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INTRODUCTION

To any (not necessarily symmetrizable) generalized / x / Cartan matrix A,
one associates a Kac-Moody algebra g =g(A) over C and group G =G(A).
If A is a classical Cartan matrix, then G is a finite dimensional semi-simple
algebraic group over C. We refer to this as the finite case. In general, one
has subalgebras of g; hcbcp, the Cartan subalgebra, Borel subalgebra,
and a parabolic subalgebra, respectively. One also has the corresponding
subgroups H < B< P. Let W be the Weyl group associated to (g, h) and let
{r;}, <<, denote the set of simple reflections. The group W operates on h
(and hence on its dual space h*).

W parametrizes the Schubert cell decomposition of the generalized flag
variety G/B=\J,.. » V..(=Bw 'B/B). (A suitable subset W' < W does the
same for G/P.) Our principal concern is the cohomology ring H(G/B)
(more generally H(G/P)) and in fact the cohomology ring of arbitrary (left)
B-stable closed subspaces of G/P.

Now besides having a ring structure and having a distinguished basis
consisting of Schubert classes (given by the dual of the closures of Schubert
cells, H(G/B) is also a module for W. In addition, in the finite case, a ring
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of operators & (with C-basis {4, },.) on H(G/B) was introduced in

[3], where A, (1<i<]/), although defined algebraically, correspond

topologically to the integration on fiber for the fibration G/B - G/P, (P, is

the minimal parabolic containing r;). Kac and Peterson have extended the

definition of the ring of operators &/ on H(G/B) to the general case and

they have used these operators to study the topology of G (as well as G/B).
The problems, we wish to deal with, are to describe H(G/B):

{1} as a ring, in particular the cup product of two arbitrary Schubert
classes, and

(2) as a module for W and o.

Our main result is that all these structures arise very naturally from a
single ring R, which admits a simple and concrete definition, using only the
Weyl group W and its representation on h* and which has some rather
remarkable properties. We refer to R as the nil Hecke ring, corresponding
to the pair (W, h*) (see (4.12)).

We would like to remark that there are a number of serious obstacles in
trying to directly pass from the finite to the general infinite case, and as a
consequence we have sought a new approach. Among the obstacles are (1)
the characteristic homomorphism: S(h*)— H{G/B) fails 1o be surjective in
general, (2) the failure of complete reducibility of the W-modules S(h*)
and H(G/B), (3) the absence of “harmonics,” and (4) the absence of the
fundamental (top) cohomology class and as a consequence, the absence of
Poincaré duality. An approach, which remains valid in the general case,
was motivated from [3, Theorem 5971 a result of the first author. This
theorem arises from the correspondence of the Lie algebra cohomology
H(n) (n is the nil-radical of b} and H(G/B) established by the first author in
[177] in the finite case and was established, in the general case, by the
second author in [23].

It may be mentioned that different aspects of the topology of G, G/B
{and G/P} in the infinite case have been studied, among others, by Bott
(who has done an extensive work on the topology of loop groups via
Morse theory), Iwahori and Matsumoto [12] and more recently by Gar-
land and Raghunathan [10], Tits [30], Kac and Peterson [21,22],
Gutkin and Slodowy [11], Kumar [23, 24], Kac [14], and Pressley and
Segal [27].

We describe the contents of the paper in more detaii. Section 1 is devoted
to recalling some standard facts from Kac-Moody theory and setting up
notations to be used throughout the paper. In Section 2 we establish a cer-
tain relationship between the cohomology of G/B with End, H*(n), where
n is the nil radical of the Borel subalgebra b. The main result of this chap-
ter is Theorem (2.12) (see also Remark (2.13)(a)), which asserts that there
is a graded algebra isomorphism from H(G/B) with GrC{W}, where



HECKE RING 189

C{W} is the algebra (under pointwise addition and pointwise mul-
tiplication) of all the functions: W—C and GrC{W} denotes the
associated graded algebra, with respect to some “natural” filtration of
C{W}. Let us recall that End, H*(n) can be identified with C{W} by a
result of Garland and Lepowsky [9]. The filtration of C{W} arises from a
filtration of End C(n), which in turn is a “super” analog of the usual
filtration of differential operators on a manifold. Our proof of this theorem
is based upon the correspondence of the {Lie algebra) cohomology of n
with H*(g, h), as given by the “d, 3-Hodge theory,” proved by the first
author in the finite case [17] and established by the second author, in the
general case [23].

In Section 3 we construct [23] certain d, ¢ harmonic forms {s"}, ., <
C(g. h), which are dual to (up to a positive real number depending upon w)
the Schubert varieties {¥,}. It is further shown [23] that (properly
defined) |, s"=(—1)""7 V722 [ . i, exp(2(wp—p) h(g))dg, where
p=I(w) and U (resp. U ™) is the commutator subgroup of B (resp. the
opposite Borel subgroup B ). We explicitly compute the above integral in
this chapter and show (Theorem3.1) it to be (—1)"7"12(4x)"
[Ticu-ts ~a, 0(p.v) ' Our proof of Theorem(3.1) occupies the whole of
Section 3 and proceeds via an induction on /(w). Interestingly, we use infor-
mation about the cup product in H(G/B), as given in Corollary (3.12), to
compute the integral.

Section 4 can be viewed as the main algebraic part of this paper. We
denote by Q. (resp. Sy.), the smash product of the group ring C[ W] with
the W-field O = Q(h*), the field of rational functions on h (resp. the W-ring
S=S(h*)). The ring Q, admits an involutary anti-automorphism ¢ (see
(I,;)). With the help of Proposition (4.2), we define certain clements
X, wew In Qy, which form a right (as well as left) Q-basis
(Corollary (4.5)). The basis x,. behaves like a “degenerate” Hecke basis (see
Proposition (4.3)(a)). Further, Q has a canonical (left) Q,-module struc-
ture, given by (I5;). We define (a basic ring) R as the subring of Q. con-
sisting of all those elements x e @, such that x keeps S stable. We prove a
crucial structure theorem (Theorem 4.6) for the ring R. This asserts that R
is a free (left as well as right) S-module, with the {x,}, ., as basis and
R R =5, In the finite case, part (a) of this theorem admits a simple
proof using the theory of “harmonics.” We refer to R as the nil Hecke ring
(4.12). We also put a co-product structure 4 on @, (4.14) and prove
Proposition (4.15), which describes 4 in terms of the {x,}, ., basis of
O, where X, =x' ..

We dualize the above objects and define 2 = Homy(Q ., Q) (Q con-
sidered as a right Q-module) and the S-subalgebra A= {y € Q: Yy(R)c= S
and y(x,)=0, for all but a finite number of we W}. Since Q, has
{0, e w as a right Q-basis, we can (and often will) view 2 as the space of
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all the maps: W — Q. Of course, 2 is an algebra under pointwise addition
and pointwise multiplication (of maps: W — Q). More subtly, since Q,, has
an involutary anti-automorphism ¢, we can also put the structure of a left
Qu~module on 2 defined by (I,,). It is easy to see that A is stable under
(the left action of) R. In particular, the elements 6, x,, act on A. We refer
to the action of the d,, as the Weyl group action and the action of the x,, is
referred to as the Hecke operators, for reasons which will be clear in Sec-
tion 5. As a consequence of (structure) Theorem (4.6)(a), we deduce
(Proposition (4.20)) that A4 is a free S-module with basis {£"}, . ,, where
& is defined by ¢"(x,) =4, ., for all ve W. We collect various properties
of {&"} in Proposition (4.24), and define a matrix D=(d,, ), .cw by
d,, = &'(w). The matrix D is fundamental to our paper. In the finite case, it
can be extracted from [3, Theorem 5.9]. We give an explicit formula
{Proposition (4.32)) for the arbitrary product £“-£* (as well as 8, &%) in
the {£"} basis, purely in terms of the matrix D. We give a different formula
for the arbitrary product & £* in Proposition (4.31), in terms of the action
of the ring R on A."

Section 5 synthesizes Section 2 and Section 4. Since it is basically an
application of Section 2 and since in Section 2 we have assumed A is sym-
metrizable we assumed the same in Section 5. However, using the algebraic
results of Kac-Peterson the main theorem in Section 5 (as pointed out by
Peterson) may be proved without the symmetrizability assumption. See
Remark 5.7. We show that the (a priori very complicated) filtration of
C{W} (given in Sect.2), obtained by purely geometrical considerations,
also arises from a very explicit combinatorial construction, using only the
Weyl group W (associated to g) and its representation on the Cartan sub-
algebra h. By using d, @ harmonic forms s =s"/[,. s and the map 7 (given
in (2.7), we define a map D: W x W — C in Section 5.1. The map D, in turn,
gives rise to the filtration (of Theorem (2.12)) of C{W}. Moreover, the
matrix D can also be thought of as a map: Wx W — S. By evaluating D at
h(p) (h(p) is defined in Proposition (5.2)), we get a map D, Wx W - C.
We further prove a characterization of the matrix D,,, in
Proposition (5.5), which roughly asserts that any Wx W matrix E
{over C), which is upper triangular, has the same diagonal values as that of
D,,,. and satisfies a suitable “cup produc} formula™ is the same as D, ,,.
Finally, we show (Proposition (5.2)) that D does satisfy all the characteriz-
ing properties (given in (5.5)) of D,,, and hence we have the
Corollary (5.6); D= D,,,,. (We should mention that our calculation of the
integral, in Sect. 3, is crucially used to establish that the diagonal entries of

" Note added in proof. Our later applications to H(G/B) involve a quotient ring of A.
However, recently A. Arabia has proved that A itself is isomorphic to the T-equivariant
cohomology of G/B=K/T. (See [31].)
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D are precisely equal to those of D,,,.) This leads to our main theorem
{5.12), which asserts that H(G/B) is canonically isomorphic (as a graded
algebra) with C, ® ¢ 4. Moreover, under this isomorphism, the (Weyl
group) action of we W and the Hecke operator 4, on H(G/B) correspond
respectively to the action of 4, and x, on C, ®¢ A, where C, is the
quotient of S by the augmentation ideal S*. This, in particular, gives (by
Proposition (4.32)) an expression, by a fairly explicit formula, for the cup
product of two arbitrary Schubert classes (as well as the Weyl group action
of arbitrary w) on- H(G/B), purely in terms of the matrix D. Of course, as a
particular case, it gives the cup product of two arbitrary cohomology
classes of the based loop group Q.(K,) (for a finite dimensional compact
s.s. simply connected group K), in terms of the Schubert basis. One can
easily generalize Theorem (5.12) so that an arbitrary parabolic subgroup P
replaces the Borel subgroup B, as done in Corollary (5.13)(c). Very
interestingly, we can prove an analog of Theorem (5.12) for an arbitrary
(left) B-stable closed subspace of G/P. This is the content of our
Theorem (5.16). Recently, Akyildiz, Carrell, and Lieberman [1] (see also
[5]) have, quite independently and by a different method, proved an
analog of Theorem (5.16) in the particular case of Schubert varieties
< G/B, where G is finite. It is not clear if their proofs can be extended to
the general (infinite) case.

In Section 6 we prove that in the finite case, the matrix D can be
obtained from the W-Harmonic polynomials onh, as shown in Theorem
(6.3) (see also Remark (6.4)). This says that the matrix D is nothing but
the “upper triangular part” of the matrix obtained by the W-translates of
the harmonic polynomials.

The main results of this paper have been announced in [15].

The authors thank James B. Carrell, George Lusztig, and Dale H. Peter-
son for some helpful conversations.

1. PRELIMINARIES AND NOTATIONS

(1.1} Definitions and Basic Properties [13, 25].

Let A=(a;),<; <, be any generalized Cartan matrix (ie., a; =2 and
—ayeZ, for all i#j). A is called symmetrizable if DA is symmetric for
some diagonal matrix D = diag(q,,..., ¢,) with ¢g,>0 and rational.

Choose a triple (h, 7, ), unique up to isomorphism, where h is a vector
space  over C of dim(/+co-rank 4), =#={a},.,c,=h* and
n ={h},<;c;ch are linearly independent indexed sets satisfying
ah;)=a;. The Kac-Moody algebra g=g(A) is the Lie aigebra over C,
generated by h and symbols e; and f; (1 <i< /) with the defining relations
[hh]=0; [he]=aih)e;, [h f;1= —afh)f; for heh and all 1 i</
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Le., f;1=6,h, for all 1<, j<I; (ade,)'~“(e,)=0=(ad f,)' ~“(f) for all
1<i#j</ his canonically embedded in g and is called the Cartan sub-
algebra of g.

One has a root space decomposition g=hd3, _, (8,Dg_,), where
g.={xeg [hx]=alh)x, for all heh} and 4, ={aeY! | Z, a:
g8, #0}. Define A=4, 4 (A_=—4,).

We fix a subset X (including X=J) of {l,../}. Put 4¥ =4,
{Xic x Zu;} and define the following Lie subalgebras:

n=3 g, n =) g,

xed, xedy
u:u/‘= Z _ga’ uizuyz Z gqu
1ed,\d‘t 1EA1+\J'K
r=ry=h® ) (2.0g_.);
ue,d'i

b=h®nand p=p,=ré@u

In the case when X 1s of finite type (i.e., ry is finite dimensional) r, is a
reductive subalgebra and since [ry, uy] cuy (resp. [ry, uy Jcuy), ry acts
on uy (resp.uy ).

There is a Weyl group W < Aut(h*) generated by the “simple” reflections
{ri¥ i <icdrdx)=yx—x(h;) a,, for any y e h*), associated to the Lie algebra
g (W, {r;},<i<,) is a Coxeter group, and hence we can speak of the Bruhat
ordering < and lengths of elements of W. We denote the length of w by
I(w). W preserves A. 4™ is defined to be W-r and 4™ = A\4™. For ae 4™,
dimg,=1. Weset AT=4"n4,, similarly 4™ = A4~ 4_. By dualizing,
we get a representation of W in h. Explicitly, ri(h)=h—a(h)h,, for heh
and any 1 <i</

For any X c {1,..., [}, let W, be the subgroup of W generated by {r.}..
and define a subset Wi, of the Weyl group W, by W.i={weW:
A4, nwd_cd4 \A%}. W} can be characterized as the set of elements of
minimal length in the cosets W,w(we W) (each such coset contains a
unique element of minimal length).

There is a (C-linear) involution w of g defined (uniquely) by w(f,)= —e,
for all 1 <i</and w(h)= —h, for all Aeh. It is easy to see that w leaves
g(R) (=“real points” of g) stable. Let w, be the conjugate linear involution
of g, which coincides with @ on g(R). In the case when g is symmetrizabie,
there i1s a nondegenerate, W-invariant, symmetric C-bilinear form ¢ on h*.
g gives rise to a nondegenerate, g-invariant, symmetric C-bilinear form
(called the Killing form) {, > on g (see [13]).

We fix, once and for all, one such ¢ (and hence {, >). The symmetric
form {, ) on g gives rise to a Hermitian form {,} on g, defined by
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{x, ¥y} = —{x, wo(y)>, for x, yeg. The Hermitian form {, } is positive
definite on n~ (and n) (see [8, Sect. 12] and [21, Remark IV, p. 1782].)

(1.2} Algebraic Group Associated to a Kac-Moody Lie algebra g [30, 21,
22].

A g' (=the commutator subalgebra [g,g]) module (V,=n) (x:
g' - End V) is called integrable, if n(x) is locally nilpotent whenever xeg,,
for xe 4™. Let G* be the free product of the additive groups {g,},c s,
with canonical inclusions i,: g, — G*. For any integrable g'-module (V, n),
define a homomorphism zn*: G* - Aut. V' by n*(i,(x))=exp(n(x)), for
xeg,. Let N* be the intersection of all Ker n*. Put G=G*/N*. Let ¢ be
the canonical homomorphism: G* —» G. For xeg, (x€4™), put exp(x)=
qli,x), so that U,=expg, 1s an additive one parameter subgroup of G.
Denote by U (resp. U™ ) the subgroup of G generated by the U,’s with
e (resp. xe4™). We put a topology on G as given in [22, 4(G)]. G
may be viewed as, possibly infinite dimensional, affine algebraic group in
the sense of Safarevi¢ with Lie-algebra g'. For a proof, see [22, Sect. 4].
We call G the group associated to the Kac—Moody Lie algebra g.

The conjugate linear involution w, of g, on “integration,” gives rise to an
involution @, of G. Let K denote the fixed point set of this involution. K is
called the standard real form of G.

For each 1 <i</, there exists a unique homomorphism f;: SL,(C) - G,
satisfying () 7)=exp(ze;) and S 9)=exp(zf;) (for all ze C), where e,. f;
is as in (1.1). Define H,=f,{(; ) zeC*}; HY =f,{(; .°): z is real and
>0}; G,=B(SL5(C)); N,=Normalizer of H, in G,; H (resp. H*)=the
subgroup (of G) generated by all H, (resp. H"); N = the subgroup (of G)
generated by all N,. There is an isomorphism 1: W N/H, such that (r,) is
the coset N;H\H mod H [21, Sect. 2]. We would. sometimes, identify W
with N/H under t.

Put B=HU and P=P,=BWB. B is called the standard Borel sub-
group and P the standard parabolic subgroup of G, associated to the subset
X. Denote by K, the subgroup Kn P,. We denote by T=Kn B, the
“maximal torus” of K. Tt 15 easy to see that the canonical inclusion
K/Ky— G/Py is a (surjective) homeomorphism. Use [22, Theorem 4(d)].
(K< G is given the subspace topology.)

(1.3) Bruhat decomposition [12, 30, 21, 22].

G can be written as disjoint union G=U), 4 (Uw 'Py), so that
G/Py=,cu(Uw 'Py/Py). G/Py is a C-W complex with cells {V, =
Uw 'Py/Py},cwt and dim, ¥V, =2/(w).

(1.4) Notations. Unless otherwise stated, vector spaces will be over C
and linear maps will be C-linear maps. For a vector space V, V* denotes
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Homg(V, C), A(V) denotes the exterior algebra, and S(V) denotes the
symmetric algebra. Tensor product without a subscript will mean over C.
Modules will be left, unless stated otherwise.

For a Lie algebra pair (g, r), C(g, r) (resp. A(g, r)) denotes the standard
co-chain (resp. chain) complex associated to the pair (g, r). p, as usual,
means any element e h* satisfying p(h-) =1, for all 1 </ </ We fix elements
1 (1<i<l)eh* satisfying y,(h,) =0, ;, forall 1< /<L

Complex manifolds are oriented by its complex structure. Explicitly, on

C" (with complex coordinates z,=x,+./—1 ¥, Z,=X,+/ =1 ¥,)
{e/ox,, éfév,...., 8/ox,, ¢/dv,} will be declared as positively oriented basis
of T(C").

2. IDENTIFICATION OF THE COH()MOLOGY ALGEBRA H*(G/P,, C)
wiTH Gr C{ W} }

We recall the following weil-known

(2.1) DeriNITION. A differential graded algebra/C (abbreviated as
DGA) is a graded associative algebra (over C), having identity, </ =
30", with a differential d: ./ — .o of degree + 1, such that

(1) o is graded commutative, ie., «-f=(—1)7f o, for xe.o/’ and
Be.o/' and
(2) dis a derivation, ie., d(a-B)=dux: B+ (—1)o-dp, for ae .o/’
Let ./ be a DGA with differential 4. Denote by

End(.«/) = Hom(.«, .«/) (all the C-linear maps from .o/ into itself)
End 79(.«/)=Hom(.«", /%), for all p,¢>0, and '
End(«)=T1,.,End 77" '(o/), for ie Z. We clearly have

[1 End’(«/)>End(A4)> ) End'(.«/).

ieZ iel

d induces a derivation (of degree + 1) é in End(.o7) (End(.«/) is viewed as
an algebra, with product as composition of maps) defined by

dt=di—(—1)td for teBEnd(s)
From the definition, it is easy to check that

3 =0. (I
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Further, te€ End(%/), with 6t=0, takes Z(&/) (={aes/: da=0}) into
itself and the same is true with Z(.«/) replaced by d(.«/). Hence, there is a
canonical homomorphism of Z-graded algebras (obtained by restriction)

v H(End(«/), 8) — End(H(.+/)).

A proof of the following proposition can be seen, eg. in [4,
Theorem 31(a), p. 114].

(2.2) PROPOSITION. The map 7y, defined above, is an isomorphism of
graded algebras.

(2.3) Let g=g(4,) be any symmetrizable Kac-Moody Lie algebra.
Fix a subset X< {1,..,/} of finite type. Recall the Lie algebras uy,u,,r,
defined in Section 1.1. We would often abbreviate uy, uy , ry (respectively)
by u,u ,r.

Let C(g, r)=3,.,Hom (A(u@u ), C) denote the standard co-chain
complex associated to the Lie algebra pair (g,r) and C(u)=
> >0 Hom(A'(u), C) is the DGA associated to the Lie algebra u.

As in [23, Sect. 3], we put the topology of pointwise convergence on
C(g,r) and C(u). We also put the topology of pointwise convergence on
End C(u), ie., {7,} <End C(u) converges to teEnd C(u) if and only if
7,(a) = () (in the topology of C(u}), for all a e C(u).

0: End C(u) — End C(u) is continuous under this topology. Further, it
can be easily seen that J commutes with the canonical r action on
End C(u). We denote by 4, the restriction of 6 to End, C(u).

The map 5 (defined below) is basic to this section.

(2.4) LEMMA. There exists a (unique) continuous map n. C(g,r)—
End, C(u), such that

K 2\
r/< ¥ a"@e(a"»:(——ﬁ) Y #(0") i(a”) (1)
n=1 \/ - 1 n

for a"e C(u) and a"e N\Y(u) (with Y a"®e(a")e C(g, r)), where e: C(u) -
End C(u) is exterior multiplication, i: A(u)— End C(u) is interior mul-
tiplication, and e: \(u) - C(u ")} is induced from the Killing form. Moreover
y is injective. |

It may be remarked that, though # is defined on a dense subspace of
Yi»0 Homc(A'(u@u ), C), it does not extend to a continuous map on
Y.>o Homc(A'(u@u ™), C), in general. Further, n does not commute with
the differentials. In fact, we have
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(2.5) LEMMA. #nd,= 044, where the operator d, on C(g, ) is defined to
be d + (2n// —1)0". (d" and 0" are defined in [23, Sect. 3]. One has d5=0.

Proof. Fora=a; r -~ Aag/\(n), we have

4 P
dyi(@)+ (= 1) 'ia)d,= Y, (=1)" " adla)-i(ay)- - oilay)o - ~ila,)

k=1

+i(d,a) as operators on C(u)) (I5)

where 0, (resp. d,) denotes the chain (resp. co-chain) map of the standard
complex A(u) (resp. C(u)), associated to the Lie algebra u and ad:
u — End C(u}) is induced from the adjoint representation.

The identity (1,) can be easily proved by induction on g, using the well-
known identities (I,) and (Is): For any a,, a,€u,

dyila,)+i(a,)d,=ad(a,) (14)
i(a,) ad(a,) —ad(a,) i(a;)=i[a,, a;] (Is)

as operators on C{u). Further, for any aeu,

ad(a)= Y ela})ilay, al, (I¢)

pel

where {a,},., is an orthonormal basis of u, consisting of weight vectors,
and a} € Hom(u, C) is the element satisfying af(a,)=4,, for all ¢"€ L.

To prove identity (I}, observe that both the sides of (I4) are derivations
and, moreover, both are continuous maps: C(u) — C(u). So it suffices to
prove that ad(a) a=3,_,e(af)ifa,, a]«, for ae C'(u), which is easy to
verify.

We are ready to prove the lemma. Since all the maps #, d,, d, are con-
tinuous, it suffices to prove that nd,=9d,n on e([A(u )@ A(u)]"). Fix an
element 3 b"®a"e[A(u )@ A(n)]". where b"e A’(u”) and a"=
aj A - naje A\“u). Then

<_‘_1>q 60’7(62b"® an)

2n
=Y [d,e(eb”) i(a”) - (—1)”~“e(eb”) i(@") d, ]

”

=Y [e(du(eb™) i(@") + (—1)"e(eb") d,i(@") — (—1)"" “e(eb") i(a") d, ]
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=Y [e(dy(eb™)) i(@") + (—1)7e(eb™) { Y (=1)*"ad(ay)

k=1

S
ci(ai)e - oi{ay)s e i(a[;)+i(ﬁua")ﬂ using (1)

—Z [e(d,(eb™))i(@") + (—1)7e(eb”) i(¢,@") + (— 1)"e(eb™)

P

x Z (=11 Y ead)ilay, apl=i(a)): - ci(ay)« - - i(a?)]

k=1 el

using (1)

197

SN\
( o >50’7 <€Zb"®a”>:Z|:i‘(d (eb”)) i(@")+ (—1)%(eb") i(4,a")

+(=17 Z e(eb”) e(ay) i(ad a¢a”)}. (I,)

gel

Also,

nd, <e Z b"® a”)

H

=1 (Z [(du(eb"))@) (ea”)+(—1)" ) e(b")-a¥®e(ad a,a”)

el

o lv( o )( b") @ e(é a")D
- — (e 3
N “

(See the proof of [23, Lemma (3.1)].) So, we have
—l ¢ " n
Vzn ndy{ ey b'®a

=) [s(du(eb”)) i@+ (—1)" 3 ele(b”) af)i(ad aza")

n gel

+(—1)¢(eb") i((’ﬁua")]

Comparing (I,) and (), we get the lemma. |

(I)

Recall the definition of the operator S =dé + d, acting on C(g, r), from
[23, Sect. 3]. From [23, Lemma (3.5), Theorem 3.13, and Remark 3.14]
we have, Ker S=Kerd nKerd' nKerd”nKerd”. As an immediate

corollary of lemma (2.5), we get



198 KOSTANT AND KUMAR

(2.6) Lemma. n(Ker S)< Ker d,.

By virtue of this lemma, n gives rise to a map #: KerS§S—
H(End, C(u), 3,). Recall the definition of the map y from Proposition (2.2).
Obviously, y gives rise to a map y,: H(End,C(u), 6,) = End, H*(u), where
H*(u)=Y,., H'(u) is the Lie algebra cohomology of u (with trivial coef-
ficients C).

Let us recall the structure of H*(u), as an r-module, from [9].

(2.7) THEOREM. [9, Theorem 8.6]. As r-modules,

H{u)~ )  L(wp—p)
we W‘l,( with
fwy=1
where L{wp —p) is an irreducible r-module with highest weight wp —p. In
particular, any irreducible r-module occurs with multiplicity at the most one
in H*(u). ||

So, we get

End, H*(u)~ [] End,H'(w)~ [] [] with End,L(wp - p).

2 iz0we A

120 I(n‘)li{
L(wp—p) being irreducible, End,L(wp—p) is 1-dimensional with a
canonical generator 1, (=the identity map of L(wp — p)). This identifies
End, H*(u) with [, 41 Cl, . The space [, w! Cl,. can (and will) also be
thought of as C{W}} {=the vector space of all the functions from wh
to C). The product in C{W.}, inherited from End, H*(u), is nothing but
the pointwise multiplication. Let 7j: Ker S — C{ W) } be the composite map

Ker S—'— H(End,C(u), §,) —*— End, H*(u)x C{W}}.

(2.8) A filtration of C(g,r) and C{W)}. Define a decreasing
filtration ¥ =(¥,),., (Z_ is the set of non-positive integers) by 4,=
Yocke op C*"(g, r), where C%*(g, r)=Hom (A‘(u)® A*(u"), C). Clearly
%, is d’, 0" (and hence d,) stable. This gives rise to a filtration % =
(% ,)pcz_ of End,C(u) by defining %, =n(%,). (Caution! We do not claim
that {J,., #,=End,C(u).) This also gives rise to a filtration { #,},., of
End,H*(u)zC{W}}, by taking the image of the induced filtration of
H(End, C(u), 8,) under the canonical map 7,, defined in (2.6). Here again,
we do not claim that J,_, %, =C{W}}. In fact, it is true if and only if g
is a finite dimensional Lie algebra.

(2.9) Remark. Let o/ be any finite dimensional DGA. Then the com-
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plex End(/) comes equipped with a natural filtration {F,},_, defined as
follows: F,=¢(/) (recall that ¢: &/ - End(&/) is exterior multiplication).
F ,=¢(o/)+ Der(/), where Der(s/) =Y, Der'(«/) and Der(s/) is the set
of all the degree i derivations of .«/. Finally (for p>1) F_, is the C-span of
all those elements in End(<«/) which can be written as products of <p
operators in F . (F_, can be thought of as the set of first-order differen-
tial operators on .&/.)

If we take .o/ = C(u) then, in the case when g is finite dimensional, the
filtration {.%,},., (described above in (2.8)) coincides with {F,n
End,C(u)},., , as can be casily seen. In the general case #, is some
appropriate “partial completion” of F,. So, our filtration {%,] arises as a
“super” analog of the usual filtration of differential operators on a
manifold.

The behavior of # under products is given by

(2.10) LEMMA. For Ae C*?(g,r) and i € C*7'(g, 1),

#(AA )Y =n(A) (") mod %

—p—p

Proof. For ae C*(u) and aeu, we have

i(a) e(a) — (—1)'e(a) i(a) = e(i(a) @) (Io)

as elements of End C(u).
From the above relation, by induction on p, we get (for Be C(u),
ae C*u), ac A”(u), and be A7 (u))

e(B)i(a) e(@) i(b) — (= 1)™e(Ba)i(@anb)eF ., (Io)

which proves the lemma. |

As an immediate corollary, we have

(2.11) Lemma.  For all p,p'e? , F,.F, < F,, , and §," §,< 4, ,.

As usual, let us define Gr C{W}} =% _,Gr”, where Gr*= ¢ /¢ . ,.

In view of Lemma (2.11), Gr C{W; inherits a canonical algebra struc-
ture from C{ W }. Denote Ker S C”?(g, r) by Ker””S. By the definition
of n, n(Ker”?S)c #_,. Hence n(Ker””S)c # , (7 is defined in Sect. 2.7).
Denote the composition Ker”?S -7 ¢ — ¢ /7 . by Gr°(n) and let
Gr(i7) be the map: 3 Ker””S— Gr C{W}}, such that Gr(f)|gerrS=
Gr”(77). Consider the inclusion Ker S C(g, r). By [23, Theorem 3.13] it
induces isomorphism (of vector spaces) ¥, : Ker S = H*(g r) and,
moreover [23, Sect. 3], Ker S=3,_, Ker””S.

Now we are in a position to state the main theorem of this section.
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(2.12) THEOREM. Let g=g(A,) be a symmetrizable Kac—Moody Lie
algebra and let X < {1,..,1} be a subset of finite type. Let r=r, be the
reductive subalgebra of g as defined in (1.1). Then the map Gr(fj)-\ ¢
H*(g,r)— Gr C{ W)} (defined above) is an isomorphism of graded algebras.
(Of course, under this isomorphism, H* (g, r) corresponds with Gr?.)

(2.13) Remarks. (a) By [24, Theorem 1.6], H*(g, ry) is isomorphic (as
a graded algebra) with H*(G/Py, C) under a suitably defined integration
map. This, in particular, gives a graded algebra isomorphism of
H*(G/Py, C) with Gr C{ W' }.
(b) In the case when X =, we will show (Theorem 5.12) that the
isomorphism of H*(G/B,C) with Gr C{W} is W-equivariant, where W
acts on C{W} by the left regular representation.

Proof of the Theorem (2.12). Recall the definition of the filtration 4 of
C(g, r) and the filtration # of End, C(u), see (2.8). By Lemma (2.5), #, is
J, stable. The corresponding spectral sequence has E(F)=
HM YU F ) F, V= H P (G,)4, )~ Hi 4(C* (g, 1)), since the differen-
tials on %/% ,, induced by d, and d' are the same. (H,(C*, ~7(g,r))
denotes the cohomology of the complex C* ~7(g, r) with respect to the dif-
ferential d.) By (a subsequent) Lemma (2.15), ¢y, o 41 Hi(g r)—>
H*(g,r} is an algebra isomorphism. But by [23, Theorem 3.15],
Hi(C(g,r))=0 for odd values of i and for even i dimcHi(C(g, 1)) =
number of elements of length i/2 in W. In particular, E#4(% )=0 unless
p+q is even. But then all the differentials 4, (for r>1), of the spectral
sequence E,(F), are zero. So, we have EP9(F )~ Er4(F ) and (of course)
this isomorphism is an algebra isomorphism.

Further, the map 7: Ker S— C{W}} is injective. To prove this, let
O0#£s5= Z” <w) 25" eKer S be such that ;1(2 z"s*)=0, for some constants
2eC. (18"} ,. w! is a C-basis of Ker S and is defined in the next section.)
Let w, be an element of least possible length such that z"°#0. In par-
ticular, evaluating at w,, we have (3 z"s")(wy) = 0. But by using (a sub-
sequent) Proposition 5.2(a) and (b), we get #(z"s")(wy)=0 and
f(s™)(we) # 0. A contradiction! This proves that 7 is injective.

Furthermore, the canonical map y,: H(End, C(u), 6,) — End, H*(u) is an
isomorphism. To prove this, denote C(u)=Homg(A(u), C). We decom-
pose A(u)=>,.;: Vu, where V,, is the isotypical component corresponding
to the irreducible representation 8 of r. Of course, for any fixed 6, V, is
finite dimensional (use the fact that root spaces are finite dimensional). So,
we have

Cuy=[] V¥ (V¥=Hom¢(V,,C)) and End,C(u)=[] End,(V

der Oect
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From the finite dimensionality of Vs, it is easy to see that End, C(u) =
End, C(u). Hence

H(End,C(u))= H(End, C(u))

=[] H(End,(V}))

et

~ [] End, H(V}) (from the complete reducibility

Oet

of the r-module End V¥ and Proposition (2.2}))

~end, (I #/))
fet

=End, H(C(u)).
=End, H(C(u))= End, H*(u).

Now, consider the commutative diagram

H(C(g 1), dy) ™  H(End,C(u), §,)

KerS§ —— End, H*(u)x C{W\}

where i* is induced by the inclusion Ker S C(g, r) (dy| kers = 0). Defining
a ﬁltrationj? =(%,),c,_ . where {?pf Socke _p Ker*4(S), of Ker S, we get
that E7- (%)~ Ker”"(S) and Ef9(%)=0 for p#gq. So E04(9) -~ Eri4(Y)
for all p and ¢. Hence i* is an isomorphism. This, using the injectivity of 7,
proves that H(n) is injective.

Finally, using [4, Chap. XV, Sect. 1] and Lemma (2.10), we get that
Gr C{W?}} is isomorphic with E_(¥%) as graded algebras. Now (a sub-
sequent) Lemma (2.15) completes the proof. J

As an immediate consequence of the theorem, we get

(2.14) COROLLARY. Recall the definition of the filtration { ¥ ,},.,. of
C{W} from (2.8). For any p >0, we have §_,=37%_. I, where I, is the
image of Ker**(S) in C{W\} under 7.

We will give another “combinatorial” description of # , in Section 5.

The inclusion of Ker S C(g, r) induces the map y, . Ker S — H}(g, r)
and y, s Ker S — H}(g, r). By [23, Theorem 3.13 and Remark 3.14] y, ¢
and ¥, ¢ are both vector space isomorphisms. We have

607 62 3-2
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(2.15) LeMMA.  The map Y, s>, s HX(g r)—> HX(g, r) is an algebra
isomorphism.

Proof. Let s,,s,€Ker S. There exists s;e Ker S such that s,-5,—5,€
Image 4. By [23, Lemma 3.8 and Theorem 3.13], s, - 5, — 5, € Im S. Defining
S'=d'0"+0d'd, we have 1S= 5" by [23, Lemma 3.5] and hence there exists
/e C(g, r) such that

$1 82— 8,=(d'd" +d'd) A

Thus, on taking d. we get d'(s;-s,)—~ds,=ddd}, e,
(d's;)s,+s, ds,—dsy=dd'dA Since s,,s5,,5,6Ker ScKerd, we get
d'¢'d’'2 =0. By the disjointness of d' and &’ [23, Proposition 3.7] §'d’'A=0.
Hence s, -5, —s,eIm ¢'. This proves the lemma. |

3. DETERMINATION OF THE INTEGRAL

In this section g=g(A4,) will denote a symmetrizable Kac-Moody Lie
algebra.

Let Xc {1,..,/} be a subset of finite type. In [17] and recently in the
general case in [23], we constructed “d, 0 harmonic” forms {s"}, .yt <
C(g, r) which are dual (up to a nonzero scalar multiple) to the Schubert
cells {V,.=Bw 'Py/P.},. wi. More precisely [23, Theorem4.5], we
have, for w, w’ e W', of equal length,

(a) f, =0, unless w=w" and
(b) [y, s"=(=1)"" 22 [ exp(2(wp —p) hig)) dg. if ()=

(Where U, =wUw 'nU and, for any ge G, h(g) denotes the projection
of g on the H* factor under the inverse of the Iwasawa decomposition:
KxH*xU—G, defined by (k, h,u}—>khu See (1.2), for various
notations.) The additional sign factor (—1)7'7~'"* in the expression of
Jy. 5", is due to the fact that we have taken a different orientation on com-
plex manifolds (see (1.4)) than the one used in [23, Theorem 4.5].

In this section, we explicitly compute this integral. This, in particular,
would give expression for the 4, & harmonic forms {s§=s"/f, "}, .
which are exactly dual to the Schubert cells. The main result of this section
1S

(3.1) THEOREM. With the notations as above, for any we W, we have

2700 [ exp(2(wp—p) h(g)) dg=(dm)™ [T alp.v) .

vew g A,
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Proof. We prove the theorem by induction on /(w). In the case when
l(w) =1, the integral can be explicitly computed. The details are given in
[24, Sect. 6.16].

So, we come to the general case. Write w = r;v, where r; is a simple reﬂcc-
tion such that v <w. From the Hodge-type decomposmon of C(g, h) [23,
Theorem 3.137, we can express

sost= Y e, 1,,)

Hw’)y=1{w)

for some d-exact form 7€ C(g, h) and some (uniquely determined) con-
stants =" e C.

The next few lemmas are devoted to finding the value of z*. Define an
operator R= —(S—L) M: C(g,h)— C(g, h), where L, S and M are
defined in [23, Sect. 3]. As in the proof of [23, Lemma 3.8], one can see
that 3, o R"u converges in C(g, h), for all ue C(g, h). (Topology on
C(g, h) is the one, described in (2.3).) We have

(3.2) LEMMA.  Ler s, s,eKer S. Write PY. 7 R'(s,"5,)=3%, . w2oh",
for some (unique) constants z}. (h" is defined in (1,5) and P: C(g, h) -
C(g, hy=Ker L& Im L is projection onto Ker L). Then

$) 82— 3 zys"elmd.

we

Proof. First of all, s, 5,—déM (¥, ,R")s,-s,)eKerS. To prove
this:

S(s,-s,)— S déd /VI( Y E”) (8, 85)

nz=0

=8(s,-5,)—do(S — L)M(Z R”) vl-sz)—déLIVI<Z E") (s,
nz=z0

nz=0

(since S commutes with d and é),

=S(s,"5,)+dd Y, R""\(s,- dﬁ( y R") (5,°5,)

nz0 nz0

(since, by definition, LM =1Id onIm L and 0| .,, = LM|x.,, =0),
=S(s,°85,)—do(s,"s5)
=0 (since d(s, s,)=0).
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Furthermore,

—daﬂ( y R") (s, -sz)z(—S+8d)A7I( Y R") (s,°55)

nz0 nz0

=(—L—(S— L)+5d)M<Z R">(s,~sz)

nz0

Z Rn+l +L(/.t)

nz0

for some pe C(g, h) (since Im d < Im L). So

sl-sz—d0]\71< y ﬁ”) 51°5,) (Z R") s;s;)mod Im L. (I,,)
nz0 nz0

But, since the left side of (I,,) belongs to Ker S, and s* — A" elm L (by
[23, Proposition (3.17)]) the lemma follows.

(3.3) Remark. The above lemma is essentially due to Koch. See [20,
Theorem 4.3].

(3.4.) LEMMA. Let we W be expressed as w=rv, with r; a simple reflec-
tion and v<w. Then {@ >=<{D > +kya; for some ko,>0 and , moreover,
ko is equal to p(v™'h,) (where (@) denotes ¥, ., axand ® =4, nwd ).

Proof. By [26, Sect.2], (@.)=r{P)+a,={P,)— (P (k)
o+, ={P >+ [1—(p—vp)h;]a, Furthermore, (p—vp)(h)=1—-20
(p, v 'a;)/o(a;, o). Also, p—vp being sum of roots, (p —vp)(h;)eZ and
o(p, v 'a;)>0, since v 'a,e 4, (otherwise o, € @,). Hence (p —vp)(h;) <0.
This proves the lemma. ||

(3.5) Let 4, be an index set for an orthonormal basis of root vec-
tors of n~ and for each @ e 4, let b, be the corresponding root vector and
let —@'ed_ be the corresponding root. Since real roots have multiplicity
1 we may regard A‘iegiﬁ and @' =@ for Pe AR Define a,= —wob,.
Clearly {a4}o. 3, is an orthonormal basis of n.

For a sequence ® =(®,,.., ®,) with @,ed,, we define the operator
R, acting on C(g, h), by

Re(e(b®a))=e(ad by, o -~ cad by b®ad as o - vad ag @) (1)

for b@ae[Am )® AM)]" (Recall that e is defined in (2.4).)

It is easy to see that the operator R,, which is defined by (I,;) on a
dense subspace e([A(n )® A(n)]") of C(g, h), extends (uniquely) to a
continuous operator (again denoted by) R,: C(g, h) - C(g, h)
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By [23, T4, 54, and I55], we have

S~L=-2 Y R, asoperators on C(g, h). (I,4)

becd,

Fixve W. Let ®,={f,,... B,} (p=1(v)). The element by g , (f, being
real, g, is l1-dimensional) is of unit norm. Define the element

h=el(2/=1)(bg A " ANby®ay A+ A ag)]. (Iis)

By [23, Sect. 4.2], for the special case X = ¢, h* e Ker L and further, by
[23, Proposition 3.17].

s'=3Y R/(KY) (R is defined to be — M(S—L)). (T16)

j=0

Specializing v =r;, we get

=271 Y Rlelb,®a,)) (Iy)

jz0

Let we W be written as w = r,v, with v < w. Recall the identity (I,,). We
are interested in finding the value of . By Lemma (3.2), (I,4), and (I¢),
we have =" =coefficient of A" in (2 \/_——1) Y im0 RI(RM(A') - (R™(e
(h,®a,))). We have

(3.6) LEmMMA.  With the notations as above,

ko 1

2 = tkoe /<1028 1 Lotop— ks vp—ka) =t 911 )
k=i
where ko=p(v™'h,) and ¢ is the coefficient of h™ in RE '(h')-e(b, ®a,).
(By Lemma (3.4), k, is a positive integer.)

Proof. By Lemma (3.4) and (I,,), the only terms contributing to the
coefficient z* (of A" in 2./ —1 Z R'(R™(h")- R™(e(b, ®a,))) arc

nanpn =0

ky 1 -
2J/=D2%" Y (R My M[(HR,) (k) elb, ®a,)].  (E)

By [23, (I3;), (I36), (I3;)]. we have L{e(b®a))=[o(p—f p—p)—

a(p, p)] e(b® a), for a weight vector be A(n ) of weight —ff and ae A(n)
such that b@ae [A(n " )® A(n)]™
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Further a(p, p}#o(p— (D > —nya;,, p— D> —nu,;), forany 1 <n, <
ko— 1, since
a(vp —nyo;, vp—n o) =0olp, p)+niola,, o) —2n,0(vp, ;)
=al(p, p)+nio(a, a;)—no(a, oa)vp(h;)
=0o(p. p)+ (n} —kon,) ola;, ;)
#a(p, p).

So the expression (E) reduces to the sum

ko -1 fko |
2 /-2y (ﬂ [o(vp—koc,».vp—koc,v)—o(w)]')

m=0 Vk=1

R’;’? bom (R (h")-e(b, ®a,)].

But Rio-'-m[RM(A") e(b,®a,)]=R™'(h") e(b, ®a,). Hence the
expression (E) equals

hp— 1
2/ —12k ’(ko)< [T Lo(vp—ka,, vp—koc,-)—o(p,p)]‘>

k=1
ROA") e(b,®a,). 1

The following lemma gives the coefficient of 4™ in RY '(h°)-e(h, ®a,).

(3.7) LemMMmA.  Let w=r,v be such that v<w. Then
(ad b,) by, ® (ad a, ) 'ay,

ko |
= (= 1) ke — 11)? <—“(°‘;’ “’)> b,®a,

in N\(g), where @=r{® =4, ; ky>0 is the same as in Lemma (3.4) and
the notation by ®a,. for any @ ={®,..., ®,} < 4, consisting of real roots,
means by A 0 A by @agp A A ag € N(B)

Proof. Denote I(v)=p. Fix any positive roots {&®,,..®,)} (not
necessarily real and not necessarily distinct) such that 3, @, =<(®>. If
there exist b, eg _,, satisfying b, A - A b,#0in A”(n ) and none of the
®, equals a,, then {®,,., d,} =d. To prove this; consider the element
0#by A - Ab,Ab,e\N""'(n ). Since §,+ - +P,+0,=<{P)+u,=
{(P,.> (see the proof of Lemma (3.4)), by [9, Theorem8.5],
byn - Ab,Ab,=b, (up to a scalar multiple). Hence the assertion,
that {@,,...®,} =P, follows.
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Since o, ¢ @, we get

(ad b, ) 'by @ (ad a, ) 'ag, =zb,®a, (L7)

for some constant - (since, by Lemma (34), (D)=<({P >—a,=
(D> + (kg—1)ay).

Consider the s/(2) spanned by {e;, f;, #,}. Let this s/(2) act on A(g) by
the adjoint representation. We claim that

(ade;) by =0 (Lis)

(ad b)) by, = (ko—1) by, . (1,5)

To prove (1), it suffices (since a;¢ @,) to observe that, for fe @, if
f—o;isaroot then f—o,e®,. (Ifa, fevd, n 4, such that o + f is again
a root, then o+ fevd, n4..) Of course, (I,4) follows from the definition

of ky.
(I,x) and (I5) in conjunction with [28, Theorem 1, p. IV-4] yield

(ad e} '(ad £)* '(bg)=(ko—11)by,. (F20)

Consider the pairing (., >: A”(n )@ A”(n) - C (defined by the Killing
form) b®ar— (b, a). By (I,;), we get

<(ad ha‘)ku'* lbd),* (ad ax,)ko7 la(b, > = Z<b¢9 a¢>'

Using the invariance of (, ), this yields
(—Df ' ad @, ) "ad b, by, s, ) ==
(since by, as>=1). (I,)
Further, {e,, e,} = | ., fi} = (e, f;> =2/a(x,;, ;) and hence a,, (resp. b, )
can be taken to be (a(a;, «;)/2) e; (resp. (o(a;, a;)/2) ;). Now (I,4) and (I,;)

give (— 1) '(ko— 11)(0(a;, ;)/2)* " "=z (since (by, a4 >=1).
Putting together Lemmas (3.6) and (3.7), we get

(3.8.) COROLLARY. =*=(—1)""""ko, where ko, is as defined in
Lemma (3.4).

Proof. Use the relation o(vp—ka;, vp—ka,)—a(p, p)=k(k—kg)
o(a,, a;) (see the proof of Lemma (3.4)).

(3.9) Proof of Theorem (3.1). Denote by d" the integral
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2% [, exp(2(wp —p) h(g)) dg. Write w=r,v such that v <w. By (a sub-
sequent) Corollary (3.13), we have (for some n*")
st s s
et — (—1 ey w' o’ I A
dl} dr, ( ) d”’ _+_ "v' ¢§and n S E m d
lin')=Hw)

Assume, by induction, that d'=(4n)™ T, . 1y 4, 0(p,v)"". Of

course, d" = (4n) a(p, «;)~'. By (I,,) and Corollary (3.8), d'd" = (—1)""
d"z" =d* - ko. So,

' 4n)l1v)+l
g0 p ( [1 6(p,V)‘>'6(p,a,-)'
0 ver~ld_nd,
- (4n)/(lv)+1 -1
“olp, v ') vefﬂa@a(p’v
—ly. 1
(sincek0=2Mand o(p, o;)=50o(a;, 2;)),
o.(ai9 (X,) 2
:(4n)lll'i+l< l—[ O'(p,V)l>
vew ld ~4,

(sincew™'4 _nd,=@0""'"4_nd,)u{v"'a})

Hence the proof of the theorem is complete modulo the following
proposition due to Bernstein, Gelfand, and Gelfand [3, Theorem (3.17)].
(Though their proof is in the finite dimensional situation, the proof goes
through in the infinite dim case without any change.)

Let ¢" denote the cohomology class of G/B (where G is the group
associated to any, not necessarily symmetrizable, Kac-Moody algebra
g(A4,) and B is standard Borel subgroup of G as defined in (1.2)) which is
dual to the closure of the Schubert cell Bv~"' B/B. (Of course, the cell,
being complex, is oriented. See (1.4).)

(3.10) PropOSITION. Recall, from (1.4), that x; (1 <i<l) is any element
of W* satisfying yih;)=9, ;. For any simple reflection r; and any element
ve W,

eet= Yy xv)e

vo'w

(As in [3], the notation v —°w means that ve A with o ,v=w, and
l(w)=Hlv)+ 1, where 6, € W denotes the reflection a,(x) =y — x(v°) v, for all
y €h*. Of course, v’ €h denotes the co-root defined explicitly by v* = uh;, if
uo, = v for any ue W.)
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(3.11) Remark. In the notation of [3], our ¢" is the same as P, - and
that is why we have v* instead of v ~'v* as in [3].
As an immediate consequence of the proposition, we have

(3.12) CorOLLARY. Let r,v=we W be such that l(w)=Kv)+ 1, then the
coefficient of &* in ¢"¢" is 1.

We get the following as a corollary of the above corollary.

(3.13) CorOLLARY. With r,v =w as above (i.c., l(w)=[(v)+ 1), the coef-
Sficient of s¥/d" in (s“/d°)(s"/d") is (—1)"").

Proof. By [23, Theorem4.5] and [24, Theorem 1.6], there is an
algebra isomorphism [[]: H*(g, h)> H*(G/B,C), such that the
cohomology class (s*/d*)e H*(g, h) maps onto {—1}7"~1V2* where
p=1(w). (The sign (—1)”7 "2 appears because of a different orientation
convention, on complex manifolds, in this paper.)

4. THE NIL HECKE RING R AND ITs “DuaL” 4

Throughout this section g =g(4,) denotes an arbitrary (not necessarily
symmetrizable) Kac-Moody Lie algebra, associated to a /x/ generalized
Cartan matrix A, with its Cartan subalgebra h and Weyl group W (1.1).
Let Q= Q(h*) denote the quotient field of the polynomial algebra S=
S(h*), ie., Q is the field of all the rational functions on h.

(4.1)  Ring structure on Q. The group W operates as a group of
automorphisms on the field Q. Let Q. be the smash product of Q with the
group algebra C[ W]. More specifically, Q- is a right Q-module (under
right multiplication) with a (free) basis {4, }, ., and the multiplicative
structure is given by

(5(‘q1~) ’ (6wqu') = 5”"(‘4.7 lqr) q, for U, We Wand qes 4\ € Q (122)

Observe that though Q. is an associative ring (with unity 4,), it is not an
algebra over Q, since 6,0 = 00, is not central in Q..

Let S, < Q be defined in the same way as Q- with S replacing Q. The
ring Q, (and S) admits an involutary anti-automorphism ¢, defined by

(0.9) =0, 1(wg) for weW and geQ. (I,3)

Of course, ¢ is not right Q-linear. Clearly the left action of W on Q, (given
as the left multiplication by §,,, for we W) is (right) Q-linear but the right
action is not.
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Now, for i=1,..., ], consider the elements

X=X, = _(5r,+5u) 5 —0.)EQu (I54)
where r,e W is a simple reflection and «; is the corresponding simple root.
Inspired by [3], we have

(4.2) ProrosiTION. Let weW and let w=r, ---r, be a reduced
expression. Then the element x, -+ x, € O does not depend upon the choice
of reduced expression of w. We define x, as x,---x,. We denote by X, =

(.\’“,71)1.

Proof. For any yeh*, we have

1
XX — X((Sr,+ 5¢) -
04

i

1
—[d,(rix)+90.(x)] =

(0,400 E 40, L

i i

xX;=xdrix)—0,x(h;). (Is)

We assume, by induction on n, that for any v with /(v) <» and any two
reduced expressions v=r; ---r, =r;--r, (p=Iv)), we have x, - x, =

x;, 0 x;, (which we denote by x ) and

yxe=x,0 'g)— Y x,(v) forany yeh* (T5)

u—-"r

(See Proposition (3.10), for the notations u —" v and v".)
Fix w=vor; with v <w. Now

Y xurx(v"')] X; (by I))

w =Y

XXX = |:X[.(l7 IX) -
yx.x;=x.x(riv ') —x,0 'y Z XX 7(v'") (by Is)).
(I57)

Further, by [6, Theorem 1.1],

v —>vand u'r;>u'} — {wu—— wand u#v},
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under the map ' — u'r; and, under this correspondence, v’ +— v'. Hence we
get {byI,,), exchange condition [13, Lemma 3.11(c)] and the fact that
x7=0)

=X ) = Y v, (T25)

In particular, if w=ovr,=20'r; with /(v)=/(v") <I/(w), we have

I = X0 )= e — xex e ') (I9)

By (a subsequent) Proposition (4.3)(c), we can write

XX, = Z 5,‘.1]”./ + (Sn n v : (IJ())
W< vewd, n.d
and
xt"x/'z Z 5»‘*'(2;;-'*'5“- H v - (131)
wi<w vewd .

for some ¢, and g, € Q. Substituting (I,,) and (I,,) in (I,), we get

Z (Sw’(ul/ - IX)(qw' - qw') = Z 5»«'(”‘ B lx)(qn" - QM")'

wo<w W<

In particular, for any w'<w and any yeh* we have
W' 'y —w 'y)g.—q,)=0. But W — Aut(h*) being a faithful represen-
tation, we get ¢,. =4, for all w’ <w. This proves, by (I;,) and (I;,), that

x,x;=x,.x; and hence, by (1), the induction is complete. ||

As a corollary, we get

(4.3) PROPOSITION. (a) x,.-x
X, x,, =0 otherwise.

= X, i lew)=1lv)+Il(w) and

w

(b) y-x,=x, 0=, .. x. 0", for any yeh* and we W.
(c) Write

X, 1=y ¢.0,1  for some (unique) c, . € Q. (I5,)

Then (c,) ¢,,, =0, unless w<wv, and (¢c;) ¢, =11, co-1,4 na, v~ In par-
ticular, ¢, #0.

Proof. (a) Follows from Proposition (4.2) and the exchange condition
[13, Lemma 3.11(c)] together with the fact that x2=0.
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(b) is nothing but (I,4).
(c,) follows from [6, Theorem 1.1]. Let v=r, - r, be a reduced

expression. To prove (c,); observe that by the definition of x, 1, ¢, .=
Co; (rp o, ) (r, - ryo;, )]~ " But then, by [26, Sect. 2], (c,) follows. ||

(4.4) Remark. Observe that (c,) does not depend upon
Proposition (4.2), in fact we use it to prove Proposition (4.2).

The elements {d,.}, .y are a right (as well as left) Q-basis of Q. But
also

(4.5) CoroLLARY. Define the matrix C=(c, )iwew, Where c, . Is
defined in (15,). By Proposition (4.3)(c), C is a “lower triangular’ matrix
with non-zero diagonal entries and hence, in particular, {x,}, . is a right

(as well as left) Q-basis of Q.

Now, clearly, O has the structure of a left Q ,-module, defined explicitly
by

(6.9)qg'=wlqq’) for weW and gq,q9'€Q. (I33)
Our main result centers around the subring R< Q,, defined by
R={xeQ,: xScS}.

Obviously S, = R. Furthermore, one can easily see that x; (and hence x,,,
for any we W) belong to R. By applying the involution ¢, one gets another
subring R’ of Q.. One has the following crucial structure theorem for R.
The proof of (a) below can be simplified in the finite case using the theory
of “harmonics.”

(4.6) THEOREM. (a) R is free as a right (or left) S-module. In fact the
elements {x,}.cw form a right (or left) S-basis of R. In particular, any
X € R can be uniquely written as

x=3Y x,p,.  with some p, €S.

(b) Furthermore, one has RN R'= S .

(4.7) Remark. Note that R is a finitely generated ring over C, since it is
generated by {x;},<,<,and S.
We need a few lemmas to prove the above theorem.

(4.8) LEMMA. Let e #we W be such that w fixes pointwise a hyperplane
I inh. Then w=vr,v ™", for some ve W and for some simple reflection r,. In
particular, IT is the real-root plane Ker(va,).
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Proof. Step1. We first prove that, as an element of Auth, w is semi-
simple. Since w fixes a hyperplane in h, the only other possibility is that
w e Aut h is unipotent and, in fact, (w —1)*=0, ie., w’ 4+ 1 =2w. Multiply-
ing by w ', we get w—1=1—w"". Considering the (dual) representation
of Win A* and evaluating at p, we get —(p—wp)=p—w" 'p. But, by [9,
Proposition 2.5], p—w ~'p (and p —wp) are both sums of /(w) positive
roots. Since, by assumption, w#e, we get a contradiction. So w is semi-
simple.

StepIl. We want to show that I7 is a real-root plane, ie., IT=
Ker(va;), for some ve W and simple root «;.

We need some notations. Let hy be the real points of h. (In the
Definition (1.1), one can take any field & of characteristic zero in place of C
and define g,, h,, etc.) As in [13, Sect. 3.12], define

C=l{hehg: a(h)>0 forall 1 <i</}
C"= {hehy:a(h)>0forall 1 <i<!}.

Set

X={) v C and X'=1) v
re W re W

The Tits cone X is a convex cone by [13, Proposition 3.12]. Let Iz =
ITnhy, IT being a hyperplane, hp\I7; has exactly two connected com-
ponents 71t and /7 . Since w is semi-simple and W leaves an integral lat-
tice in hy stable, the only eigenvalue of w € Aut(hy), different from 1, is —1.
Since X* is W-stable, it is easy to see that 1T n X° and IT;, n X° are both
non-empty. Choose a point A" (resp. h e Il N X° (resp. IT; n X°). The
line joining A* and 4 intersects the plane /1, in a point (say) 4°. Since
1} nX° and I1; n X° are both open in hy (in the Hausdorff topology)
and X is convex, there is an open subset N (containing h°) of T, contained
in X. In particular, X being a cone, [T, itself is contained in X. Further,
since any point of X has no isotropy with respect to the W-action [13,
Proposition 3.12(a)], we get that

My X\X°= ) v(Keray,,).
L
Since [T is a hyperplane, we get that /T=Ker{va,), for some ve W and
some simple root «;, as required.

Step 111 Finally, we want to show that w=uor,o ~'. The element

v 'wo has fixed plane v ' 1, which is the same as Ker a, by Step II. Choose
a point heKera,, , such that o(h)>0 for all j#i By [I3,
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Proposition 3.12(a)], the only non-trivial isotropy element (with respect to
the W-action) at h is r,. This shows that v~ 'wv=r,, proving the lemma.

(4.9) LEMMA. Lef p be an irreducible polynomial € S and let

( Y p“,xu.>-ScpS (R)

w)y<k

where p,. €S (for all w), any p,, is either O or co-prime to p and p,.#0 for
some w of length k. Then p is a real root.

Proof. Rewrite x =3, s PuX =2 1y <k 90, Where g, € Q. In fact,
¢, has in its denominator only products of real roots. By Proposition
(43)c), for Hw)=k, we have ¢q,=p, ¢, 1, where ¢ 1, 1=
H\‘euxi, A v ]'

Define V=1{J,. ... Ker{fv—1) (v—1 acting on h). We first prove that
Z(p)c V, where Z(p) denotes the zero set of p. If not, pick any hye
Z(p)\V. In particular /1, has no W-isotropy. Pick w, of maximal length
such that p, #0. There exists a polynomial p, € S such that p,(w, 'hy) =1
and po{w " 'hy)=0 for all those {finite in number) w  w, satisfying ¢, # 0.
Evaluating x- p, at h,, we get from (R), p, (o) ¢, ., 1(ho)=0. (Since A,
has no W-isotropy, ¢, ‘., 1(hy) makes sense and, of course, 1S non-zero.)
Hence p, (ho)=0, ie. p divides p,,, which is a contradiction to the
assumption. So Z(p)c V.

Since p is irreducible, we get that Z(p) < Ker(v— 1), for some ve W and
moreover Z(p) being a hyper surface in /s, Ker(v— 1) is a hyperplane. The
lemma follows now by Lemma (4.8).

(4.10) LeMMA. Let  {p.} <k Pe polynomials €S  such that
(Y sy ek PuXn) S a,S, for some simple root «;. Then a, divides all the p,’s.

Proof. Denote by x=(1/x,} ¥ p,.x,€Q,. Write xy=x"*+x , where
x* (resp.x )=3(x+9,x) (resp. 3(x—9,x)). Since x* again satisfies
x*-85c< 8 and, by Proposition (4.3), x* is of the form (l/x;) 3 p.x,. for
some p.e S (a similar statement holds good for x ), we can assume that
either d, x=x or §, x= —x. Write

(x,.'\‘: Z pwxwz Z qu'(swﬂ (134)

Hw) <k wysk

where, as in the proof of the previous lemma, we have

=Py Cw Ly ! if 1(“):/‘— (135)
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Fix w, of length k such that p,, #0 and rewrite (I,,)
(X,-x = xO + q\n'oéli'() + qr,wl)ér,wo’

where

Xo= Z qu'(sw‘ (136)

w lrovgowg)

Also fix a point h,e Ker &, n C (C is defined in the proof of Lemma (4.8))
such that h, does not lie on any other real-root plane and choose a
polynomial p, e S such that py(wy 'ho)=1 and p, at w~'h, has a “deep”
zero for any (finite in number) w such that g, #0 and w # w,, r,w,. (Since
W-isotropy at h, is precisely {1, r,}, this is possible.)

Casel. 9, x=x. In this case, by (I5,), we have —(r,q,,)=g¢,,,. In par-
ticular, ryv, <w,. Choose a reduced expression wo=r, r, = r, ;| (since
rowe <wy, this is possible). By (I5), (I3), and Proposition (4.3)(c), we
have

" N r i
p 0 O“v“ + p

wo o
O(,-~ﬁu0’r"‘0’Whereﬁ:dii'”(ril'”rfwzaik |)‘

(137)

Evaluating («; x)- p, at hy (since o(hy) =0, po(w, 'hy)=1, and p, has
“deep” zero at points other than w, 'hy), we get, by (Iy,), p,(hy)=0.
Hence «; divides p,,, .

Casell. 9, x= —x: In this case, we have r,q, =g¢,,,. In particular,
again we have r,w, < w,. Analogous to (I5,), we get

p wg 5

ri pwu N
wy 0
IX,(",-[;) 0 ’

o ,B riwpe
i

ai.\' = X() +

where f§ is the same as in (I;,).

Considering o, x(w, '@, p,) and evaluating at /k,, we get again
Pu(hy) =0, 1e., a; divides p,, in this case as well. This proves the lem-
ma. |

(4.11) Proof of Theorem (4.6)(a). Let xe R. By Corollary (4.5), we can
write x=(1/p) X, <k P X, for some p, {p. .}, €S. We want to prove that
p divides p,., for every w. We can assume, of course, that p is irreducible.
By Lemma (4.9), if p does not divide some p,. then p has to be a real root
(say) va;, for some ve W and simple root o, Since 3,-1R=R and
0.2, Sx,)=2, Sx, (as is easy to see), we can assume that p=a,. But
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then Lemma (4.10) proves that xe >, Sx,. The rest is clear from Corollary
(4.5) together with Proposition (4.3).

(b) Fix xe Rn R". Since x€ R, we can write, by (a), x=3 p, x,, for
some p, €S. Express x=3 ¢,6,, where ¢,€ Q. Upon multiplying by a
suitable polynomial, we can assume, without loss of generality, that all the
g,’s have only one fixed real root (say) ve; in their denominators. Further
since 6,-1R=R, é,.1-R'=R’, and d,-.- S, = §,,, we can further assume
that all the ¢,’s have only «; in their denominators, ie.,

1
x:;z p.0.  forsome p, €S. (T3s)

We want to prove that all the p,’s are divisible by «;. Analogous to the
proof of Lemma (4.10), considering x=3(x+4, x)+4(x —4, x), we can
assume that either 6, y=x or 6, x= —x.

Casel. 4, x=x. In this case, by (I), we have

ﬁ(': ——ri(p_r,)' (139)
By (I3), we get (taking )
xi=leg, Lbns Loy et <&> 5o (Leo)
X &; W e &;

Fix hyeKer a;, such that s, does not lie on any other real-root plane.
Choose a function pye S such that py(hg)=1 and po(why) =0 if w#e,r,
and p,#0. (This is possible because, by the choice, isotropy at A, is
precisely {e,r;}.) Considering a/(x’- p,) and evaluating at h, we get (by
(I0) and (1)) p.(hy) =0, ie., a, divides p,.. To prove that «;, divides p,. for
general w, we can consider x'0, and argue as before.

Casell. 9, x= —x. In this case, by (I.3), we have
p_ezrfﬁr“ ([41)

Fix s, and p, as in the previous case. Considering a,{x - p,) and evaluating
at hy we get (by (I55) and (I4,)) p.(hy)=0. So again «; divides p,. This
completes the proof of (b) part as well. |

(4.12) DEFINITION.  The elements {x,.} have much in common with the
standard basis of a Hecke ring. However, x] =x?=0. This and a further
nilpotence condition, in its action on A (Sect. 4.19), persuade us to refer to
R as a nil Hecke ring. A departure from usual conditions is that S is not
central in R.
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We describe the left action of the Weyl group W in terms of ¥ basis (¥,
is defined in Proposition (4.2)).

(4.13) PROPOSITION.  Fix a simple reflection r,e W. Then

0, X, = —X, if rw<wand
=%, (v le,)—x.+ Y xoav) otherwise.
[ AT
Proof.
_ 1 _
5r,'\\' = (5r, - 5() - (al A ) + X

= fr, ['\Ew(”Y lai) - Z "El"ai(v/r):| + j‘n by (IZ(J )

-

Casel. ryw<w. In this case only ¢" with the property that v’ —» w and
v'—r;v" 1s r,w. Hence, by Proposition (4.3), the above sum reduces to
- 2’%“' + 'fll' = - '%\f'

CaseIl. r,w>w. In this case,

S = v 1 vt - .
ér,'\u'zxr,u'(n :xi) + Xy — Z "C!,l"ai( V” ) (142)
v’ with
v’ =" wand

[

Further, as in the proof of Proposition (4.2), it is easy to see that {v"
v = w and o' >rv'} >~ {v: v rw and v#w}, under the map
v'+r;0’. Moreover, under this map, v’ corresponds with r,v". (It is clear

that r(v') is a positive root.) Hence, by (1,,), we get the required result. |

(4.14) Co-product structure on Q... Let Qy ®, Qu be the tensor
product, considering both the copies of Q. as right Q-modules. Define the

diagonal map 4: 0, - Q0 ®, Oy, by

A(0,4)=06,9®9,=06,R3d,.q for weWandgeQ. (L43)
A is clearly right Q-linear. Moreover, it is easy to see that the co-product 4
is associative and commutative with a co-unit & Q, — Q, defined by
(9,.9)=gq.

We introduce an associative product structure, denoted by (&), in
Ow ®p Qu, so that 4 is a ring homomorphism. Define

(61'(11' ® 5wqw)®(5v'qr’ ® 6w'qu") = 51"(»"')’]1'»|"qL"(H', B 1‘11-) ® 5}”\"(”" B lqu') qn"
“44)

607 62 3-3
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In the next proposition, we describe the diagonal map 4 in terms of
{x,} basis.

(4.15) PROPOSITION.  For any we W, we have

A(-{-w) = Z -’Eu ®-%v(p:;:v)

U< w

for some homogeneous polynomials p¥ €S of degree l(u)+I(v)—Hw). In

u,

particular p =0 unless l(u) + I(v) > I(w).

Proof. We prove the proposition by induction on /(w). For w=r,, we
have

A5,) =95, (i)@a&,— 5, (i)m
o, o,

1 1
= (5r,_ 6()5@ (51',‘ 5(}) + 5L® (5r,_ 6();

1
+(3,—9,)—®9,
A,

A('{~r,) = '{-r, ® '{‘r,(ai) + 5(' ® ‘{‘rl + '{-r, ® 6(" (145)

Now take arbitrary w and write w = w’r;, for some simple reflection r; so
that w’' <w. Since 4 is multiplicative, we have 4(x,.) = 4(xX,.JO4{X, },

. 3 e A
A(x-...){ » .%,,®f,~p:;z,.r]@[o,,®o,,<;>—5(,®oe<;)} (L)

(by induction hypothesis).
It 1s easily seen, from (I,,), that

(.’C ® .V }Q(éu'u ® 510'(]q) =X 5w0 ® }, : 6ll'0q
forany x, yeQy.,wye W,and ge Q.

Hence from (I ), we get

- e o s 1 - (1
A(xn‘) = 2 xu'ar,-® xr'or‘( Fi P:.) {1__ Z Xy ®x1p21 (;)

W' <’ ! AR I i

o1 . | ,
= Z iu’(ér,—ov);@i'v'(br,_é('); (rip::."p’)ai+ Z '%u'

w.e <! i w o' €'

_ 1 , o
®'rl"(6r,—o('); (rlp::p)+ Z 'gu'(ér,ib(')a_

i woe'sw'

oximar L n o

ue'<w
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A({“) = Z ('{?u'r,®-\7r'r,(rip:",l") (X,

w ot < w’ with

w' < u'r,and
i<,
+Y @)t ) 5, @%0npr)
w'.r' < w' with u'.’ € w with
<y u<u'r
— ) X.®%.E,(pr) {by Proposition (4.3)) (147)
woet<w

where E_ is the classical Bernstein-Gel'fand-Gel'fand operator {3, Sect. 1]
acting on § and defined by E,(p)=(p—r,p)/x,. for any pe S.

The proposition follows now by observing that £, : § — § decreases the
degree by 1 and further using [6, Theorem 1.1].

(4.16) Remark. We will determine {p) } more specifically later
in (431) and (4.32). The fact that Proposition (4.13) (resp.
Proposition (4.15)) gives the Weyl group action (resp. the cup product) on
the cohomology ring H*(G/B) would be clear in the next section. |

Now we dualize the concepts (and results) introduced (proved) so far in
this section. These dual objects will play an important role in determining
various structures on the cohomology of infinite dimensional flag varieties.

(4.17) The algebra Q. Regarding Q, as a right Q-module, let
Q=Homy(Q -, Q). Since any ¥ € Q is determined by its restriction to the
(right) Q-basis {J,.}, .4 and conversely, we can (and often will) regard Q2
as the Q-module of all the functions: W — Q with pointwise addition and
scalar multiplication, ie.,

(q)w=q-Y(w) for qeQ,yecQ andweW. (Tag)

Furthermore, € inherits a (commutative} Q-algebra structure with the
product as pointwise multiplication of functions on W. In fact, this mul-
tiplication is precisely the one obtained by dualizing the Q-linear co-mul-
tiplication 4 in Q. (see (143)).

More subtly, € also has the structure of a left Q ,-module defined by

(x ¢) y=y(x"yp) for x,veQyandyeQ. (T49)

Moreover the action is Q-linear. In particular, we have the Weyl group
action as well as the Hecke-type operators A, (we W) on Q, defined by

”'lp:(ju“l// (ISO)
Ap=xy for we Wand Q. (Ts))
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(Recall that x, is defined in Proposition (4.2)). Taking w to be one of the
simple reflections r;, from (I5,), we get

(Ar,d/)v=w—) for yeQandveW. (Is,)

We would generally abbreviate A, by A,;.

(4.18) Remark. Observe that Q2 is a Q-module (under (I,4)) as well as a
left O, -module (under (I,,}). Further, Q injects into Q- by ¢ —d.q (for
g € Q); in particular, Q inherits a Q-module structure (from the restriction
of O, -module structure). But these two Q-structures are different, in
general. Whenever, we refer to @ as a Q-module, we would mean the first
Q-action. |

We define the following important subring 4 of Q.

(4.19) DEFINITION. A= {y € Q: Y(R'}= S and Y(%,)=0 for all but a
finite number of we W}. (R is defined just before Theorem (4.6) and x,. is
defined in Proposition (4.2).)

One has the following

(4.20) PrROPOSITION. (a) A is a S-subalgebra of Q.

(b) A is a free S-module. In fact {*}, is an S-basis of A, where
&V e Q is defined (uniquely) by £"(x,)=0,.,, for w,ve W.
(c) A is a stable under the left action of R< Q.

Proof. To prove (a), wuse Proposition (4.15). Since, by
Theorem (4.6)(a), {X,!, is a right S-basis of R’, we get (b). Again using

wiw

Theorem (4.6)(a) and Proposition(4.3){b), {c) follows. ||

The matrix D (defined below) is very basic to our paper.

(4.21) The matrix D. Define the matrix D= (d, ), cw by 4., =
&“(w). The relevance of D to the cup product and Weyl group action on the
cohomology of infinite dimensional flag varieties will be clear in the next
section.

(4.22) Remark. In the finite case, the matrix D can be extracted from
[3, Theorem 5.97] (see Sect. 6 of this paper).

(4.23) DermNiTION.  Let # =4, be the space of all the functions B:
Wx W — Q, with the property that there exists a dz;>0 such that
B(v, w)=0 whenever l(v)—I(w)>dgz. # is an associative algebra over Q
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under pointwise addition and convolution as multiplication (ie.,
B, B,y(v,w)=%, B(v, u) By(u, w), for B,, B, #).

We can think of # as an appropriate subspace of all the W x W matrices
over . Under this identification, the multiplication in # is nothing but the
matrix multiplication.

We collect various properties of {&"} in

(4.24) PROPOSITION. For any v, we W, we have

(a) &' (w)=d,,.=0, unless v<w and £"(w)=d, =11

- vew Lt ma. Ve
In particular, d,, ., ;é‘O and the matrix D (defined in (4.21) belongs Jto %A’h In
fact, it is “upper triangular” with non-zero diagonal entries and hence inver-
tible.

(b) A, E"=E&"if rw<w, =0 otherwise.

(c) Ew)=7x,—w 'y (x, is defined in (1.4)).

(d) &%(w) is a homogeneous polynomial of degree I(v).

(e) C'=D ', where the matrix C is defined in Corollary (4.5), C’
denotes the transposed matrix, and D" denotes the inverse of the element
De#,.

(f) &¢"=3, . <wPu.l", where py is defined in Proposition (4.15).
We recall that p¥ . is a homogeneous polynomial of degree l(u)+ I(v) —I(w).

(g) r& =& if rw>w, =(—w 'o)&™+E— D e 2V T
otherwise.

(4.25) Remark. We will give a characterization of the matrix D in
Proposition (5.5).

Proof. (a) Assume that v € w and assume further, by induction, that
for any u <w, we have &"(u) =0. By Proposition (4.3)(c), we can write

3, l:[ [1 v]x", LY g0, forsome g¢q,eQ. (ls)

1. . u<w

Taking ¢, we get
(5“, :X:‘, { |: H V} —+ Z 5uqu' (154)
vew Lt Ay < W

This proves {a).
(b) Follows by dualizing Proposition {4.3)(a).
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(c) Ifw=e, (c) follows from (a). Otherwise write w = r,v, for some r,
so that v <w and assume, by induction, that "(v)=y,— v~ 'y,. Now

o) Eirv) — &™)
(A/C’)l’='/l—_]a— by (Is)
’ i

1
=[&"(w) = (},— v ]Xi)]Fa— (by induction).

i
But 4,{"=4, ; by (b). Hence we have
ér'(W):éi./(v 71‘1/)+X1_UW IX:':X/_ W IX{-

This proves (c).
(d) If w=e, there is nothing to prove. So, assume that w#e and
write w=r;w’, for some r; so that w’ <w. Now, by (b) and (Is,), we have

&) =& w)

=0 if ro>v,
(w’ !

=7 (w") if re<o

Lrjv

But, by induction, we can assume that, in the case rv<uv, £M(w') is a
homogeneous polynomial of degree [(r;v), and also ¢&°(w') is a
homogeneous polynomial of degree /(v). This proves (d).

(e) Since D is invertible, it suffices to show that D C'=1d. Fix
v, we W. By definition, £"(x,)=4, .. But by (I;), x, 1=>¢,,9, 1, Le,
X.=>»9d,c.,. Hence £¥(X,)=4,.,.=Y,4d,.c,.. This proves (e).

(f) Follows easily by dualizing Proposition (4.15).
(g) Observe that, by Proposition (4.13), we have

ren =Y 60, 5,0 "

= ¥ -&w)e

rie< n

+ 2 [é"‘(-‘?r,u)(u10(,»)—5"'(!?”)+ ) E"'(-fl«)a,v(v“)] ¢t

riu > u =Y ru

The rest of the proof is along the lines of the proof of
Proposition (4.13).

The following lemma is trivial to verify.
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(4.26) LEMMA. Let Y|, W€, then
A )= (A ) Wa+ (rf (A ,)

More generally, by induction on /i), we get

(4.27) LEMMA. Let w=vr, - r, be a reduced expression. Then for any
Wy, € Q, we have

Aw('ffl'l//z): Z Ail""'“/‘if,]""' ‘Ai, """JA,',,((//I)

'
o< psn
I<ji< o <jpgn

’ (Ai/l o ”Af,ﬁ‘pz)

where the notation A, means that the operator A, is replaced by the Weyl
group actionr;.

(4.28) COROLLARY. For any we W and \ € Q, we have

A& )= Y 1 NAY) + (wE)- A

el Sy

Proof. By Proposition (4.24)(b), (g), and Lemma (4.27), we get

ALYy =) (A0 + X (Ao, 80
I<j<sn
'(A‘"""fii,”""‘A,’,,l//)

1l

where w=r, ---r, is a reduced expression. Thus

A“(!r:.l//):(u,‘:h).(A“.l//)*_ Z [AI’,(ri/Jrl-“rincrl)]'(A"'/w)'
those 1 € /< n such that
Wi=ry r, s
reducéd
(Iss)

By Proposition (4.24)(c), it can be easily seen that

A (r; 0 ""'i,,str'):)(i("p) where W,'ﬁl ol (Is6)
] fh

Substituting (Is,) in (Iss) and using [3, Proposition 2.8], we get the
corollary. ||

As an immediate consequence of Proposition (4.24)(a) and (b), we get
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(4.29) LemMa. Let Y eQ. Express y=3,.q"E", for some (unigue)
g € Q (infinitely many of ¢*’s could be non-zero). Then g" = (A, })e.

The following proposition follows easily from Corollary (4.28) and
Lemma (4.29).

(4.30) PrROPOSITION. For any ve W and simple reflection r,, we have

£ =3 n(v) &+ M) &

v -

More generally, we have

(4.31) ProprosITION. (generalized cup product formula). For any
v, we W, we have (by Proposition (424))(f) £°&" =3 <., i E", where p

is a homogeneous polynomial of degree I(v)+I(w)—Il(u). Write u™'=

ri, " ¥, as a reduced expression, then
w E El v
Pla= Y AgereAye e d, s a (€0
Those j| < -+ < j, such
that O =y

Im
where m=l(w).

Proof. Follows easily by combining Lemmas (4.27) and (4.29) together
with Proposition (4.24)(a) and (b). |

Recall the definition of the matrix D= (d, ), ... » from (4.21).
(4.32) PROPOSITION. (a) Fix we W. Define two matrices P, and

D,c®y by D (u,v)=0,.d,, and P (u,v)=p: ., for u,ve W. Of course,
by definition, D, is a diagonal matrix. Then explicitly,

P,=D-D, D\

{b) For u,ve W write

u-g'= )y grwl" (Is7)

o) — llu) < [(w)<(v)

where g*. is a homogeneous polynomial of degree I(v)—I(w). (This is
possible by Proposition (4.24)(g).) For a fixed we W, define G, and S,.€ By,
by G (u,v)= gy, and S, (u,v)=90,, . Then

D-S,.-D~'=G,.
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Proof. Since p!, ,=0 unless u<uv, we get P, € B,

(P..D)( ZP,‘ u, w') D(w', v)

W'

_zpuu wr

=d, . d,, by Proposition (4.24)(f)
=(D D, )(u,v) proving (a).

y (Is;) we have d, ..., =3 . gt . d,. ., ie, (DS Hu v)= (G, D)uv). |

To conclude the section, we make the following

(4.33) DEFINITION. Recall the definition of the S-algebra A from (4.19).
For any subset X< {I... and let W,c W be the subgroup of W as
defined in (1.1). We deﬁne A " 10 be the S-subalgebra of A, consisting of W
invariant elements in A. (Of course the W-module structure, in particular a
W -module structure, on A is the one given by (Is,).)

The following lemma describes the structure of 4%,

(4.34) LeMmma. AY =Y _ wi SE" (W is defined in (1.1). In particular,
AY is a free module over S.

Proof. Recall that W', is characterized as the set of all those we W such
that w is (the unique) element of minimal length in its coset Wyw. In par-
ticular, for any i€ X, r,w>w for we W. Hence, by Proposition (4.24)(g),
Eve At for any we W'

Conversely, take ¢e A" and write (Proposition (4.20)) =3, p"&™,
where all but finitely many p*’s are zero. Fix ie X. Since r,£ =&, we have
A,£=0. This in particular (by Proposition (4.24)(g)), gives that p* =0,
unless r;w > w. So any w, with p™ #0, belongs to Wi. ||

(4.35) Remarks. (a) In the next section, we will see that C, ® ¢ A" is
isomorphic with the cohomology algebra H*(G/P,, C), where G is the
group associated to the Kac-Moody Lie algebra g and P, is a parabolic
(corresponding to the subset X) inG. Further, when X=(J, the
isomorphism is W-equivariant.

(b} Many concepts and results in this chapter can be extended (with
suitable and easy modifications) to an arbitrary finitely generated Coxeter
group W with a specified set of Coxeter generators and also equipped with
a representation satisfying root-system condition, as given in [7, Sect. 2].
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5. MARRIAGE OF THE SECOND AND THE FOURTH CHAPTER

Throughout this chapter, g=g(4,) would denote an arbitrary sym-
metrizable Kac-Moody Lie algebra with Cartan sub-algebra h and Weyl
group W.

(5.1) Recall the definition of d,¢ harmonic forms

Lo b en-< Clg, h) from Section 3 (case X' = ). (s is the unique d, & har-

monic form such that [, 1z 54 =9, for all ve W with I(v) = I(w).) Also
recall the definition of the map #: Ker S - C{ W}, from Theorem (2.7).

Consider the function D: W x W — C, defined by D(v, w)= 7(s)(w). We
want to relate the function D with the function D introduced in (4.21).

(5.2) PROPOSITION.  For any v, we W, D satisfies the following:

(@) D(v,w)=0, if (w)<I(v) and v+ w.

(b) Diw,w)=11,c.-14 ~a, vh(p)), where h(p) is the unique element
of h satisfving y(h(p)y=o0(y, p), for all y eh*

(c) For any simple reflection r,,
Dir,w)=(x,—w "xyhlp)  (y, is defined in (1.4))

(d)  Cup-product formula

DD'="Y yv') D"+ D(r,, v) D* as elements of C{ W}

(SRS

where D'e C{W} is defined by D'(w)=D(v,w), for any v,we W and
D"-D": W — C denotes the function, obtained by the pointwise multiplication
of D" and D*.

Proof. (a) and (b) follows easily from the definition of D, by observing

that 3°,_, R/(h")elm L (see (3.5)).
(c) We show that

v —

sh=———d,(3,) I)
0 2n\/_—]‘g(x (Isg

where 7, €g* is the element satisfying 7,, =y, and x;,, =0, for any root «.
(d, denotes the differential (of degree +1) of the co-chain complex
C(g. C).)

We clearly have i(h)(dy(7,)) and ad(h)(d,(%;)) equal to 0, for all heh.
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Hence d,(7; ye C*(g, h). Further dd oL )e C'(g, h) and C'(g, h) can be easily
seen to be 0. So dy(7,)is d, ¢ harmomc Now

d(i e f)= —ydh;)= =0, forall 1< i<l (Tso)

Moreover, by Theorem (3.1) and the expression of s" as given in (I),

we have
o(a;, oz)./

e(h, ®a, e, ) 1€,

siless f;) =

TL . s e 2
e (1=, sinee P U= (I)

o(a;, «;)

Combining (Is9) and (1), (Iss) follows. Further, it is easy to see that

dg‘.f,'): Z —a(y, Plelbey®ay) (Ley)
e d,
(4,.,by. and a, are defined in (3.5).
Let @, =4 nwd_ ={f..0,} (p=Iw)). Recall the definition of g

from Lemma (2.4),

1 ~
! <ﬁ dy(ZINetby, A o A by))
—1
:—( ! < Z a(X,,(D)e(b¢®a¢))(€(b/;, A Ab/fﬁ))
Ped,

by (I4).
= Z~ U(Xn(p)(’(brp)'(i(am)e(bm A /\b/i,,))

(by the definition of #)

o(xi prethy, A - A b/fp)

1

Il
I

!

=0y, p—wplelby A - Aby) since Y. f,=p —wp.

Hence 7(s)(w)= (x;—w 'x;) h(p), by the definition of 7 as in (2.7). This
proves (c).
(d) Since D"D'e ¢ ney 1 (by Lemma (2.11) and Corollary (2.14)),
we have

[’)r,[’)z" — z :an'_l__ Z :u'bw (162)

fw)y=He)+ 1 Hw)y< i)
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for some constants z*. Let p, be the minimum integer, such that z*°# 0, for
some w, of length p,. Then p,>/(v). For otherwise, by part (a) of this
proposition, we would get, by evaluating (I,) at w,, 2"°D"°(w,) =0, which
is a contradiction by part (b). Exactly the same argument shows that z* =0
for all we W with l(w)=1I(v) and w s v. To determine =", evaluate (I,,) at v
to get D"(v)=z". Finally, by Theorem (2.12), Gr C{ W) ~ H*(g, h) as an
algebra. In view of Proposition (3.10) and [23, Theorem 4.5] along with
[24, Theorem 1.6], the (d) part follows.

(5.3) LEMMA. Let v#weW. Then (vy,—wy;) hip)#0, for some
1<igl

Proof. Define hf = {yeh*: x(h,)=0, for all 1<i</}. Clearly hn

!_, Cyx,=(0). Hence, by dimension count, h +¥/_, Cy,=h* Assume
that the lemma is false, ie., y, (v 'h(p)—w 'h(p))=0, for all i. Further
y(v " "h(p)—w 'h(p))=0, for any yeh (since v~ 'hA(p)—w'h(p) lies in
the span of {h,},.,.,). Hence v 'h(p)=w 'h(p), which gives v 'p=
w ™ 'p. This is possible only if v=w, by [9, Corollary 2.6]. |

(5.4) DerINITION.  Recall the definition of the matrix D from (4.21),
which can also be viewed as a function: W x W — S. Fix any Aeh. There is
an evaluation map ev,: S— C, defined by ev,(p)= p(h). We define the
function D,,): Wx W —C by

D/,(U, W) =th(D(U, MY))‘

We prove the following characterization of Dy,

(5.5) PROPOSITION. Let E: Wx W — C be any function satisfying

(1Y E(v,w)=0if (w)<l(v) and w#v.

(2) E(w,w)=D,,(w,w) for all we W

(3) E(r.,,w)=D,,\r;, w) for all simple reflections r; and all we W,
and

(4) the cup-product formula holds for E, i.e.,

E'E'= Y 50 E*+E(r,v)E°  forall r,andve W.

ot

(The notation E' is similar to the one in Proposition (52)(d).) Then
E=D,,,

Proof. We prove the proposition by induction on (v, w)=l(w)—I(v).
For (v, w) with I(v, w)<0, by (1) and (2) and Proposition (4.24)(a), we
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have E(v, w)= D, (v, w). So assume that E(v, w)= D, (v, w), for v, w
with /(v, w)<n and let (v,, wy) be such that /(v,, wy)=n+ 1. We have, by
(4), [E"(wo)—E™(v5)] E™(wo)=2%,, ., x{(v") E"(wy). By induction,
E"(wo) = Dy,y(w, wy) (since l(w, wy)=n) and, by (3), E"(wy)— E"(vy) =
Dyp)(r, wo) — Dy,\(r:, v0). By Lemma (5.3) and Proposition (4.24)(c), there
is a 1<i<l such that D, (r,we)— D, (r.v5)#0. So, by
Proposition (4.30), E(vg, wo) = Dy, \(vg, wo). |

Recall the definition of D: Wx W — C from (5.1). The following result
provides a bridge between Sections?2 and 4. Combining Propositions
(4.24), (5.2), and (5.5), we get

(5.6) COROLLARY. D =D, as functions: Wx W — C.

(5.7) Remark. There is nothing very special about #4(p) in
Proposition (5.5). Any ke h, such that Lemma (5.3) holds for h(p) replaced
by A will do.

We recall the following.

(5.8) DEFINITION. Let K be the standard real form of a Kac-Moody
group G and let 7 denote the “maximal torus” of K (see (1.2)). There is an
action of the Weyl group W N (T)/T (N (T) denotes the normalizer of
Tin K) on K/T defined as

n-(kmod T)=(kn ')mod T, for ne N (T)and ke K.

In particular, W acts on the cohomology H*(K/T, Z) as well as on the
homology H (K/T, Z). Also recall, from (3.9), that {¢"}, ., denotes the Z-
basis of H*(K/T, Z) dual to the closures of the Schubert cells. The follow-
ing lemma, in the finite case, is due to [3, Theorem 3.14(iii)]. An easy
proof of the lemma (in the general case) can be given by using
Proposition (3.10).

(5.9) LEMMA.
ret=¢" if rie>v,

=¢"— ) av)e" if rv<o.

ru =t

(5.10) Remarks. (a) This lemma does not require the symmetrizability
assumption on G.

(b} The formula for ¢, P, given in [3, Theorem 3.14(iii)], in the
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case when /(wo,)=I/(w)— 1, is incorrect. The correct formula (in their
notation) is

o, P,=P.+ Y wa(H)P,.

wo, —»¥ '

(5.11) Recall the definition of 4 from (4.19). Let C,=S/S™ be the
1-dimensional (over C) S-module (S = S(h*)), where S* is the augmen-
tation ideal (evaluation at Oeh) in S. By Proposition (4.20), C, ® s 4 is an
algebra and the action of R on A descends to give an action of R on
Cy ® ¢ A. Also, from Proposition (4.20)(b), the elements

6"'=1RE"eCy®s 1 (I¢s)

provide a C-basis. Moreover by Proposition (4.24)(f), the algebra A is
filtered by {A4,},., , where 4,=%,,,_,S". Again using Proposition
(4.24)(f), it is easy to see that this filtered algebra structure gives rise to an
(obvious) graded (commutative) algebra structure on Cy @ ¢ 4.

Further, besides having a ring structure and being a module for W
(described in (5.8)), H*(K/T) also admits a ring of operators .o/ (with C-
basis {A4,.}.cw), where 4, (1<i</) corresponds topologically to the
integration on fiber for the fibration G/B— G/P, (P; is the minimal
parabolic containing r;). The ring of operators o on H*(K/T) was
introduced by Bernstein, Gel'fand, and Gel'fand [3] in the finite case. The
definition in the general case is carried out by Kac and Peterson.

We come to one of the main theorems of this chapter.

(5.12) THEOREM. Let K be the standard real form of the group G
associated to a symmetrizable Kac—Moody Lie algebra g and let T denote the
“maximal torus” of K (see (1.2)). Then the map

0: H¥(K/T,C) > C, ® s A

defined by 0(g")=ga", for any we W is a graded algebra isomorphism.
Moreover, the action of we W and A, on H*(K/T) corresponds (under 0)
respectively to that of d,.,x,€R on Cy ®¢ A (see (I,9))

Proof. We give a “geometrical” proof of this theorem. It also admits a
more “algebraic” proof (see Remark (5.17)(a)).

Consider the C-linear map f[: C,®qA4—> GrC{W}, defined by
f(e*)=D" mod ¢ ,.,, €Gr'"'C{W}, where D", ¢, and Gr C{W| are
defined respectively in Proposition (5.2), (2.8), and Lemma (2.11). By
Corollary (2.14), f is a C-vector space isomorphism. Further, we recall
from Proposition (4.24)(f) that ¢“'=Y  _. p: & where py. is a
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homogeneous polynomial of degree /(u)+ /(v) — l(w). In particular, ¢¥c" =
Y rcwand i+ im -y Pued'- Now the fact, that f is an algebra
homomorphism, follows from Corollary (5.6). By [24, Theorem 1.6], there
is a natural graded algebra isomorphism [[]: H*( g,h)—»H*(K/T C)
given by an “integration” map. We claim that f-0-[[J=Gr(7)-y,{ as
maps: H*(g,h) - Gr C{W} (see Theorem (2.12)). The claim is easy to
establish if we keep track of the definitions of various maps (f, 6, Gr(n),
and Y ,¢) involved and observe further (see the proof of [24,
Theorem 1.6]) that [[](sy)=¢", for all we W, where s¥ is as defined in
(5.1). Now since Gr(g |//d ¢ Is a graded algebra isomorphism, by
Theorem (2.12), we get that 6 is a graded algebra isomorphism as well.

The assertion, that § commutes with Weyl group action, follows by com-
bining Proposition (4.24)(g) with Lemma (5.9). Finally the claim, that
the action of 4, on H*(K/T) corresponds (under #) to that of x,_eR,
follows from Propositions (4.3)(a), (4.24)(b), and the analog of [3,
Theorem 3.14(1)] proved by Kac and Peterson.

(5.13) COROLLARIES. (a) We can use either of Propositions (4.31) or
(4.32)(a) to determine the cup product e“¢" (for arbitrary u and ve W) in
terms of the Schubert basis [} of H*(K/T, Z). Similarly, we can also write
an expression for u- e (in terrm of the Schubert basis) as given in (4.32)(b).
Observe that the Proposition (4.32)(a)-(b) gives cup product as well as the
Weyl group action purely in terms of the matrix D.

(b) A result of Chevalley (that, in the finite case, H¥(K/T, C) is W-
isomorphic with the left regular representation of W) can be trivially deduced
from the above theorem.

(¢} Let X< {l,.,1} he arbitrary. There is a standard parabolic sub-
group P (as defined in (1.2) of the group G and let K, = K P . Also recall
the definition of A*, from (4.33).

There is a (unique) graded algebra isomorphism 0% H*(K/K,, C)—

Co ® A", making the following diagram commutative:
o Ws g . 4 g

*K/Ky, C)—" Co®g A"

lp: lm.@i"

)

*KIT,C) —*— C,® A

where p¥ is induced from the projection p: K/T - K/K, and i¥: AXg A is
the canonical inclusion.

Proof. 1t is well known (and easy to prove) that the map p} is injective
and the image of p} is precisely the C-span of {&"}, .. Further, by
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Lemma (4.34), the map Id. ® i* is injective with image precisely equal to
the span of {¢"}, . This proves the corollary. ||

The following is actually a corollary of the (c) part above. It (the follow-
ing corollary) has earlier been obtained by Kac and Peterson.

(d) With the notations as in (c), pE(H*(K/K))= H*(K/T)"*, where

Wy is as defined in (1.1) and H*(K/T)"* denotes the W \-invariants in
H*(K/T). In particular H*(K/T)* = HY(K/T).

Proof. Since the map 0 (of Theorem (5.12)) commutes with W-actions,
it suffices to show that, for e A4, if r{(1®¢&)=1®¢, for all ie X then there
exists a £'e A* such that 1@ ¢=1Q®¢&". Write =3 p*&™, for some p* e S.
Fix ie X. By Proposition (4.24)(g),

ré= Y pre+ Y p[ ) a,-(v“w—(w‘ai)z"“]. (Tea)

W<riw rw<w row =V p

Since r{1 ®¢)=1®r,E=1®¢E (by assumption), we get by (I,),

I® Y pv Y a(v)E=0. (Igs)

row < rw —=Vp

We can rewrite (I} as

1® 2 2p"¢"+1@ 2 p" 2 alv)¢=0 (Les)

. . | . . v s
FiWo<< W < [ZL

For a w with r,w<w and any ve W such that r,w—v and v#w, we
have r,v>v. In particular, from (I,), we get that p"e S*, if there exists
i€ X such that rw<w, ie, 1I®E=1Q3, . W J A4 |

We further generalize Corollary (5.13)(c) to Schubert varieties in G/P .
We need some preliminaries.

(5.14) Let @ = @ , be a subset of W with the following proper-
ties:
(P,) @ is left W,-stable.
(P,) Whenever we @ and w’ <w then w'e @.

To any such @, we can associate a (left) B-stable variety Ve cG/P,,
defined by

V®= U BW’ilpx/Px- (167)
we @
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By property (P,) of @, Vg is closed in G/P (see [29]). Conversely,
any (left) B-stable closed subset of G/Py is Vg, for some appropriate
choice of @ =@ ,.

Let Qg denote the Q-algebra of all the maps: @ — Q. There is a restric-
tion map ra: Q —>Q®. Define Aé :r®(A'Y). From Proposition (4.24)(a)
and Lemma (4.34), we easily get

(5.15) LeEMMA. A’é is a free S-module with a basis

{ér@ }n*e H’km ® .

We have the following generalization of Corollary (5.13)(c).

(5.16) THEOREM. Let G be the group associated to a Kac—Moody Lie
algebra g =g(A,) and let X be any subset (including X = &) of {1,..,1}. Fix
® = @ y <= W satisfying (P,) and (P,) as above and let Vg < G/P, be the
subvariety, defined by (l¢;). Then there is a unique graded algebra
isomorphism 0 : H*(V g, C) - Co @ s Ay, making the following diagram
commutative:

H*(K/K;,C)—%n Co@c A"

li@ l P
X
G

H*(Vg.C) —— € ®5 4%

where ié‘@ is induced by the inclusion g Vgo G/P, and P = Fa IS induced
by the restriction map rg. (The grading on Co ® SA%) comes from the
grading of C, ® ¢ A* viaF.)

Proof. Of course the map 7 1s, by definition, surjective. It is easy to see
that the kernel of iy 1s precisely the C-span of & fwew! @ Moreover, for
any we W\ @, {T‘@ =0 by Proposition (4.24)(a). Hence the C-span of
-{a“'}|,,ew_|¥..® is in the kernel of 7. But then due to Lemma (5.15), by
dimensional considerations, it is precisely the kernel of 7. This proves the
theorem. |J

(5.17) Remarks. (a) Theorem (5.12) admits a more “algebraic” proof
using an unpublished result of Kac and Peterson (which Peterson kindly
told to the second author), asserting that A4,g" =¢™ if rw<w and =0
otherwise, together with the “twisted derivation property.” For this to be
valid, they do not neced the symmetrizability assumption on g. In par-
ticular, Theorem (5.12), the Corollaries (5.13)(a), (c), (d), and
Theorem (5.16) are true in the general (not necessarily symmetrizable)
situation.

607:62-3-4
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(b) In the finite case, Theorem (2.12) was proved by the first author
(unpublished) and also independently by Carrell and Lieberman [5].
Recently (and quite independently) Akyildiz, Carrell, and Lieberman [1]
have proved an analog of Theorem (5.16) in the special case when G is
finite dimensional and X = ¢&. Their methods are very different from ours
and it is not clear if their proofs can be extended to the infinite case.

6. CONNECTION BETWEEN THE D-MATRIX
AND HARMONIC POLYNOMIALS

(6.1) Let G be the group associated to an arbitrary Kac-Moody
Lie algebra g=g(4,) and let K be the standard real form of G with
“maximal torus” T (see (1.2)). Denote by B: S(h'*)— H*(K/T,C) the
characteristic homomorphism, given by the classifying map: K/T— B(T)
corresponding to the principal 7-bundle K — K/T, where h' =hn [g, g] is
the C-span of {h,},cic/
Recall the definition of the algebra A from (4.19). Let f: S=S(h*) > A
be the C-algebra homomorphism defined by

Bipyw)=(=1)%ery~'p  for peSandwe W. (Tes)

The fact that B(p)e A, follows from Proposition (4.24)(c). It can be
easily seen that the composite map S—"A ->Cy®s4 (where
“evaluation at 0” evy: 4 > C, ® ¢ A4 is given by &— | ® &) factors through
S(h'*). (See the proof of Lemma (5.3).) We denote the map, thus obtained,
by B: S(h'*) > C, ® ¢ 4. We have

(6.2) LEMMA. With the notations as above,

(a) The following diagram is commutative:

S(h'*) L H*(K/T)

N

Co @A

where 8 is defined in the Theorem (5.12).

(b) For any pe S(h'*), B(E, p)=x, B(p), where E, is the classical
Bernstein-Gel fand-Gelfand operator defined in the proof of Proposition
(4.15) and the element x, is defined by (1,,).

Proof. (a) Since all the maps in the triangle are algebra
homomorphisms, if suffices to show that 08(y)=Ply), for all yeh'. Of
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course, the span of {y;ui}<;<, equals h', where y, is as in (1.4). Now
Blx,m)=¢" (as is known) and 0(¢") = ¢" (by the definition of §) and hence
(a) follows by Proposition (4.24)(c).

(b) The map f clearly commutes with W-actions. So by
Lemma (4.26) and the analogous property for £, acting on S(h'*) (which
can be proved similarly), we again only need to prove that B(E,(y))=
x, - Bly), for yeh'* Further, for 1 <i, j <L, E, (1) =90, ,and x,  B(x,m) =
x, 6" =4, ; by Proposition (4.24)(b). 1

In the next theorem we show, in the finite case, how the D-matrix can be
obtained from the harmonic polynomials. Recall from (3.9) that {&"}, .y
is a Z-basis of H¥*(K/T, 7).

(6.3) THEOREM. Let g be finite dimensional. For any we W, choose
[ e S"Uh*) such that B(f*)=¢" and consider the matrix F= (£, )y, cw
where f,.=(—1)"w Y f"). Then the matrix F (over S=S(h*)) can be
decomposed as

F=E-D

where D is as defined in (4.21) and E= (e, ).cw s a lower triangular
matrix over S with diagonal entries 1 and, in fact, e, is a homogeneous
polynomial of degree I(v)— I(w).

(6.4) Remarks. (a) Choice of {f™}, as in Theorem (6.3), is always
possible in the finite case since f is surjective (in this case). In fact we can
choose for {/™}, G-harmonic polynomials on g [18].

(b) Of course such a decomposition, as in the above theorem, is
unique. We call D (resp. E) the upper (resp. lower) triangular part of F. In
particular, the upper triangular part of F does not depend upon the choice
of {f"}].

(c} A less precise (but illuminating) way to describe the theorem is
that “G-harmonic polynomials on g determine the D-matrix.”

Proof of Theorem (6.3). Recall the definition of the map B: S(h*) - A
from (6.1). By Proposition (4.20)(b), we can write

B(./T)Zzev,wiw* (169)

for some unique e, , € S. Since, for any we W, B(f*)(w’) is a homogeneous
polynomial of degree /(v) and &"(w’) is a homogeneous polynomial of
degree /(w) by Proposition (4.24)(d), by the uniqueness of decomposition
in (I), we get that e, . is a homogeneous polynomial of degree /(v) — /(w).
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Now, from Lemma (6.2), it is easy to see that for any w with I(w)=I(v), we
have e, =4, ie., (I4) reduces to

B(fl)z Z el‘.wéw—i—év' (170)

I(w) <Ite)

Evaluating (I) at w, by (Ig) we get (—1)“(w )=
Z[(»r)<ltu) eu,wéw(w,) + ér(wl)- l

(6.6) Remark. Since, in the finite case, the characteristic
homomorphism g: S(h*)— H*(K/T) is surjective, by complete reducibility
of W-modules, we can choose a W-equivariant splitting s of § (¢.g., G-har-
monic polynomials on g provide one such splitting). By composing s with
the W-equivariant map f: S — 4 (defined in (6.1), we get a W-equivariant
map fos: H*(K/T)— A which splits the surjective map 6 'cev,: A —
H*(K/T), where ev, is defined in (6.1) and @ is defined in Theorem (5.12).
Now, the W-equivariant map 6 ' cev, is always surjective (i.c., even in the
infinite dim case), and, we just have seen that, it admits a W-equivariant
splitting in the finite case. But, in general, it can be seen that it does not
admit any W-equivariant splitting. The counter example exists, e.g., in any
affine case.
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