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ABSTRACT Let G be a Kac-Moody group with Borel
subgroup B and compact maximal torus T. Analogous to Kos-
tant and Kumar [Kostant, B. & Kumar, S. (1986) Proc. Natl.
Acad. Sci. USA 83, 1543-1545], we define a certain ring Y,
purely in terms of the Weyl group W (associated to G) and its
action on T. By dualizing Y we get another ring I, which, we
prove, is "canonically" isomorphic with the T-equivariant K-
theory KT(G/B) of GIB. Now KT(GIB), apart from being an
algebra over Kr(pt.) A(T), also has a Weyl group action
and, moreover, KT(G/B) admits certain operators {DW}I6w
similar to the Demazure operators defined on A(T). We prove
that these structures on KT(G/B) come naturally from the ring
Y. By "evaluating" the A(T)-module * at 1, we recover
K(G/B) together with the above-mentioned structures. We be-
lieve that many of the results of this paper are new in the finite
case (i.e., G is a finite-dimensional semisimple group over C)
as well.

Section 1

To any (not necessarily symmetrizable) generalized I x I
Cartan matrix A, one associates a Kac-Moody algebra g =
g(A) over C (1) and group G = G(A). (Actually G has as its
"Lie algebra," the commutator subalgebra g' of g.) G has a
"standard unitary form" K. IfA is a classical Cartan matrix,
then G is a finite-dimensional semisimple simply connected
algebraic group over C and K is a maximal compact sub-
group of G. We refer to this as the finite case. In general, one
has subalgebras of g; b C b C p, the Cartan subalgebra, the
Borel subalgebra, and a parabolic subalgebra, respectively.
One also has the corresponding subgroups: H C B C P, the
complex maximal torus, the Borel subgroup, and a parabolic
subgroup, respectively. H has as its Lie algebra b' = t n g',
which is linear span of the simple co-roots {hj}1jij1. We de-
note by T the compact maximal torus H n K of K. Let W be
the Weyl group associated to (g, t) and let {ri}1isi denote
the set of simple reflections. The group W operates on the
compact maximal torus T (as well as on H) and hence on the
group algebra A(T) = 7[X(T)] of the character group X(T) of
T and also on the quotient field Q(T) of A(T).
For any W-field F, we can form the smash product Fw of

the group algebra Z[W] with F. Now in ref. 2 we took, for F,
the field Q = Q(f*) of all the rational functions on b and
defined an appropriate subring R C Qw and showed that R
and its "appropriate" dual A, along with a certain R-module
structure on A, replace the study of the cohomology algebra
of GIB together with the various operators defined on
H*(G/B). Hence, the problem of understanding H*(G/B),
especially the cup product structure and other operators on
H*(G/B), reduced to a purely combinatorial (and hopefully
more tractable) problem of understanding the ring R and its

"dual" A, defined purely and explicitly in terms of the Cox-
eter group W and its representation on b*.
Our aim in this paper is to announce similar results for T-

equivariant K-theory of GIB as well as the K-theory of GIB,
where T acts on GIB by left multiplication.
We replace Q(b*) by the W-field Q(T) and analogously de-

fine a certain subring Y of Q(T)w, again purely and explicit-
ly, in terms of the Coxeter group W and its action on the
torus T. We prove a crucial structure theorem for Y analo-
gous to the corresponding structure theorem for R (theorem
2.4 of ref. 2). Our next main result is that the dual T of Y,
which is also a Y-module, is "canonically" isomorphic with
KT(G/B) and, moreover, under this isomorphism, the Weyl
group action as well as certain operators {D,}Ww on
KT(G/B), which are similar to the Demazure operators de-
fined on A(T), correspond to the action of certain well-de-
fined elements in Y. The ring P "evaluated" at 1 does the
same for K(G/B). Similar results are true for any GIP and in
fact for any Schubert subvariety of GIP.
As a particular case, we obtain the above-mentioned re-

sults in the finite case. As an application of our results in this
case, we can easily deduce some of the important (though
known) results: For any compact simply connected group Go
with a maximal torus T, (i) K*(Go) is torsion free; (ii) the
Atiyah-Hirzebruch homomorphism: A(T) -* K(GO/T) is sur-
jective; and (iii) the Hodgkin's conjecture, that a certain
map,

A(T) (0 A(T) -* KT(Go/T)
R(Go)

is an isomorphism.
This is merely an announcement of results. The detailed

paper will appear elsewhere, but let us mention that the
proof of Theorem 3.9 involves, as main ingredients, the lo-
calization theorem of Atiyah and Segal and the equivariant
Thom isomorphism.

Section 2

The treatment in this section is parallel to the one in section 2
of ref. 2.
The Weyl group W operates as a group of automorphisms

on the field Q = Q(T). Let Qw = Q(T)w be the smash prod-
uct of Q(T) with the group algebra Z[W]; i.e., Qw is a right
Q-module (under right multiplication by Q) with a (free) ba-
sis {J5wwEw and the multiplicative structure is given by

(8W1q1)(5.2q2) = 5wlw,(W2 ql)q2,

for q1, q2 E Q and wl, w2 E W.
Observe that SeQ = Qie is not central in Qw.
(The notations Q and Qw in this paper, and also the subse-

quent notation fQ, should not be confused with the corre-
sponding notations in ref. 2, where they have somewhat dif-
ferent meaning.)
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The ring Qw has an involutary anti-automorphism, defined
by

(Swq)' = Sw-i(wq), for q E Q and w E W.

Let Aw C Qw be defined in the same way as Qw with A(T)
replacing Q(T).
We define, for i = 1, . . ., I, certain elements yi in Qw by

Yi = Yr = [1/(1 - e-ai)](,6 - Cai8ri)
= (be + 8,)[1/(1 - e a)],

where eai E X(T) is the character corresponding to the sim-
ple root ai (associated to the simple reflection ri).

Let [:W -- + be the length function. We have the follow-
ing:
PROPOSITION 2.1. (i) y2 = yi, for any 1 < i < 1.

( q - r~q)(ii)yq = (rjq)yj + q- eaq /Be, for any q 8 Q.

(iii) For any w E W, let w = ril ... ri. be a reduced decom-
position. Then the element y, = yij .... yin C Qw does not
depend on the particular choice of the reduced decomposi-
tion of w. Hence, for v, w C W,

Yv' Yw = Yvw if f(vw) = [(v) + 1(w).

Let A+ (resp A-) denote the set of positive (resp negative)
roots and let c denote the Bruhat partial ordering on W. Of
course the elements {6,}wEw are a right (as well as a left) Q-
basis of Qw. But also, we have the following:
PROPOSITION 2.2. The elements {Yw}wew form a right (as

well as a left) Q-basis of Qw. Write Xw-i = Y.vevwyv-1, for
some (unique) evw C Q. Then,

(i) evsw E A(T), for any v,w C W.
(ii) ew = 0, unless v c w.
(iii) ew w = -w-1A nA+ (1 - e').
In particular the invertible (over Q) matrix E = (ev,w)v,wew,

which relates the two bases {8w} and {yj}, is upper triangular
(with nonzero diagonal entries).
Now, clearly, Q has the structure of a left Qw-module,

defined by (Sq)q' = w(qq'), for w C W and q, q' E Q.
We define the following basic subring Y C Qw by Y =

{y E Qw:y-A(T) C A(T)}.
It is easy to see that yj(1 c i c 1) and hence Yw, for any w E

W, belongs to Y. Also Aw C Y. Conversely, we have the
following crucial structure theorem for Y, which is our first
main theorem.
THEOREM 2.3. Y is free as a right (as well as a left) A(T)-

module. In fact the elements {Yw}wew form a right (as well
as a left) A(T)-basis of Y.
Remarks 2.4. (i) Note that Y is a finitely generated ring

over Z, since it is generated by {Yi}y isi and A(T).
(ii) Observe that the "homology" analogue of the above

structure theorem (theorem 4.6 of ref. 3) was proved only
"over C" (or C>), not "over Z."

Definitions 2.5. Dualizing Qw and Y: Regarding Qw as a
right Q-module, let f = fl(T) = HomQ(Qw, Q). Since any 4i
E ft is determined by its restriction to the base {&} (and
conversely), we can regard ft as the Q-module of all the
functions: W -- Q with pointwise addition and scalar multi-
plication. Furthermore, ft inherits a commutative algebra
(over Q) structure, with the product as pointwise multiplica-
tion of functions on W.
More subtly, fl also admits the structure of a left Qw-mod-

ule defined by

(x ifOw = +(x' SW)

for x C Qw, qi C fQ, and w E W. Observe that the action of x
is Q-linear.
Now let us define the A(T)-dual of Y:

P = {if E ft: qi(Y') C A(T)}.

Notice the difference in the definition of I with the defini-
tion of the analogous ring A in ref. 2, where we put, in addi-
tion, some finiteness condition.

Define certain elements iw E I (for any w E W) by

ifW(YV ) = 8,,,, forv, wE W.

Observe that if(wO) = ew, where ewsv is as defined in
Proposition 2.2. In particular, by item ii ofProposition 2.2, if
= lwqqi' is well defined for arbitrary (infinitely of them
could be nonzero) choices ofqw E Q. Of course, if all the q' s
belong to A(T) then i GE8 .
One has the following:
PROPOSITION 2.6. (i) T is an A(T)-subalgebra of ft.
(ii) T is stable under the left action ofY C Qw. In particu-

lar, the elements Sw and yw (for any w E W) act on P.
We have, y,,. ir' = 4ifW + ifriw if riw < w

= 0 otherwise.
(iii) P IH`,wA(T)iiw; i.e., any element of P can be

uniquely written as lwawi4w with a, E A(T), where infinitely
many of ads are allowed to be nonzero. M
The following proposition determines the product in the

ring T in terms of the "basis" {iw}w. Recall the definition of
the E-matrix from Section 2.
PROPOSITION 2.7. For any u, v E W, write (by Proposition

2.6)

ypU.ifV = > a ivifw, for some unique a 8 A(T)
w

Nowfor anyfixed w E W, define two matrices A, and E, by
Aw(u, v) = avsu and E,(u, v) = Suwve,,v. Then,

(i) av = 0 unless u s w and v c w.
(ii) A, = E*Ew E-1.
A similar expression can be given for the action of the

Weyl group element Xw on AU.
Remark 2.8. We consider Z as an A(T)-module under the

augmentation (i.e., the evaluation at the identity of T) map:
A(T) -* Z. By item i of Proposition 2.6, the tensor product
Z ®A(T) T is a Z-algebra. Moreover, the action of Y on P
being A(T)-linear, we obtain an action of Y on Z ®A(T) Pt

Section 3

Definition 3.1. Recall the Bruhat decomposition GIB =
Uww B w B/B. Now define Xn = U 1(w)-n B w B/B C GIB.
Then Xn is a compact subspace of GIB and the topology on
GIB is the direct limit topology induced from the sequence:

X.1 = 0 CX0CXX1C., UXn = G/B.

The group G acts on GIB by the left multiplication, in par-
ticular, the compact maximal torus T acts on GIB and (clear-
ly) X,, is T-stable.
Now define KT(G/B) = Inv limd, KT(Xn), where KT(Xn)

is the T-equivariant K-group of X,, as defined in section 2 of
ref. 4.

It may be remarked that KT(G/B) does not depend on the
particular choice of a filtration of GIB by compact sub-
spaces.

Fix any simple reflection ri, 1 - i < 1, and let Pi D B be the
minimal parabolic subgroup containing ri. Let Xi E (f')* be
the ith fundamental weight [defined by Xi(hj) = B,.j] and let
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Vi be the (two-dimensional) representation of Pi, which is
trivial restricted to the "nil radical" of Pi and the "standard
maximal reductive subgroup" of Pi acts on Vi with highest
weight Xi. We have the following:
LEMMA 3.2. The W'-fibration 7r,:G/B -* G/Pi is canonical-

ly isomorphic to the projective bundle of the (rank two) vec-
tor bundle on G/Pi associated to the representation Vi of
Pi. o
Now by proposition 3.9 of ref. 4 (which is a consequence

of Thom isomorphism), applied to the map rit of the above
lemma, we obtain the following:
PROPOSITION 3.3. For any n 2 0, KT(iK(iXn)) is a free

module over KT(OMXfl) with free generators 1 and the Hopf
bundle Hi(n).

Definition 3.4. Define an operator Dr.(n): KTOTT1(riXn))
into itself by Dr(n)(x + Hi(n)y) = x, for x, y E *(KT(7iXn))-
The operators Dri(n) make the following diagram commuta-
tive:

KT(1(1(iXn+ 1)) -* KT(TK ( riXn))
1Dr,(n+ 1) IDr,(n)

KT(rT'(7iXn+l)) -* KT(rT(TiXn)).
In particular, we obtain an operator Dr:KT(G/B)

KT(G/B). We have the following:
LEMMA 3.5. (i) D2 = Dr.9 for any simple reflection ri.
(ii) Fix w E W and take a reduced expression w =

ri, ... ri.. Then the operator Dri o ... o Dri :KT(G/B)
KT(G/B) does not depend upon the particular reduced
expression of w. Set D, = Dri o ... o Dr1 .

Remark 3.6. A similar operator on A(T) (see Definition
4.1), introduced by Demazure in section 5.5 of ref. 5, provid-
ed motivation for our definition of D,.

Definition 3.7. Weyl group action on KT(G/B): Since the
Weyl group W acts on G/B = KIT (where K is the standard
unitary form of G) by (n mod T). (k mod T) = kn-1 mod T,
for n mod T E NK(T)/T W and k E K [where NK(T) de-
notes the normalizer of T in K]. Moreover, this action of W
commutes with the action of T on GIB and hence we obtain
an action of W on Kf(G/B).

Exactly similarly, we get an action of W on K(G/B) and
also the operators, again denoted by, {D,},Ew on K(G/B).

Definition 3.8. The localization map: For any n 2 0. let
Yn:KT(Xn) KT(XT) be the canonical restriction map,
where XT is the set of all the T-fixed points in Xn. Since the
maps {-nln},,.0 are compatible, we get a map 9'KT(G/B)
KT(G/BT). Now the map i:W - NK(T)/T-- G/BT, given by
w -> w1 mod B, induces a homeomorphism, provided we
put the discrete topology on W. Moreover, by proposition
2.2 of ref. 4, KT(W) can be canonically identified [as an alge-
bra over A(T)] with the A(T)-subalgebra of fl (see Defini-
tions 2.5) consisting of precisely those maps: W--> Q, which
have image C A(T). Hence, on composition, we obtain a
map y:KA(G/B) .

Now we come to our second main theorem.
THEOREM 3.9. Let G be an arbitrary (not necessarily sym-

metrizable) Kac-Moody group with Borel subgroup B. Then
the map ':KT(G/B) -Q ft, defined above, has its image pre-
cisely equal to I (see Definitions 2.5).
Let y be the map by, considered as a map: KT(G/B) '.

Then the map y is an A(T)-algebra isomorphism. Further the
action ofthe Weyl group element w E W (Definition 3.7) and
the operator D, (Lemma 3.5) correspond under y to the ac-
tion ofX and yw, respectively (Proposition 2.6).
Remark 3.10. Arabia has recently identified the "cohomo-

logical analogue" of our ring T (i.e., the ring A defined in ref.
2) with the equivariant cohomology HT(G/B).
As an easy consequence of Theorem 3.9, we deduce the

following theorem (with the same assumptions and nota-
tions):
THEOREM 3.11. The map y :KT(G/B) -- If induces a

unique map y1:K(G/B) OA(T) IV (cf. Remark 2.8) mak-
ing the following diagram commutative (the vertical maps
being the canonical maps):

KT(G/B) A T

K(G/B)>-" Z )(9'P
A(T)

Now the map Yi is a Z-algebra isomorphism. Further, the
(Weyl group) action of w E W and the operator Dw on
K(G/B) correspond (under yi) to the action of 1 0 X, and 1
0 Yw, respectively.
Remarks 3.12. (i) We can prove an appropriate analogue

of Theorems 3.9 and 3.11 for GIP, where P is an arbitrary
parabolic subgroup of G, in fact even for an arbitrary left B-
stable closed subvariety of GIP.

(ii) We will identify the "basis" {bw = "y-fIW}weW of
KT(G/B) in Section 4. In particular, by Proposition 2.7, the
product in KT(G/B) can be "explicitly" determined, in the
{bW} basis, in terms of the matrix E. A similar remark applies
for the Weyl group action.

Section 4

In this section, we assume that we are in the finite case; i.e.,
G is a finite-dimensional semisimple simply connected alge-
braic group C and we denote by GO (instead of K) any maxi-
mal compact subgroup of G with a maximal torus T.

Definition 4.1. The Demazure operators (5): For any sim-
ple reflection ri, define Lr (e') = (eX - eri-ai)/1 - e-a, for
e' E X(T) and extend linear to A(T). Now set, for any w E
W,Lw= Lr. o. . . o Lri, where w = ri.. .. ri, is any reduced
decomposition. (As is well known, Lw does not depend on
the reduced expression.)

Definition 4.2. The Atiyah-Hirzebruch homomorphism:
We recall the definition of the Atiyah-Hirzebruch homomor-
phism x:A(T) -* K(G/B), which takes e' to the line bundle
on GIB associated to the character eX of B, for any eX E
X(T). We have the following:
LEMMA 4.3. The homomorphism X:A(T) -> K(G/B) is a Z-

algebra homomorphism, which commutes with Weyl group
actions and x ° Lw = Dw ° X, for any w E W. a
Now, as fairly easy consequences of Theorem 3.9, we can

deduce the following (known) results (Theorems 4.4-4.6):
THEOREM 4.4. The map X (defined above) is surjective.
THEOREM 4.5. The map O:R(T) OR(G0) R(T) -- KT(Go/T),

defined on page 11 of ref. 6, is an isomorphism.
THEOREM 4.6. K*(Go) is a torsion-free 7Z-module, in fact is

an exterior algebra over Z on afree Z-module ofrank = rank
Go. m
Now we give a characterization of the basis {b' =

Yel(qiW)},Ew (cf. Theorem 3.9) of KT(G/B). For any projec-
tive variety X, denote by K0(X) (resp KO(X)) the Grothen-
dieck group of algebraic vector bundles-i.e., locally free
sheaves (resp the coherent sheaves) on X. Since GIB is
smooth, the canonical map: K0(G/B) -- KO(G/B) is an iso-
morphism. Moreover, as is known, the canonical map:
K0(G/B) -* K(G/B) is also an isomorphism. Similar defini-
tions and remarks apply for T-equivariant K-groups of GIB.
In particular, we can assume that any (topological) T-equi-
variant vector bundle on G/B is algebraic (at least in

Mathematics: Kostant and Kumar
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KT(G/B)). For any T-equivariant algebraic vector bun-
dle V on GIB, and any w E W, denote x(Xw, V) =
Xp(-1)PchT(HP(Xw, V)) E A(T), where chT(HP(Xw, V)) de-
notes its character as a T-module. Now we state the follow-
ing:
PROPOSITION 4.7. {bW}wew is the unique A(T)-basis of

KT(G/B) satisfying x(Xv, bw*) = 8-iw E A(T), for all v, w
E W, where * denotes the involution ofKT(G/B) obtained by
taking the dual of the vector bundles.

Similarly, {b' = Y1j(1 0) qW)}wEw is the unique Z-basis of
K(G/B), satisfying 1p(-1)Pdim Hb(XV, b'*) = $-l,,, for all
v, w E W.
Remarks 4.8. (i) A similar result, as above, holds good in

the general Kac-Moody case, using some results of Kumar
(7).

(ii) The basis {b1} is precisely the basis {aw}w, given by
Demazure (proposition 7 of section 5 of ref. 5). Actually, bj
= a,-, for all w E W.

(iii) In the finite case, there is at least one other interesting

Proc. NatL. Acad Sci. USA 84 (1987)

Z-basis of K(G/B) given by {i,-C, )Ew, where i,:X- GIB
is the canonical embedding and i, is the standard push-for
ward map in KO. Though the two bases differ, it is possible to
write down "explicitly" one in terms of the other.
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