
and is irreducible and hence is equal to X,, for some veW. Further since
X,—XP? is an algebraic P/B-bundle, we have the normality of XF. Moreover,
i, Ox,=0xp and R? 7, Oy =0 for all p>0. So we get, from the Leray spectral
sequence and the projection formula, that H?(X!, #)~ HP(X,, #* &), for any
locally free sheaf % on X? and any p=0. From this, the assertion (1) and the
projective normality of X? follow. This argument also proves the assertion (3),
provided w is such that i~ 1(XF)=X . We further observe that for any se-
quences w,w’, such that entries of w are in {r},5, we have
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HYZ,, 05 ()~ HP(Z,, 67 (%)), for all p=0, where v is the sequence (w, w’).
This follows from the Leray spectral sequence for the map Z —Z_, together
with the fact that the image of 0%, is a single point. From this the assertion (3)

follows for arbitrary w. [

(2.19) Remark. It is very likely that the restriction in the above theorem, that
P is of finite type, can be removed. In any case when G is an affine (including -
twisted affine) group, any proper parabolic subgroup is of finite type.

(2.20) Definition [KKMS; p. 50]. Let X (resp. Y) be a smooth (resp. arbitrary)
projective variety and let f: X —Y be a birational morphism. Then f is called a
rational resolution of Y if:

(@) f,O0x=0y and R?f, 04 =0 for p>0 and
(b) R?f, K4=0, for p>0, where K is the canonical line bundle of X.

(2.21) Remark. In Char. 0, (b) is automatic because of a result of Grauert and
Riemenschneider [GR]. Since we are always working (tacitly) over the base
field @, (b) is no restriction for us.

(2.22) Deﬁniﬁons,[H]. A local Noetherian ring 4 is said to be Cohen-
Macaulay if depth A=dim A. A scheme is Cohen-Macaulay if all of its local
rings are Cohen-Macaulay.

Of course a projective variety X <IP" is said to be arithmetically Cohen-
Macaulay (inside IP"), if the cone over X (in A"*') is Cohen-Macaulay.
From Theorem (2.16), we deduce the following:

(2.23) Theorem. With the notations and assumptions as in Theorem (2.16), we
have the following:

For weWs and reduced w with m(w)=w, the resolution 6%: Z —X! is a
rational resolution. In particular, XL is Cohen-Macaulay.

Further, in the case when g is symmetrizable, X? is arithmetically Cohen-
Macaulay in any projective embedding given by $*(1) for dominant regular A
with respect to P. (Recall that Wy is defined in §1.4.)

Proof. Since we Wy, the map 6°: Z_—XT is a birational morphism. Moreover,
by Theorem (2.16), X’ is normal and hence by proposition (2.3) and lemma
(2.18), we deduce that 6% is a rational resolution. Now X’ is Cohen-Macaulay
follows from the following:

(2.24) Proposition [R; Proposition 4]. Let f: X >Y be a rational resolution of
the projective variety Y then Y is Cohen-Macaulay. [

Proof of Theorem (2.23) continued: To prove the arithmetic Cohen-Macaulay
property of X, in view of Theorem 2.16-2(b), it suffices to show that
HY(X?, #P(n2))=0, for all 0<p<dim X? and all neZ. By Theorem 2.16(3),
HP(XP, #F(n2))=0, for all p>0 and all n=0. So assume that n<0. The map
Z.,—~X? being birational, we again get the vanishing of H?(Z_, %_(n1)) for
0<p<dimXF, by Theorem 4.1 (in this paper) due to Grauert and
Riemenschneider. [ :

Let V be a finite dimensional vector space/C of dimn and let /" =End V be
the nilpotent cone, ie., A" is the set of all the nilpotent linear transformations
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of V. Then, by a result of Lusztig [L; §2], 4" occurs as an open subset of a
Schubert variety « %.%,/2, where &%, denotes the affine group associated to
the group SL, and £ is the ‘standard’ maximal parabolic subgroup (which is a
central extension by C* of SL,(C[t])). In particular, as an amusing con-
sequence of our Theorem (2.16), we deduce the following famous result due to
Kostant: '

(2.25) Theorem [Ko; §5). With the notations as above, A is a normal
variety. [O

' (2.26) Remark. Although, in this paper, we are only interested in the case
when the base field is € (see also remark 4.8) it is quite possible that most of
the resuits are true in arbitrary char. (We, together with C. Procesi, have given .
‘explicit’ local description of the Schubert varieties around the base point e, in
the case when G is the affine group corresponding to SL,, extending a result of
Lusztig [L; §2]. In particular, this implies that many results of the paper are
indeed true in arbitrary char. for this particular case.)

- 3. The character"formul_ae — Demazure character'_fprmula and generalization
of Weyl-Kac Character formula to arbitrary Kac-Moody algebras

(3.1) The Demazure operators. For any simple reflection r,, 1 <i<|, Demazure
has defined a Z-linear operator D, : A(T)~A(T) by

A —ai Fid
et—e et
D, et=——"— _ for e*eR(T),
i l—e™®

where (recall from §1.9) A(T)=Z[R(T)] is the group algebra on the character
group R(T) and o, is the (positive) simple root associated to the reflection . It
is easy to see that D,l_(e‘)eA(T). In fact, one has the following simple:

(3.2) Lemma.
D, ef=é+et %+ e if A(h)zZ0
=0, if Ak)=—1
=—(eMu4 e, if Ah)<~—1. O
Now let weW be arbitrary. Choose any reduced expression w=r, ...r, and

define D,=D, eo...oD, : A(T)—>A(T). The following lemma justifies the no-
tation D,

(3.3) Lemma. The operator D,: A(T)— A(T), defined above, does not depend
upon the particular reduced expression of w. )

This lemma follows easily by combining (a subsequent) lemma (4.6) with
the proof of Theorem (3.4). A purely algebraic proof can also be given by using
a result of Matsumoto. [

There is a conjugation in the ring A(T), defined by e =e~* We denote
D,e* by D,
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Recall that any Schubert variety X, is (left) B-stable and the line bundlie
£,(4) is a B-equivariant bundle on X, (cf. §2.2) and hence H?(X,, %, (4) is
canonically a B (in particular a T)- module

Now we are ready to prove the following generalization of Demazure
character formula in the arbitrary Kac-Moody setting:

(3.4 Theorem. Let g be an arbitrary (not necessarily symmetrizable) Kac-
Moody algebra with the associated group G and Weyl group W (cf. §1.2). Then
with the notations as in Sect. 2, for any weW and any Aeb}, we have

\x(Xw, L. ()=D,(@" as elements in A(T),
where y(X,, % (4) is defined to be Y.(—1)PchH(X,, %, (A)eA(T) and

14
ch H*(X,,, &,(4)) denotes the formal T-character of the T-module H?(X ,, £ (2)).
In partzcular if A is dominant then ch H °X,,%,(A)=D,(e" and hence, by
proposition (2.14), ch L“‘“(A) D, (€.

Proof. Let w=(r;,...,n,) be a reduced sequence with m(w)=w. In view of
Theorem (2.16), it sufflces to prove that y(Z,, L.(1))=D,(e". The validity of
the theorem is clear when I(w)=1, since

XZ,» 2, (W) =x(P/B, &, (M) =D, (&,
by lemma (3.2).

Now we prove the theorem by induction on I(w). (The proof given here is
identical to the one given in [A; §4].) By Leray spectral sequence (cf. lemma
4.5),

H(Z gy Lo H(Z gy, Lo HOB,/B, £, (D), if ()20
~H "N Z oys Loy H' (B, /B, £, D)), if i(h)<0.
Now, for any exact sequence of finite dimensional B-modules:
0-—)M1-—>M—>M2—->0,

X2y LoM)=3(Z s Lo(M) +X(Z 5, L (M)

we have

This, together with the induction hypothesis, proves the first part of the
theorem.

For dominant 4, H?(X , %, (4))=0, for all p>0, by Theorem (2.16). This
completes the proof. [

We generalize the Weyl-Kac character formula, as well as the denominator
formula, to arbitrary Kac-Moody algebras. The case when g is finite dimen-
sional is, of course, due to Weyl and the symmetrizable case is due to Kac.
More precisely, we have the following:

(3.5) Theorem. Let g be an arbitrary Kac-Moody algebra with Cartan sub-
algebra Yy and Weyl group W and let A be any dominant element in ). Then the
Sformal character (with respect to §), denoted by ch, of the integrable highest
weight g-module L™*(2) (see lemma 1.5) is given by:
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( Z S(W) ewﬂ) . Ch(Lmax(,{)) — Z S(W) ew(}.+p)’

weW weW

where e(w) denotes the signature of w and p is any element of bh* satisfying p(h,)
=] forall, 1 LiLl ’ :
Moreover, we also have the denominator formula:

Y ewyerr=r= T] (1 —e fymlth,
weW Bed
where mult § denotes the dimension of the -th root space.

Proof. Recall the definition of L7™(4) from proposition (2.14). Write, for any
weW,
ch L72X(A) =) m,(w) e*
n

and
chI™*()=) m,e".
u

Then, clearly m,=max {m,(w)}.
weW

Define a ‘shifted’ action of W on h* by wxu=w(u+p)—p, for weW and

neh*.
Fix any ve W and ucbh*. Then we have the following:

(3.6) Lemma.
_ ewy), If u=woxl, for some woeW
@ ggfoommgw—{q A

In particular,
_ jewo), if p=wox
(b) Z B(W)mwn‘_{o’ y(‘ /,t¢W*/1

weW

Proof. For (any fixed) peb*, there exists only finitely many w;,...,w,eW
(depending upon p) such that m,, +0, for.1<i<n. In particular, m,, (v)=0
for any veW, and any wé¢{w,,...,w,}. To prove this; observe that, I™*(1) being
integrable, m,,, ,=m, -, Hence if I(w) is sufficiently large, ut+p—wlpis
not a weight of L™*(A).

Hence the sums in the lemma make sense. We prove the lemma by

induction on I(v). The lemma is obvious for I(v)=0. So write v=r,v’ with
I(v"y<1(v). By proposition (2.14) and Theorem (3.4), we get:

Z m,(v) e’ =D,|.(Z m,(v') e’)

=S m)

= Z mv(u’) (e"' Z e_ka.- __eriv Z e"kai) .
Y k=0 k=1

ev _e—ai er‘-v
1—e % )
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Hence, for any vebg,

o] <«

mV(v)z Z mv+kai(ul) - Z mriv-ka;(v’)-
k=0 k=1
Hence

Z S(W) mwtu(v)z Z ‘D‘(w) Z mw~u+kai(v/) - Z S(W) i m(r,-w)tp—ka,—(vl)

w w k=0 w k=

(since nv=r*v+a,)

= Z S(W) Z mwtu+ka,—(vl)+z 8(W) Z mwt;;—ka,—(vl)
w k=0 w k=0
(replacing w by r,w in the second sum)

= Z S(W) mwmu (v/) + Z S(W) szwty+ka.-(vl)'

But ) &(w) ). m,,., ., (") =0, since it is also equal to
w keZ

- Z E(W) sz(riw)*u +ka.—(vl) = Z S(W) Z mw*y+ka;(v’)‘
w ke

w keZ

This proves (a).
To prove (b); For any w (1 <j=n) choose v; such that m,, on =My, (0), fOT
all v;zv;. If we now choose any ve W such that v v; for all 1<j<n then m,, ,
mwj,u(v), forall 1£jgn. O

Proof of Theorem (3.5) continued :
(Y e(w)e*”~#)-ch L™ (A)= Ze(w)e“’" e, Zm et
weW _ Z W)m#e“wp )
Z WM,y p€”
= Z EW) M-ty piy-1,€"

w,
(since m =mwv)

— Z - 1) m,,
= Z Z (w) mww e’
—Z e(wgy) e”**  (by lemma 3.6(b))

(obéerve that for vEw, v¥lEw=l).

This proves the first part of the theorem.
To prove the second part; take any pueh* satisfying

p=A— an ., where, for all 1<igl, 0<n,<A(h). (*)
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Then the p-weight spaces in the Verma module M (1) and L™*(1) are the same
(by the definition of L™*(A)). Hence the coefficient of e* in

Z a(w) eW(l+p)—ﬂ

w

o
———— and “————
[T (1 —e-fymns > g(w)e*r=?

fed+ w

are the same, i.e., the coefficient of ¢#~% in

Y e(w)er?=*
w A+p)—(+p)
—————— and Y g(w)e***”
H (1 _e—ﬂ)multﬂ ”
Ped+
are the same (since ) e(w)e*”?= )  nyef, for some nyeZ).
w pe—ZZiai

But, because of the condition () on u, the coefficient n, . of e*~* in the
second term is the same as the coefficient of ¢~ in I (i.e. n, ;=4, ;). Now for

!
any fe— Y Z_ a;, we can choose sufficiently large A such that u=f+ A satisfies
i=1
() with respect to A. This completes the proof. [

(3.7) Remark. In the symmetrizable case, it is (of course) known that given
any dominant leh¥, there is a unique highest weight integrable module (with
highest weight 1), in particular, it is irreducible. But in the non-symmetrizable
case the uniqueness is not known (as far as I know). One consequence of the
uniqueness would be that the ‘radical’ is 0 {a result due to Gabber-Kac in the
symmetrizable case).

The character formula and the denominator formula proved above are new
in the non-symmetrizable case. [

We come to the Borel-Weil-Bott theorem.
(3.8) Definitions. (a) For any 1eb} and any p=0, define:

HP(G/B, Z(A)*=lim H*(X,,, &, (A))*.

weW

By an argument similar to the one in § 2.6 ‘and the first paragraph of the
proof of proposition (2.11), H?(G/B, £(2))* is an integrable g-module.
(b) Let C be the set of all the dominant elements in bi. Define the
(integral) Tits cone X =[ | J wC]—p, ie, {v—p: ve | J wC}.
weW weW
The following lemma is essentially due to Demazure [D,].

(3.9) Lemma. Fix a simple reflection r, and J€b} such that A(h)= —1. Then,
for all peZ, H* (X, Z,(4) is ‘canonically’ isomorphic with HP*Y (X, &, (r,x 1))
as B-modules, for any weW such that wr,<w.

In fact, this isomorphism is a P-module isomorphism for all those 1 <j<1 such
that X, is left P-stable, i.e., r,w<w.

(The notation r;* A is defined just above lemma 3.6.) [
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Now we can prove the following theorem, which is a generalization of
Borel-Weil-Bott theorem to arbitrary Kac-Moody situation. See also [KP,;
Corollary 2.2].

(3.10) Theorem. Let g be an arbitrary Kac-Moody algebra with associated
group G, Borel subgroup B, and Weyl group W. Then, for any Ae C —p, veW, and
peZ, we have:

HP(G/B, L(A)*~ HP*'O(G/B, L(vx ))*,  as G-modules.

Proof. We prove the theorem by induction on I(v). Write v=r,v' with 1(v') <l(v).
We first observe that (v'*1) h,=('(A+p) h,—1=(A+p) ~'h)—1= —1, since
A+ peC (by assumption) and v'~' h,;=7)" n;h; with n;20. Hence, by the previous
lemma (39), H(X,, L,V *)~H"* (X, &, (v*2) as B-modules, provided
wr;<w. But since the set W, of all those Weyl group elements w such that
wr,<w, is cofinal in W, we get that H?(G/B, L (v'* A))*~ H?*1(G/B, £ (v A))*, as
B-modules. It remains to show that the isomorphism is indeed a G-module
isomorphism. :

Take any simple reflection 7; and define W, ,={weW,;: ,w<w}. In view of
lemma (3.9), it suffices to show that W, also is cofinal in W. So, pick any
weW,. If nw>w, we claim that rweW, ;, ie, nwr,<r;w. By [De; Theorem 1.1],
either ,wr,<w or r,wr,<r;w. But since r,w>w, if ,wr,Sw then I(r;wr)=I(w)
and hence r,wr,;=w, ie., wr,=r,w. But [(wr,)<l(w), a contradiction! Hence we
are left with the only possibility that r;wr,<r;w. Hence W, ; is cofinal in W, and

hence in W. []

(3.11) Cdrollary. With the notations as in the above Theorem (3.10), we have:
(a) For AeC and any veW, H?(G/B, L(v*A))* =0, unless p=1(v) and

H'O(G/B, £(v+ )*~ H%(G/B, L(A)*~I™*()) (as G-modules).

(b) For any AeC—p but A¢C and any veW, H?(G/B, L (v+A)*=0, for all
p=0. , o

Proof. (a) follows trivially from Theorems (3.10) and (2.16).

By the above Theorem (3.10), H?(G/B, £ (v A)* ~ H?~'“YG/B, Z(X))*. By
assumption on 4, there exists 1<i</ such that A(h;)= —1. For any weW,, the
canonical map #;: X,—X?:=G/P, is a IP*-fibration with fibrex P/B. But since
A(h)= —1, we get that the restriction of % (4) to the fibres of #, is of degree
—1. Hence all the cohomologies of %, (1) restricted to the fibers of %; vanish.
So (b) follows from the Leray spectral sequence. [

The following remark may be useful to add.

" (3.12) Remark. If X is a projective variety over €, such that
X=X,oX, 2..2X;>X_,=0, where each X, is a Zariski closed subset
of X. Assume further that X,\X,_, is a disjoint union of affine spaces, for
all n. Then, with respect to any mixed Hodge structure on X, H”4(X)=0,
unless p=gq.

In particular, for we W and any parabolic P, H”%(XF)=0, unless p=gq.
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4. Proof of the main “vanishing’ Proposition (2.3)

We recall proposition (2.3):

Proposition. Let w=(r; ,...,r,) be any sequence and let 1 <j<k=<n be such that
the sequence (r,,, ..., lk) is reduced Then, for any dominant Lebj,

k

_HP(Z 2, ()0, [ Y m(q)])=o, for all p>0.

We also have H?(Z ,, %, (A)=0, for all p>0. [

- We continue to use the same notations as in Sect. 2. We crucially use the
following result due to Grauert and Riemenschneider. -

(4.1) Theorem [Ra; §47]. Let X be a projective variety over C, L a line bundle
on X, such that there is an integer N >0 and a birational morphism ¢. X-Y
< CIP™ such that ¢*(Oy(1))~ LN, Then HP(X, L~ =0, for 0Sp<dimX. [J

Towards the preparation for the proof of above proposition, we recall the
following simple facts. (We do not state the lemmas (4.2) and (4.3) in full
generality. The versions given below are sufficient for our purposes.)

(4.2) Lemma. Let Z be a smooth proj. variety and let Y, D be smooth irreduc-
ible hypersurfaces in Z such that Y intersects D transversally (in Z ). Then

O0y®,,0;[D]=0,[YND] as sheaves on Y.

(4.3) Lemma. Let f: X—>Y be a surjective smooth morphism of smooth proj.
varieties and let D be an irreducible hypersurface in Y then the pull back bundle
f*0,[D] is isomorphic with Ox[ f*(D)] and since f is surjective smooth, f*(D) is
the reduced scheme f~1(D).

4.4 Lemma For any w={r, 1), the canonical bundle K, of Z, is iso-

11" .y

morphic with £ (—p)®0,_ [ - U Zm(q)], where peb} is any element satisfying
p(h)=1 forall 1<i<l. =1

For a proof, see [R; §1]. (Although he gives a proof under the assumption
that w is reduced and the group G is finite dimensional, the proof goes through
in our general set up without difficulty.) [

(4.5) Lemma [A; Lemma 1.4(ii)]. Let M be a finite dimensional B-module and
let w=(r,,...,r;) be any sequence. Fix 1=j<n. Consider the projection m:
Z,—Z ;) (cf. §2.1). Then, for any p=0, the sheaf RPn, (Z,(M)) is canonically
isomorphic with the vector bundle %, (N), where N is the canonical B-module
HPZ,, %, (M) and v is the sequence (r, r,). (See §2.2 for the notation

Zo(M))

Proof. Roughly the idea of the proof is as follows: Let p= (pl,. .,p;) be any
sequence such that peF , for all 1=q<j Define a map i: Z,»Z, by
i,{(pjy1s--»P,) mod B"~ = (pl,. -»Pj»Pjs1s -5 Py mod B™. Tt is easy to see that i

l+1" 02
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_is an embedding (of smooth varieties) with its image exactly equal to the fiber
of n over the point (p,,...,p)mod B’eZ , ;. Now use the F, -equivariance of the
vector bundle &£,(M) (cf. § 2.2) and an easy induction on j. []

(4.6) Lemma. Let w and w' be two reduced sequences such that m(w)=m(w’).
Assume further that H*(Z ,, % (A)=0=H*(Z ., %, (%)), for all p>0 and all dom-
inant A. Then for any finite dim B-module M, H*(Z ,, & ,(M))~ H*(Z .., &%,,.(M)),
as B-modules, for all p=0.

Proof. Let B: X ;~ X , be the normalization, where w=m(w). Since 0,,: Z,~X,
is a birational map, there exists a (unique) map 6,: Z_,—X,, making the
following diagram commutative:

L Zm __EL X\\'
XW

Since f§ is a finite map, any ample line bundle on X, lifts to an ample
line bundle on X,. Now by Kempf’s lemma (2.18), applied to the map @,
and the Leray spectral sequence, we get that the canonical map:
HY(X,,,0. L (M) HZ , %, (M)) is an isomorphism, for all p=0. (Observe
that, by induction on dim M and the fact that the action of B on M is solvable,
R?0,(%,(M))=0 for all p>0. Moreover, since X,, is a B-variety, X, is also
canonically a B-variety. Further, by the uniqueness, the lift 6, is a B-equivariant
map. Now it canbe seen that thesheaf0,..(Z,,(M)) is canonically isomorphic with the
sheaf 0,..(%,.(M)).) This proves the lemma. [J

With these preliminaries, we come to the proof of the main proposition.

It is easy to see that the proposition is true for n=1. Now we assume, by
induction, that the proposition is true for any sequence v=(r;,...,7, ) with
n’ <n and any choices of 1 <j <k'<n’ as stated in the proposition.

Now we work with the fixed sequence w=(r,,...,7; ). We claim that if we
know the validity of the proposition for some 1 <j<k=<n, then the proposition
is valid also for the pair j<k—1. To prove this; consider the sheaf exact
sequence corresponding to the hypersurface Z 4 < Z,,:

0_’(92,,,[ —Zowl —>-(92m—>(92m(k)—>0. . (Sp)

k-1

Tensoring this with the locally free sheaf Z,()®0,_ [— U Zm(q]], we get:
q=j

I k-1
02,080, [ - UZuy |~ 2080, [ - U Zoy|
a=Jj a=i

k-1
_”(pzm(k)@(z>§ (Jw(’l)(@(pzm [ - U.'Zm(q)D —0. (S,)
m q=1
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- But Z,,, intersects transversally (inside Z,;) all the hypersurfaces Z,,, for
any j£g=<k—1 and hence the last sheaf in the above sequence (S,) can be
k-1

identified with the sheafl %, (D@05, (k)[— U (Zm(q)mZm(k))] (by lemma 4.2).
Now by induction hypothesis and by the qlojng exact cohomology sequence
corresponding to the sheaf sequence (S,), the assertion (validity of the proposi-
tion for j<k—1) follows. Also from the long exact cohomology sequence,
corresponding to the sheaf sequence (S,) tensored with £ (4), it follows that
HYZ,,, Z,(4)=0 for all p>0, provided we know the validity of the proposi-
tion for the pair j<j.

So we can assume now that the pair j<k is such that the sequence
(Fs -5 1) 18 (of course) reduced and either (a) k=n or else

(b) k<n and the sequence (r;, ..., ; ) is not reduced.

©o g 1k+1

We deal with these two cases separately

Case (a), k=n: By an argument exactly similar to the one used above, we can
assume that we have two subcases:

(a;)) j=1lor

(a,) Jj>1 and (r, r,) is not reduced.

—1? ;J:' °

In the case (al), ie, j=1; the proposition follows from Theorem (4.1)
together with lemma (4.4), since

n

H? (zm, L (NR0,, [ -U zm(q)]) =H"(Z,, £, (A+p)QK,_) (bylemma 4.4)
g=1

~HP(Z,, L.(—(A+p)* (by Serre duality)
=0, by Theorem 4.1

(since L (A+p) is ample on X, and 0,: Z_— X, is a birational morphism).

Case (ay): Since v=r; ...r, is reduced and r,_ 1 ...7; is not reduced, we can
write v=r,_ -, ... 5,, for some simple reflections s s,. Define the fol-

lowing sequences

J+1""’

u=(r,....,n_)
o=(r,....%)
and "
D —(lJ " J+1,...,s").
We have the canonical projection n: Z,—Z,. By induction hypothesis,
n—j+1
A (ZD,,? D®O,, [ [ Z,,(q)]) . for all p>0.

Hence by Leray spectral sequence for the map =z, together with lemma (4.5)
and the facts that for any p=(py,....p;_)€F, x ... x B, i,(Z,) is transverse to

any Z,, for j<g<n and

anip‘l(

—J+
o (q)) U o(q)

£~}
£C=
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(i, is defined in the proof of lemma 4.5), we get:
B (zm, 2,(H®0,, [ Y zm(q)])
q=J

~HP (zu, 2, (Ho (z,,, ,Sf’u(l)@(ﬂzu[_"_leu@])))
=H"(Z,, %,(H°(Z,, Z,(A+p)®K3))) quy lemma 4.4). Iy

Now we claim that the B-module structure on H %z,, Z(A+p)®K; )
admits an extension to £, _ -module structure:

By Serre duality, H%Z,, %,(A+p)®K,)~H" "N Z,, Z,(—(A+p))*.
(Observe that Serre duality is a B-equivariant isomorphism.) But by
lemma (4.6), H*/*YZ , %, (—(A+p)) is isomorphic with (as B-modules)
H—i+Y(Z . % (—(A+p)), because, by induction, the proposition (2.3) is true’
for the sequences v and v'. But v’ is the sequence (r;,_,S;,4,..-,$,) and hence
the claim is established (cf. § 2.2).

Now considering the Leray spectral sequence corresponding to the pro-
jection: Z,—Z,._,;, we conclude, by lemma (4.5), that

HY(Z,, 4,(H°Z,, £,(0+ p)®K; )V~ H? (Z,; 3y, Zii—y(H(Z,; Z,(A+0)®K3)))

n-1
~H? (Zm’ng’(}’)@)(pZm’[_ U Zm'(q)])’

g=j-1

where w'=w(j—1)=(,....,%_,¥%,....5; ) (The last isomorphism is got by
considering the isomorphism (I,) for the sequence w replaced by w’.) Hence, by
induction, this case (a,) is taken care of.
Finally we come to the case (b), i.e., k<n and the sequence (o oo Ty T )
is not reduced. Define the following sequences:
p=(r, ..., )
r=(r, ..., 1)

D=, > T)
and

u=(ril,...,rij_1).

Let azﬁm[k]: Z,—Z, be the canonical projection. Then by lemma (4.3),

k k
Oz [ - U_Zm(q)] ~a* ((921 [ - U_Zz(q)])' ‘
q=] : g=]

Hence by the projection formula and Leray spectral sequence corresponding to
the map o (since H?(Z,, Z,(4)) =0, for all p>0 by induction), we have:

(22, 220905 [ - U Zu || <5 (2 20000, [ - U 2., ]) 0

where the B-module M =H®(Z,, &,(4)).
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Now by an argument exactly analogous to the one used to derive (I;)
replacing the B-module e~* by M, we get:

El

B (2, 20000, | - Uzz@])

. ~HNZ,, %,(H°(Z,, Z,(0)®ZL,(M)®K,)) (I3)
ut
H(Z,, Z,(0)® L, (M®Ky) | |
~HIPYZ L (—p)®ZL,(M*)*  (by Serre duality). (L)
Since (r,, ..., 7,7, ) is not reduced, we can write r, ...7, =s;...5, 7, for
some simple reflections s;, ...,s,_, . But by lemma (4. 6) for all p>0

B Z,, Z(-p)®@ZL, M)~ H(Z,, L, (- Pp)®L,(M*)),

where v’ is the reduced sequence (s;, ..., S, _;, %, , )

I+ 1

But M (and hence M*) is, of course, a F,_, -module and hence by
Leray spectral sequence for the map Z,-Z,,_; and [D,; §2],

B*(Z,, £(~p)®L,(M*)=0, for all p20. Hence HY(Z,, £(~p)®%,(M*)
=0, for all p=0. Now by (Iz), (1), and (I ), we get the desired vanishing. (In
fact, in this case, H° (Zm,.,?m(l)@(ﬂz [ U Zm(q)]) also is 0.)

This completes the proof of proposition (2.3). [

(4.7) Corollary. Let w be any sequence. Then there exists a maximal reduced
subsequence v of w (i.e. v is reduced and if u is any reduced sequence v <u <,
then u=v) such that the canonical map: H(Z,, %,(A)—~H°(Z,, £.(%)), induced
from the inclusion of Z, in Z , via the maps i, (§2.1), is an isomorphism.

Proof. We first prove that if w; is any reduced sequence and w, =(r, w,) is not
a reduced sequence, then the canonical map: H%(Z,,,, &,,(A)—~H*(Z,, , %, (1)
is an isomorphism. By the Leray spectral sequence correspondlng to Ty, pp:
Z,—Z,, we get that H°(Z, %, (M~H°Z, A % H°Z,, %, () But
HO(Zml,.Sfml(l)) being a P-module (by proposmon 23 and lemma 4.6), we get
that H%(Z,,,, &, (A))—H%(Z,,, £, ().

Now, we prove the corollary by induction on the length n of w. Write w
=(r,,...,1,). Choose (by induction) a maximal reduced subsequence »'<w’,
where w —( hipseosTy,), Such that H%(Z,,., &,.(A)—H%(Z,., %,(2) is an isomor-
phism. Now there are two cases to consider:

(1) (r,,0’) is reduced,

() (r,,v") is not reduced.

In the case (1); it is easy to see that (,v) is a maximal reduced sub-

“sequence of w. By the Leray spectral sequence, this case is taken care of. In the
case (2); it is easy to see that o’ is a maximal reduced subsequence of w. Now
HYZ,. % (A)—HZ,,%,(4) (by the choice of v'). But, by the argument
in the first paragraph of the proof, H(Z ,, L, () — H%(Z_,, %, (%). O

w2’
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In fact, it can be shown that any maximal reduced subsequence » of m
satisfies the assertion in the corollary. But we don’t need this stronger fact.

(4.8) Remark. Although, through the paper, we tacitly were working over the
base field €, most of the results of the paper go through (with the same proofs)
over an arbitrary algebraically closed field of char. 0.

(4.9) Remark. After this paper was submitted, we learnt from, among others,
the Referee that O. Mathieu has recently announced quite similar results in
C.R. Acad. Sc. Paris, t.303, SérieI, n®9 (1986), pp.391-394. Although his
proofs have not yet appeared, presumably his methods are quite different from
ours. ;
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