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INTRODUCTION 

To any (not necessarily symmetrizable) generalized 1 x 1 Cartan matrix A, 
one associates a Kac-Moody algebra g = g(A) over C and group G = G(A). 
If A is a classical Cartan matrix, then G is a finite dimensional semi-simple 
algebraic group over C. We refer to this as the finite case. In general, one 
has subalgebras of g; h c b c p, the Cartan subalgebra, Bore1 subalgebra, 
and a parabolic subalgebra, respectively. One also has the corresponding 
subgroups H c B c P. Let W be the Weyl group associated to (g, h) and let 

it-I> Iszl~l denote the set of simple reflections. The group W operates on h 
(and hence on its dual space h*). 

W parametrizes the Schubert cell decomposition of the generalized flag 
variety G/B = U ,(‘E ,,, V,.( = Bw ~ ‘B/B). (A suitable subset W’ c W does the 
same for G/P.) Our principal concern is the cohomology ring H(G/B) 
(more generally H(G/P)) and in fact the cohomology ring of arbitrary (left) 
B-stable closed subspaces of GJP. 

Now besides having a ring structure and having a distinguished basis 
consisting of Schubert classes (given by the dual of the closures of Schubert 
cells, H(G/B) is also a module for W. In addition, in the finite case, a ring 
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of operators .d (with C-basis {A,,.} I,.t Ib.) on H(G/B) was introduced in 
c319 where A,, (1 d i < 1), although defined algebraically, correspond 
topologically to the integration on fiber for the fibration G/B + G/P, (Pi is 
the minimal parabolic containing r;). Kac and Peterson have extended the 
definition of the ring of operators & on H(G/B) to the general case and 
they have used these operators to study the topology of G (as well as G/B). 

The problems, we wish to deal with, are to describe H(G/B): 

(I ) as a ring, in particular the cup product of two arbitrary Schubert 
classes, and 

(2) as a module for W and .d. 

Our main result is that all these structures arise very naturally from a 
single ring R, which admits a simple and concrete definition, using only the 
Weyl group W and its representation on h* and which has some rather 
remarkable properties. We refer to R as the nil Hecke ring, corresponding 
to the pair (W, h*) (see (4.12)). 

We would like to remark that there are a number of serious obstacles in 
trying to directly pass from the finite to the general infinite case, and as a 
consequence we have sought a new approach. Among the obstacles are ( I ) 
the characteristic homomorphism: S(h*) 4 H(G/B) fails to be surjective in 
general, (2) the failure of complete reducibility of the W-modules S(h*) 
and H(G/B), (3) the absence of “harmonics,” and (4) the absence of the 
fundamental (top) cohomology class and as a consequence, the absence of 
Poincare duality. An approach, which remains valid in the general case, 
was motivated from [3, Theorem 5.91 a result of the first author. This 
theorem arises from the correspondence of the Lie algebra cohomology 
H(n) (n is the nil-radical of b) and H(G/B) established by the first author in 
[17] in the finite case and was established, in the general case, by the 
second author in [23]. 

It may be mentioned that different aspects of the topology of G, G/B 
(and G/P) in the infinite case have been studied, among others, by Bott 
(who has done an extensive work on the topology of loop groups via 
Morse theory), Iwahori and Matsumoto [12] and more recently by Gar- 
land and Raghunathan [lo], Tits [30], Kac and Peterson [21,22], 
Gutkin and Slodowy [ 111, Kumar [23, 241, Kac [ 141, and Pressley and 
Segal [27]. 

We describe the contents of the paper in more detail. Section 1 is devoted 
to recalling some standard facts from Kac-Moody theory and setting up 
notations to be used throughout the paper. In Section 2 we establish a cer- 
tain relationship between the cohomology of G/B with End, H*(n), where 
n is the nil radical of the Bore1 subalgebra b. The main result of this chap- 
ter is Theorem (2.12) (see also Remark (2.13)(a)), which asserts that there 
is a graded algebra isomorphism from H(G/B) with Gr C{ WS, where 
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C{ W} is the algebra (under pointwise addition and pointwise mul- 
tiplication) of all the functions: W+ @ and Gr C{ W} denotes the 
associated graded algebra, with respect to some “natural” filtration of 
C{ W}. Let us recall that End,H*(n) can be identified with @{ W} by a 
result of Garland and Lepowsky [9]. The filtration of C{ W) arises from a 
filtration of End C(n), which in turn is a “super” analog of the usual 
filtration of differential operators on a manifold. Our proof of this theorem 
is based upon the correspondence of the (Lie algebra) cohomology of n 
with H*(g, h), as given by the “d, &Hodge theory,” proved by the first 
author in the finite case [ 173 and established by the second author, in the 
general case [23]. 

In Section 3 we construct [23] certain d, S harmonic forms (3” ) ,, t M. c 
C(g, h), which are dual to (up to a positive real number depending upon M’) 
the Schubert varieties (V’,, ). It is further shown [23] that (properly 
defined) j L.,, s”’ = ( - 1 )p’p ’ ) ‘2*” Ju,c,,, I n L, exp( 2( http - p) Iz( g)) dg, where 
p = I(M’) and U (resp. Ii- ) is the commutator subgroup of B (resp. the 
opposite Bore1 subgroup B ). We explicitly compute the above integral in 
this chapter and show (Theorem 3.1) it to be ( -l)p’pm “!‘(47r)” 

II,..,,-1, n.l+ a v) ‘. Our proof of Theorem( 3.1) occupies the whole of 
Section 3 and proceeds via an induction on /(MI). Interestingly, we use infor- 
mation about the cup product in H(G/B), as given in Corollary (3.12) to 
compute the integral. 

Section 4 can be viewed as the main algebraic part of this paper. We 
denote by Q,.,. (resp. S,,), the smash product of the group ring @[WI with 
the W-field Q = Q(h*), the field of rational functions on h (resp. the W-ring 
S= S(h*)). The ring Qu, admits an involutary anti-automorphism t (see 
(IZj)). With the help of Proposition (4.2) we define certain elements 
f \ , -1 ,l , I, t b%’ in Qw-, which form a right (as well as left) Q-basis 
(Corollary (4.5 )). The basis x,,. behaves like a “degenerate” Hecke basis (see 
Proposition (4.3)(a)). Further, Q has a canonical (left) Q,,-module struc- 
ture, given by (Ij3). We define (a basic ring) R as the subring of Q bt,, con- 
sisting of all those elements x E Q ,+, such that .Y keeps S stable. We prove a 
crucial structure theorem (Theorem 4.6) for the ring R. This asserts that R 
is a free (left as well as right) S-module, with the {.Y,,,;,,, t u. as basis and 
R n R’ = S,,. In the finite case, part (a) of this theorem admits a simple 
proof using the theory of “harmonics.” We refer to R as the nil He&e ring 
(4.12). We also put a co-product structure A on Q M, (4.14) and prove 
Proposition (4.15) which describes A in terms of the {.?,, j,$ E Ic basis of 
err., where Z,,, = s:, , . 

We dualize the above objects and define r;;! = Homo( Q ,,+,, Q) (Q,+, con- 
sidered as a right Q-module) and the S-subalgebra A = ($ E Sz: $( R’) c S 
and $(.U,,,) =O, for all but a finite number of 121~ W). Since Qu, has 
; 6 I,’ ;, I, t I+’ as a right Q-basis, we can (and often will) view IX as the space of 
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all the maps: W + Q. Of course, 52 is an algebra under pointwise addition 
and pointwise multiplication (of maps: W + Q). More subtly, since Q ,,, has 
an involutary anti-automorphism t, we can also put the structure of a left 
QNrmodule on !Z defined by (I,,). It is easy to see that n is stable under 
(the left action of) R. In particular, the elements 6,,., x,. act on /1. We refer 
to the action of the 6,,. as the Weyl group action and the action of the x,. is 
referred to as the Hecke operators, for reasons which will be clear in Sec- 
tion 5. As a consequence of (structure) Theorem (4.6)(a), we deduce 
(Proposition (4.20)) that /1 is a free S-module with basis ((“j,., ,,+., where 
t”’ is defined by [“(x,.) = 6,., ,, , for all OE W. We collect various properties 
of it” ‘, in Proposition (4.24) and define a matrix D = (dl,,M.)L,,,vt u, by 
d,:,,. = I”. The matrix D is fundamental to our paper. In the finite case, it 
can be extracted from [3, Theorem 5.93. We give an explicit formula 
(Proposition (4.32)) for the arbitrary product 5”. i;” (as well as 6; t”) in 
the it”‘) basis, purely in terms of the matrix D. We give a different formula 
for the arbitrary product 4”. 5“ in P ro osi p ‘ti on (4.3 1 ), in terms of the action 
of the ring R on A.’ 

Section 5 synthesizes Section 2 and Section 4. Since it is basically an 
application of Section 2 and since in Section 2 we have assumed A is sym- 
metrizable we assumed the same in Section 5. However, using the algebraic 
results of Kac--Peterson the main theorem in Section 5 (as pointed out by 
Peterson) may be proved without the symmetrizability assumption. See 
Remark 5.7. We show that the (a priori very complicated) filtration of 
C{ Wt (given in Sect. 2) obtained by purely geometrical considerations, 
also arises from a very explicit combinatorial construction, using only the 
Weyl group W (associated to g) and its representation on the Cartan sub- 
algebra h. By using ~1, d harmonic forms s;; = s”/s I.,, s” and the map tj (given 
in (2.7), we define a map b: W x W + C in Section 5.1. The map B, in turn, 
gives rise to the filtration (of Theorem (2.12)) of C{ WI. Moreover, the 
matrix D can also be thought of as a map: W x W + S. By evaluating D at 
h(p) (h(p) is defined in Proposition (5.2)), we get a map D,,,,,,: Wx W + @. 
We further prove a characterization of the matrix D,,,,,, in 
Proposition (5.5), which roughly asserts that any Wx W matrix E 
(over C)), which is upper triangular, has the same diagonal values as that of 
D ,,,,,), and satisfies a suitable “cup product formula” is the same as D,,,,,,. 
Finally, we show (Proposition (5.2)) that B does satisfy all the characteriz- 
ing properties (given in (5.5)) of D,,(,,, and hence we have the 
Corollary (5.6); b = Dh,,,,. (We should mention that our calculation of the 
integral, in Sect. 3, is crucially used to establish that the diagonal entries of 

I Nof~ udded in pux/: Our later applications to H(G/B) involve a quotient ring of A. 
However. recently A. Arabia has proved that A itself is isomorphic to the T-equivariant 
cohomology of G/B= K/T. (See [3I].) 
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D are precisely equal to those of D,?,,,. ) This leads to our main theorem 
(5.12), which asserts that H(G/B) is canonically isomorphic (as a graded 
algebra) with C, OS A. Moreover, under this isomorphism, the (Weyl 
group) action of MY E W and the Hecke operator A ,I) on H(G/B) correspond 
respectively to the action of 6,,. and x,, on Co OS il, where Co is the 
quotient of S by the augmentation ideal S+. This, in particular, gives (by 
Proposition (4.32)) an expression, by a fairly explicit formula, for the cup 
product of two arbitrary Schubert classes (as well as the Weyl group action 
of arbitrary N’) on H(G/B), purely in terms of the matrix D. Of course, as a 
particular case, it gives the cup product of two arbitrary cohomology 
classes of the based loop group Q,(K,) (for a finite dimensional compact 
S.S. simply connected group K,,), in terms of the Schubert basis. One can 
easily generalize Theorem (5.12) so that an arbitrary parabolic subgroup P 
replaces the Bore1 subgroup B, as done in Corollary (513)(c). Very 
interestingly, we can prove an analog of Theorem (5.12) for an arbitrary 
(left) B-stable closed subspace of G/P. This is the content of our 
Theorem (5.16). Recently, Akyildiz, Carrell, and Lieberman [ 1 ] (see also 
[5] ) have, quite independently and by a different method, proved an 
analog of Theorem (5.16) in the particular case of Schubert varieties 
cG/B, where G is finite. It is not clear if their proofs can be extended to 
the general (infinite) case. 

In Section 6 we prove that in the finite case, the matrix D can be 
obtained from the W-Harmonic polynomials on h, as shown in Theorem 
(6.3) (see also Remark (6.4)). This says that the matrix D is nothing but 
the “upper triangular part” of the matrix obtained by the W-translates of 
the harmonic polynomials. 

The main results of this paper have been announced in [ 151. 
The authors thank James B. Carrell, George Lusztig, and Dale H. Peter- 

son for some helpful conversations. 

1. PRELIMINARIES AND NOTATIONS 

(1.1) Definitions and Basic Properties [ 13, 251. 

Let A = (a,j)l sr,,Gl be any generalized Cartan matrix (i.e., ail = 2 and 
-a,, E Z + for all i # j). A is called symmetrkable if DA is symmetric for 
some diagonal matrix D = diag(q, ,..., q,) with q, > 0 and rational. 

Choose a triple (h, rr, 7~~ ), unique up to isomorphism, where h is a vector 
space over C of dim(l+ co-rank A), n= f&’ t ,jlGrGICh* and - 
71 = (h,J, < ;<I c h are linearly independent indexed sets satisfying . . 
cr,(h,) =arj. The Kac-Moody algebra g=g(A) is the Lie algebra over @, 
generated by h and symbols e, and fi (1 d id I) with the defining relations 
[h, h] = 0; [h, e,] = cc,(h) e,, [h, fj] = - u,(h) f, for h E h and all 1 < i < I; 
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[ei,f,]=6j,h, for all 1 <i, j6I; (ade,)‘~U~(ej)=O=(ad~.)‘- US$f,) for all 
1 d i # j d 1. h is canonically embedded in g and is called the Cartan suh- 
algebra of g. 

One has a root space decomposition g=h@CzEd (g,@g-.), where 
g,={xEg: [h,x]=cr(h)x, for all hehf and n;={c~~Ci=, Z+ai: 
g,#O}. Define d=d+ ud (A- = -A+). 

We fix a subset X (including X= @) of { l,..., 11. Put d.: = A + n 
IX,, X Zcr,) and define the following Lie subalgebras: 

u=ux= c g,, u-=u, = c +; 
Xtd+\Ll; YEd+~Ll+ 

r=r,=hO 1 (g,Ogp.); 
1c.4: 

h=h@n and p=px=r@u. 

In the case when X is of finite type (i.e., rx is finite dimensional) r.u is a 
reductive subalgebra and since [rx, ux] c ux (resp. [r,, u,;] c ux ), rx acts 
on u.~ (resp. u, ). 

There is a Weyl group WC Aut(h*) generated by the “simple” reflections 
(r,} 1 S ,,,(r,(~) = x - x(lzj) a,, for any XE h*), associated to the Lie algebra 
g. (W (r,) , G is ,) is a Coxeter group, and hence we can speak of the Bruhat 
ordering 6 and lengths of elements of W. We denote the length of u’ by 
I(w). W preserves A. A” is defined to be W. R and A’” = A\A’“. For c( E A’“, 
dimg,=l. We set A: =ArenA+, similarly A” = A” n A . By dualizing, 
we get a representation of W in h. Explicitly, r,(h) = h - ai h,, for h E h 

and any 1 <i<l. 
For any Xc [ l,..., I}, let W,Y be the subgroup of W generated by { ri}it ,Y 

and define a subset W:., of the Weyl group W, by Wk = { U’E W: 
A + n MJ~ c A +\A$ ). Wk can be characterized as the set of elements of 
minimal length in the cosets W,w(w E W) (each such coset contains a 
unique element of minimal length). 

There is a (@-linear) involution w  of g defined (uniquely) by w(L.) = - e; 
for all 1 < i < I and o(h) = - h, for all h E h. It is easy to see that w  leaves 
g(R) ( = “real points” of g) stable. Let w. be the conjugate finear involution 
of g, which coincides with o on g(R). In the case when g is symmetrizable, 
there is a nondegenerate, W-invariant, symmetric @-bilinear form (T on h*. 
c gives rise to a nondegenerate, g-invariant, symmetric @-bilinear form 
(called the Killing form) ( , ) on g (see [13]). 

We fix, once and for all, one such ~7 (and hence ( , )). The symmetric 
form ( , ) on g gives rise to a Hermitian form { , j on g, defined by 
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{x, ~1) = - (x, oO( JJ)), for X, y E g. The Hermitian form { , ) is positive 
definite on n- (and n) (see [8, Sect. 121 and [21, Remark IV, p. 17821.) 

( 1.2) Algebraic Group Associated to a Kac-Moo&! Lie algebra g [ 30, 21, 
221. 

A g’ (=the commutator subalgebra [g, g]) module (V. TC) (n: 
g’ + End V) is called integrable, if X(X) is locally nilpotent whenever .Y E g,, 
for 2 E A’“. Let G* be the free product of the additive groups ( g,) zt Jrcr 
with canonical inclusions i,: g, + G*. For any integrable g’-module (V, n), 
define a homomorphism x*: G* + Aut, V by n*(i,(.y))=exp(7c(.u)), for 
.Y E g,. Let N* be the intersection of all Ker z*. Put G = G*/N*. Let q be 
the canonical homomorphism: G* +G. For sEg, (EEA”‘), put exp(s)= 
q(i,x), so that U, = exp g, is an additive one parameter subgroup of G. 
Denote by U (resp. Up) the subgroup of G generated by the U,‘s with 
‘AEAT (resp. ZEA?). We put a topology on G as given in [22, 4(G)]. G 
may be viewed as, possibly infinite dimensional, affine algebraic group in 
the sense of Safarevie with Lie-algebra g’. For a proof, see [22, Sect. 41. 
We call G the group associated to the Kar~Mood~~ Lie algebra g. 

The conjugate linear involution o0 of g, on “integration,” gives rise to an 
involution ‘I?() of G. Let K denote the fixed point set of this involution. K is 
called the standard real fkwnz of G. 

For each 1 d id I, there exists a unique homomorphism fl,: SL,(@) + G, 
satisfying /I,(: 7) = exp(:r,) and b,( i y) = exp($,) (for all z E a=), where e,, f; 
is as in (1.1). Define H,=J,{(; _O,): ZEC*~; H,+ = /?,[(; _c),): : is real and 
>o;; G,=/l,(SL,(@)); N,= Normalizer of H, in G,; H (resp. H+) = the 
subgroup (of G) generated by all H, (resp. Hz+ ); N = the subgroup (of G) 
generated by all N,. There is an isomorphism T: WZ, N/H, such that s(r,) is 
the coset N,flH mod H [21, Sect. 21. We \~~ould, .sometimes, ident[f)l W 

btjith N/H under 5. 
Put B = HU and P = P,y = BW,y B. B is called the standard Bore1 sub- 

group and P,,- the starzdard parabolic subgroup qf G. associated to the subset 
X. Denote by K,y the subgroup Kn P,. We denote by T= Kn B, the 
“nlasinlal torus” of K. It is easy to see that th’e canonical inclusion 
K/K,, + G/P,, is a (surjective) homeomorphism. Use 122, Theorem 4(d)]. 
(Kc G is given the subspace topology.) 

( 1.3) Brzrhat decomposition [12, 30, 21, 221. 

G can be written as disjoint union G = U,, t ,++ (U M‘ ‘Px), so that 
GIPX = u,, t w~(U~ ‘P.y/P,y). G/P,y is a C-W complex with cells [ V,, = 
UN ’ P,y/P,y i ,l., Iv: and dim, V,, = 21( tv). 

(1.4) Notations. Unless otherwise stated, vector spaces will be over C 
and linear maps will be @-linear maps. For a vector space V, V* denotes 
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Hom,( V, C), A(V) denotes the exterior algebra, and S(V) denotes the 
symmetric algebra. Tensor product without a subscript will mean over @. 
Modules will be left, unless stated otherwise. 

For a Lie algebra pair (g, r), C(g, r) (resp. A(g, r)) denotes the standard 
co-chain (resp. chain) complex associated to the pair (g, r). p, as usual, 
means any element E h* satisfying p(h,) = 1, for all 1 < i < 1. We fix elements 
x, (1 6 i< I)E h* satisfying I; = 6 ,,,, for all 1 <j< I. 

Complex manifolds are oriented by its complex structure. Explicitly, on 

@‘I (with complex coordinates z, = .Y, + fi y, ,..., z,~ =x, + &? y,,) 
(?/S.u, ) SjSJ, ,...) ?/ax,,, r7/$~,~) will be declared as positively oriented basis 
of T(P). 

2. IDENTIFICATION OF THE COHOMOLOGY ALGEBRA H*(G/P,,,C) 
WITH Gr C{ IV:) 

We recall the following well-known 

(2.1) DEFINITION. A differential graded algebra/@ (abbreviated as 
DGA) is a graded associative algebra (over C), having identity, .d = 

Ix ,30 .d’, with a differential d: .c3 --f .d of degree + 1, such that 

(1) .d IS graded commutative, i.e., CI. /!I = ( - 1 )“fl. a, for z E .d’ and 
/?~.d’ and 

(2) d is a derivation, i.e., d(cc . /I) = da. /I + ( - 1 )‘a. d/J, for a E ~2’. 

Let .d be a DGA with differential d. Denote by 

End(.d) = Hom,(.d, .ol) (all the C-linear maps from .d into itself) 

End P,y(~~) = Hom,(.d”, .cSq), for all p, q 3 0, and 

End’(.d) = n,,,,, End KIJ + ‘(&), for i E Z. We clearly have 

n End’(.d) 2 End( A ) 3 1 End’(.d). 
,tl rtn 

d induces a derivation (of degree + 1) 6 in End(.ni’) (End(&) is viewed as 
an algebra, with product as composition of maps) defined by 

6T = dr - ( - l )‘rd for T E End’( -d ). 

From the definition, it is easy to check that 

d2 = 0. (11) 
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Further, SE End(&), with 6~ =O, takes Z(&) (= {a~&: da=O}) into 
itself and the same is true with Z(,d) replaced by d(.d). Hence, there is a 
canonical homomorphism of Z-graded algebras (obtained by restriction) 

7: H(End(.d), 6) + End(H(.d)). 

A proof of the following proposition can be seen, e.g., in [4, 
Theorem 31(a), p. 1141. 

(2.2) PROPOSITION. The map y, defined above, is an isonzorphisnz of 

graded al~ehras. 

(2.3) Let g = g(A,) be any symmetrizable Kac-Moody Lie algebra. 
Fix a subset Xc [ l,..., I) of finite type. Recall the Lie algebras uX, UJ, rl 
defined in Section 1.1. We would often abbreviate u,\-, u,; , r t (respectively) 
by u, u , r. 

Let C(g, r) = C,,, Hom,(A’(u@ u ), C) denote the standard co-chain 
complex associated to the Lie algebra pair (g, r) and C(u) = 
x,.(, Hom(n’(u), @) is the DGA associated to the Lie algebra u. 

As in [23, Sect. 31, we put the topology of pointwise convergence on 
C(g, r) and C(u). We also put the topology of pointwise convergence on 
End C(u), i.e., (z,,) c End C(u ) converges to T E End C(u) if and only if 
T,,(E) -+ r(a) (in the topology of C(u)), for all XE C(u). 

6: End C(u) -+ End C(u) is continuous under this topology. Further, it 
can be easily seen that 6 commutes with the canonical r action on 
End C(u). We denote by 6,, the restriction of 6 to End,C(u). 

The map 11 (defined below) is basic to this section. 

(2.4) LEMMA. There exists u (unique) continuous map 9: C(g, r) + 
End,. C( u), such that 

iy i a”@e(a”))= 
( PI= 1 ( > 

-& ‘1 &(a”) i(a”) 
,, 

(I,) 

,for a”EC(u) and a”EA4(u) (tcith C a”@e(a”)EC(g, r)). lz,here E: C(u)-+ 
End C(u) is exterior multiplication, i: A(u) -+ End C(u) is interior mul- 
tiplication, and e: A(u) + C( u ) is induced from the Killing form. Moreover 
q is injectiue. 1 

It may be remarked that, though 9 is defined on a dense subspace of 
Ciao Home(Ai(u@u ), c), it does not extend to a continuous map on 
Ciao Homc(A’(u@~~), @), in general. Further, v] does not commute with 
the differentials. In fact, we have 
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(2.5) LEMMA. qd,= S,,q, where the operator d, on C(g, r) is d+ed to 
be d’ + (2740) a”. (d and a” are defined in [23, Sect. 31. One has di = 0. 

Proof For a = a, A A a,.zA”(u), we have 

d,i(a)+(-l)Y+‘i(a)d,= i (-l)k+’ ad(a,)‘:i(a,)m ... ‘~2 a,)0 ... r,i(a,,) c 
/;=I 

+ i(8,a) as operators on C(u)) (I,) 

where 3, (resp. d,) denotes the chain (resp. co-chain) map of the standard 
complex A(u) (resp. C(u)), associated to the Lie algebra u and ad: 
u + End C(u) is induced from the adjoint representation. 

The identity (13) can be easily proved by induction on q, using the well- 
known identities (I,) and (I,): For any a,, a2Eu, 

d,i(a,)+i(u,)d,=ad(a,) (1,) 

i(a,ad(a,)i(a,)=i[a,,az] (I,) 

as operators on C(u). Further, for any a E u, 

ad(a) = c &(a$) iCad, al, 
@El 

(1,) 

where ia4)4E, is an orthonormal basis of II, consisting of weight vectors, 
and a$ E Hom(u, @) is the element satisfying a$(ae,) = 6,,. for all 4’ E I. 

To prove identity (I,), observe that both the sides of (I,) are derivations 
and, moreover, both are continuous maps: C(u) + C(u). So it suffices to 
prove that ad(a) cc=C 4t,~(az) i[a,, a] CY, for c( E C’(u), which is easy to 
verify. 

We are ready to prove the lemma. Since all the maps ye, 6,, d, are con- 
tinuous, it suffices to prove that qd, = 6,~ on e( [A(u ) @A(u)]‘). Fix an 
element I,, b”@a”E [A(u- )@A(u)]‘, where b”E/jp(u-) and a” = 
a”/y . I A a: E AY(u). Then 

G,q(eCb”@ a”) 

=I [d,c(eb”) i(a”)-( -l)p~y~(eb”)i(a”)d,l 

= c [&(d,(eb”)) i(a”) + (- 1 )PE(eb”) d,i(a”) - ( - 1 )PpY&(eb”) i(a”) d,] 
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=F [4d,(eb”))i(a”)+(-lY’&(eb”) i (-l)“+‘ad(a;) 
i h=l 

A 
c~(u’;)c ... ,,j(a;)- ... I j(a:;)+j((?ua”) using (1,) 

= F [c(d,(eb”)) i(a”) + (- 1 )“tz(eb”) i(c’,a”) + (- 1 )“&(eb”) 

xkg, (-l)“+’ C E(a,*) i[u,, u;l] mi(u;)m ... c>G: ... r i(u:;)] 
4tl 

using (I,) 

+ (- 1)” 1 &(eb”) ~(a$) i(ad u,a”) (I,) 
icl I 

Also. 

(n,(rb”))O(ra”)+(-l)p c r(b”).u$@r(adu,a”) 
QEI 

+(-I)” (eb”)@e(r’Ua”) I> 
(See the proof of [23, Lemma (3.1)].) So, we have 

[e]‘q do (e; b”Oa”] 

=I[ c(d,(eb”)) [(a”) + (- 1 )’ 1 c(e(b”) u$) i(ad ada”) 
t1 itI 

+ ( - I )“E(eb”) i( r?,a”) 
1 

(1,) 

Comparing (I,) and (I,), we get the lemma. 1 

Recall the definition of the operator S = u% + 8cl, acting on C(g, r), from 
[23, Sect. 31. From [23, Lemma (3.5) Theorem 3.13, and Remark 3.143 
we have, Ker S = Ker d’ n Ker (7’ n Ker d” n Ker 3”. As an immediate 
corollary of lemma (2.5) we get 
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(2.6) LEMMA. yl( Ker S) c Ker 6,. 

By virtue of this lemma, ‘1 gives rise to a map 6: Ker S + 
H(End, C(u), S,). Recall the definition of the map y from Proposition (2.2). 
Obviously, 1’ gives rise to a map yO: H(End,C(u), 6,) + End,H*(u), where 
H*(u) = X,3” H’(u) is the Lie algebra cohomology of u (with trivial coef- 
ficients C). 

Let us recall the structure of H*(u), as an r-module, from [9]. 

(2.7) THEOREM. [9, Theorem 8.63. As r-modules, 

where L(wp - p) is an irreducible r-module with highest weight wp -p. In 

particular, any irreducible r-module occurs with multiplicity at the most one 
in H*(u). 1 

So, we get 

End,H*(u) z n End,H’(u) z n n with End,L(wp - p). 
I20 iao WE I+“, 

011’) = I 

L( wp - p ) being irreducible, End,L(wp - p) is l-dimensional with a 
canonical generator l,, ( = the identity map of L( M’P - p)). This identities 
End,H*(u) with n,,.. ,.:Cl,, . The space n,,.. ..;,Cl,, can (and will) also be 
thought of as @ ( WLl ( = the vector space of all the functions from W,; 
to C). The product in C{ Wl.1, inherited from End, H*(u), is nothing but 
the pointwise multiplication. Let 9: Ker S -t C { W:. ). be the composite map 

Ker S ’ + H(End,C(u), 6,) ‘” + End,H*(u)a @{ Wb). 

(2.8) A ,filtration qf C(g, r) and C{ W,;). Define a decreasing 
filtration 9 = (%p)ptLm (Z is the set of non-positive integers) by 3p = 

c o<kG up C*,‘(g, r), where Cy,k(g, r)=Hom,(/jY(u)@l\k(~~), C). Clearly 
4 15 d’, 8” (and hence do) stable. This gives rise to a filtration 9 = 
WJpth- of End,C(u) by defining Fp = ~(3,). (Caution! We do not claim 

that UpElm $ = End,C(u).) This also gives rise to a filtration ($j)Pt H of 
End,H*(u)z C{ Wk}, by taking the image of the induced filtration of 
H(End,C(u), 6,) under the canonical map yO, defined in (2.6). Here again, 
we do not claim that tJpslm 8;, = C( Wk}. In fact, it is true if and only if g 
is a finite dimensional Lie algebra. 

(2.9) Remark. Let ~2 be any finite dimensional DGA. Then the com- 
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plex End(d) comes equipped with a natural filtration {FP},,z_ defined as 
follows: F, =a(&) (recall that E: .d + End(d) is exterior multiplication). 
Fmm, = E(&) + Der(d), where Der(d) = 1, Der’(d) and Der’(&) is the set 
of all the degree i derivations of su’. Finally (for p > 1) F-, is the @-span of 
all those elements in End(&) which can be written as products of <p 
operators in F , . (F- 1 can be thought of as the set of first-order differen- 
tial operators on JZ/.) 

If we take .o/ = C(u) then, in the case when g is finite dimensional, the 
filtration (YP}ptH (described above in (2.8)) coincides with (F, A 
EndrC(u)l,,zm, as can be easily seen. In the general case RP is some 
appropriate “partial completion” of F,,. So, our filtration (5$ > arises as a 
“super” analog of the usual filtration of differential operators on a 
manifold. 

The behavior of r) under products is given by 

(2.10) LEMMA. For AE C*,“(g, r) and 1’~ C*.“‘(g, r), 

q(U’) = ?/(I.) q(1’) rnodTP,- P,+,. 

Prooj: For c( E C”(u) and a E u, we have 

i(u)~(a)-(-l)k~(cx)i(a)=~(i(a)a) 

as elements of End C(u). 

(19) 

From the above relation, by induction on p, we get (for BE C(u), 
a E C”(u), a E Ap(u), and b E A”‘(u)) 

E(p)i(a)E(a)i(b)-(-l)““E(pa)i(a A b) ~9~~~ p,+, (I,,) 

which proves the lemma. 1 

As an immediate corollary, we have 

(2.11) LEMMA. For all p, p’ E Z , Yp+ c 3,, + p, and & ’ & c & + ps. 

As usual, let us define Gr C { Wk} = C,, ~ 0 GP, where GrP = &mP/$PP + , . 
In view of Lemma (2.11). Gr C ( IV: j inherits a canonical algebra struc- 

ture from C{ IV:>. Denote Ker Sn Cp.p(g, r) by KerP,PS. By the definition 
of q, u](KePPS) c TPQ. Hence $Ker p,pS) c 2PP (q is defined in Sect. 2.7). 
Denote the composition KerP,PS + i ,J+~ p + 2P p/Y- p + I by Grp( rj) and let 
Gr(rj) be the map: C, KerP.PS+Gr C{ Wk>, such that Gr(rj)l..,r.PS= 
GrP(j). Consider the inclusion Ker Sq C(g, r). By [23, Theorem 3.131 it 
induces isomorphism (of vector spaces) tids: Ker S rH*(g, r) and, 
moreover [23, Sect. 31, Ker S=C,., KerP’PS. 

Now we are in a position to state the main theorem of this section. 
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(2.12) THEOREM. Let g= g(A,) be a symmetrizable Kac-Moody Lie 
algebra and let Xc ( I,..., I} be a subset of finite type. Let r = rx be the 
reductive subalgebra of g as defined in ( 1.1). Then the map Gr(f) 0 $24 : 
H*(g, r) -+ Gr C { WL.} (defined above) is an isomorphism qf graded algebras. 
(Qf course, under this isomorphism, HZp(g, r) corresponds with Grp. ) 

(2.13) Remarks. (a) By [24, Theorem 1.61, H*(g, rx) is isomorphic (as 
a graded algebra) with H*(G/P,, c) under a suitably defined integration 
map. This, in particular, gives a graded algebra isomorphism of 
H*(G/P,, @) with Gr C( Wk}. 

(b) In the case when X= 0, we will show (Theorem 5.12) that the 
isomorphism of H*(G/B, UZ) with Gr UZ{ W} is W-equivariant, where W 
acts on @( W} by the left regular representation. 

Proof of the Theorem (2.12). Recall the definition of the filtration 9 of 
C(g, r) and the filtration 9 of End,C(u), see (2.8). By Lemma (2.5) Fp is 
& stable. The corresponding spectral sequence has Er,Y(S) = 
Hr+4(.~/~~++))HHf;l~Y(~~/~~++))H~.+Y(C*~ “(g,r)), since the differen- 
tials on Se,/??~+, induced by dO and d’ are the same. (Hd(C*, -r(g, r)) 
denotes the cohomology of the complex C*.--“(g, r) with respect to the dif- 
ferential J.) By (a subsequent) Lemma (2.15), +rl.,soIc/;~~: H,*(g, r) -+ 
H:(g, r) is an algebra isomorphism. But, by [23, Theorem 31151, 
H;(C(g, r)) = 0 for odd values of i and for even i, dim,HL(C(g, r)) = 
number of elements of length i/2 in Wjy. In particular, Ef,q(F) = 0 unless 
p + q is even. But then all the differentials d, (for r 3 I), of the spectral 
sequence E,( 9) are zero. So, we have E$q(Y ) x E.“;q( 9) and (of course) 
this isomorphism is an algebra isomorphism. 

Further, the map 6: Ker S + ‘IZ ( W,\> is injective. To prove this, let 
0 # s = x,v. w,; z “‘s” E Ker S be such that q(C ~“s”‘) = 0, for some constants 
z” E @. ( [s”‘} ,,,t ,,,,; is a c-basis of Ker S and is defined in the next section.) 
Let MJ(, be an element of least possible length such that zR’O # 0. In par- 
ticular, evaluating at ulO, we have q(C ;‘I‘s~)(MJ~) = 0. But by using (a sub- 
sequent) Proposition 5.2(a) and (b), we get ~(~“‘?Y”‘“)(w,) = 0 and 
y(s”‘O)( M’~) # 0. A contradiction! This proves that ?j is injective. 

Furthermore, the canonical map y “: H(End,C(u), 6,) -+ End,H*(u) is an 
isomorphism. To prove this, denote c(u) = Horn&j(u), C). We decom- 
pose A(u) = CUE i V,, where V,, is the isotypical component corresponding 
to the irreducible representation 0 of r. Of course, for any fixed 8, V, is 
finite dimensional (use the fact that root spaces are finite dimensional). So, 
we have 

C(U) = n Vn* ( Vn* = Hom,( Vg, a=)) and End,C(u) = n End,( V;). 
fl t i Oti 
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From the finite dimensionality of Vo)s, it is easy to see that End,C(u) = 
End, C(u). Hence 

H(End,C(u)) = H(End,C(u)) 

(from the complete reducibility 

of the r-module End Vi and Proposition (2.2)) 

=End.(&W3) 

= End,H(C(u)). 

= End, H( C(u)) = End, H*(u). 

Now, consider the commutative diagram 

WCk, r), 4) ““) h H(End,C(u), 4,) 
t /I 
,* ;‘o 

Ker S - End,H*(u)zCC(W\j 
‘1 

where i* is induced by the inclusion Ker S 4 C(g, r) (tic, 1 KerS = 0). Defining 
a filtration 4 = ( @,,)p E I ~, where $p = 2, s k ~ ~,, Ker”,k( S), of Ker S, we get 
that E?“(g) z Ker”,“(S) and Ef”($!?) = 0 for p #q. So Ep”(g) + - Erq(%) 
for all p and q. Hence i* is an isomorphism. This, using the injectivity of 4, 
proves that H(q) is injective. 

Finally, using [4, Chap. XV, Sect. l] and Lemma (2.10) we get that 
Gr C{ wf) is isomorphic with E,(Y) as graded algebras. Now (a sub- 
sequent) Lemma (2.15) completes the proof. i 

As an immediate consequence of the theorem, we get 

(2.14) COROLLARY. Recall the definition cf thefiltration {f p}pGH+ CI~ 
62 { W:.} from (2.8). For an)! p 3 0, we have By I, = xc = (, f,, u,here rk is the 
image of Kerk,k( S) in C { W,\} under yI. 

We will give another “combinatorial” description of f-, in Section 5. 
The inclusion of Ker S 4 C(g, r) induces the map $$s: Ker S--t HS(g, r) 

and $,r,,Y: Ker S-t H$,(g, r). By [23, Theorem 3.13 and Remark 3.141 Gds 
and $d.,S are both vector space isomorphisms. We have 
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(2.15) LEMMA. The map $d~,sB~$J,~: H$(g,r)+H:S(g, r) is an algebra 
isonzorphistn. 

Proqf. Let s, , s2 E Ker S. There exists s3 E Ker S such that sI s2 -3) E 
Image ri. By [23, Lemma 3.8 and Theorem 3.131, .F, s2 - sj E Im S. Defining 
S’ = d0’ + J’d’, we have $S = S’ by [23, Lemma 3.51 and hence there exists 
3. E C(g, r) such that 

Thus, on taking d’, we get &(.Y, SJ - ds, = n’am, i.e., 
(d’s, ) .s2 + s, d’s2 - d’s, = d’d’d’i. Since s, , s2, s3 E Ker S c Ker d’, we get 
n’?d’3. = 0. By the disjointness of d’ and ii’ [23, Proposition 3.71 8’aA = 0. 
Hence s, . s2 - sj E Im d’. This proves the lemma. 1 

3. DETERMINATION OF THE INTEGRAL 

In this section g= g(A,) will denote a symmetrizable KacMoody Lie 
algebra. 

Let Xc [l,..., I) be a subset of finite type. In [ 171 and recently in the 
genera1 case in 1231, we constructed “d, 8 harmonic” forms (s”‘),,.~ ,,+ c 
C(g, rx.) which are dual (up to a nonzero scalar multiple) to the Schubert 
cells .( V,, = Btt ‘P,y/P.y},,.c ,,.;. More precisely [23, Theorem 4.53, we 
have, for ~2, 10’ E Wl,. of equal length, 

(a) S,.,, s” = 0, unless H’ = \t” and 

(b) Ji,,, s” = (- 1 )p’p ‘)!22’p iI!,, exp(2( i,t’P - p) h(g)) dg, if I( ic) = p. 

(Where U,, = ,tjUi~ ’ n U and, for any gE G, h(g) denotes the projection 
of g on the H + factor under the inverse of the Iwasawa decomposition: 
K x H’ x U + G, defined by (k, h, U) + khu. See ( 1.2), for various 
notations.) The additional sign factor (- 1 )p’P I’;‘, in the expression of 
J .s”, 1 II is due to the fact that we have taken a different orientation on com- 
plex manifolds (see (1.4)) than the one used in [23, Theorem 4.51. 

In this section, we explicitly compute this integral. This, in particular, 
would give expression for the d, ir harmonic forms 1st = .~“/j~.,, s” i ,I F bv: 3 
which are exactly dual to the Schubert cells. The main result of this section 
is 

(3.1) THEOREM. With the notations as ahoue, ji)r any M’ E W, we haue 
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Prooj We prove the theorem by induction on I(wl). In the case when 
/(it,) = 1, the integral can be explicitly computed. The details are given in 
[24, Sect. 6.163. 

So, we come to the general case. Write it’= r,v, where r, is a simple reflec- 
tion such that I: < II’. From the Hodge-type decomposition of C(g, h) [23, 
Theorem 3.131, we can express 

for some cl-exact form i. E C(g, h) and some (uniquely determined) con- 
stants :I’ E @. 

The next few lemmas are devoted to finding the value of z”. Define an 
operator i?= -(S-L) I@: C(g, h) -+ C(g, h), where L, S and fi are 
defined in [23, Sect. 31. As in the proof of [23, Lemma 3.81, one can see 

that Lo R”p converges in C(g, h), for all ~1 E C(g, h). (Topology on 
C(g, h) is the one, described in (2.3).) We have 

(3.2) LEMMA. Let s,, s2 E Ker S. Write PC;=, R”(s, s?) = C,, t ,+, z; h”, 

for .sonze (unique) constants z;. (A” is defined in (I,,) and P: C(g, h) + 
C(g, h) = Ker L @ Im L is pmjection onto Ker L). Then 

Proof: First of all, s, . .s? - d?fi (C,I30 R”)(.s, x2) E Ker S. To prove 
this: 

S(s,.s?)-Sd3 fi 

=S(.s,.s,)-d,Y(S-L)fi 

(since S commutes with d and S), 

= S(.s, . s,)+d? c R”+‘(.sI .s,)-d8 
n 3 0 

(since, by definition, Lfi = Id on Im L and 81 KerL = L&lKcrL = O), 

= S(s, .s2) - d@.s, .s2) 

= 0 (since d(.s, . .s2) = 0). 
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Furthermore, 

=(-L-(S-L)+ad)fi c RN (s,.sz) 
( ! ,I 2 0 

= c R”+‘(s,.s,)+L(p) 
,1 2 0 

for some ALE C(g, h) (since Im a c Im t). So 

But, since the left side of (I i2) belongs to Ker S, and .x” - h”’ E Im L (by 
[23, Proposition (3.17)]) the lemma follows. 

(3.3) Remark. The above lemma is essentially due to Koch. See [20, 
Theorem 4.3). 

(3.4.) LEMMA. Let w E W be expressed as u’ = r,v, with ri a simple reflec- 
tion and v < w. Then (D,,.) = (@,) + kocc,, for some k, > 0 and , moreover, 
k,i.~equultop(v~‘h,)(~here(~,,)denotes~,~,~uand~~=A~nw~A~). 

Proof: By [26, Sect. 23, (~M.)=r,(45r)+~i=(~~>- (@,)(h;) 
X, + CY, = (oh,) + [l - (p-up) hi] CX,. Furthermore, (p - vp)(h,) = 1 - 20 
(p, tl-‘a;)/cr(cr,, a,). Also, p-up being sum of roots, (p-vp)(h,)~Z and 
cJ(P, 1) ‘cc,)>O, since u~‘cr,~A+ (otherwise U;E @,). Hence (p - vp)(h,) < 0. 
This proves the lemma. 1 

(3.5) Let d, be an index set for an orthonormal basis of root vec- 
tors of n and for each @ E d” + let b, be the corresponding root vector and 
let - @’ E A be the corresponding root. Since real roots have multiplicity 
1 we may regard AR,‘c_a+ and @I=@ for @EAR,‘. Define urb= -o,b,. 

Clearly {~1~~3+ is an orthonormal basis of n. 
For a sequence Q, = (@i ,..., Qp) with ok ~3, , we define the operator 

R,, acting on C(g, h), by 

R,(e(b@a))=e(adb,,o ... oadb,,,b@ada,,o ... ,>ad++a) (I,,) 

for b@a E [A(np)@A(n)lh. (Recall that e is defined in (2.4).) 
It is easy to see that the operator R@, which is defined by (IIj) on a 

dense subspace e([A(n ) o/\(n)]“) of C(g, h), extends (uniquely) to a 
continuous operator (again denoted by) R,: C(g, h) + C(g, h). 
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BY ~23, I,,, I,,, and I,,], we have 

S-L=-2 c R, as operators on C(g, h). (1’4) 
asiT+ 

Fix u E W. Let @,, = (/I, ,..., 8,) (p = l(u)). The element h,], E g-,{, (8, being 
real, g + is l-dimensional) is of unit norm. Define the element 

h“=e[(2 fl)“(bp, A ... A h,@a,,, A ... A air,)]. (I,,) 

By [23, Sect. 4.21, for the special case X= 0, h’ E Ker L and further, by 
123, Proposition 3.171, 

s”= c R’(h”) (R is defined to be -fi(S- L)). (II,) 
120 

Specializing 0 = r,, we get 

s”=2 &-I 1 R’(e(h,,Oa,)). (Ii,) 
/a0 

Let 1~ E W be written as 1~ = r,v, with D < w. Recall the identity (I,, ). We 
are interested in finding the value of z”. By Lemma (3.2) (I,,), and (I’,b), 
we have r” = coefficient of h” in (2 fl) C,,,rz,,,~?~O R’l(R”l(h’). (R”?(e 
(h,,Oq))). We have 

(3.6) LEMMA. With the notations as above, 

u)here k,=p(v -‘h,) and c is the coefficient of‘h”’ in Rt; ‘(h”).e(h,,@a,,). 
(Bv Lemma (3.4), k, is a positive integer.) 

Proof: By Lemma (3.4) and (I l4), the only terms contributing to the 
coefficient c” (of h” in 2 fi 1 R”(R”‘(h’). R”‘(e(h,,@a,,))) are 

n.n,,?,? 2 0 

(2fl)2”“-’ ““c’ (Rs,fi)ko-‘~ 111 - C(MR,)“‘(h“).e(h,Ou,,)l. (E) 
,I, =o 

BY PA (I,,), (I,,), (Ml3 we have Ue(bOa)) = Cdp - B3 P -PI - 
a(p, p)] e(b @ a), for a weight vector b E /j(n-- ) of weight -/j’ and a E A(n) 
such that b@aE [A(n ~)@A(n)lh. 
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Furthero(p,p)#o(p-(@,.)-n,ai,P-(@V)-n,tii),forany ldn,d 
k,, - I, since 

a(vp-n,q, z’p-n,cc,)=a(p,p)+n:a(a,,cc,)-2n’o(op,cci) 

= O(P, PI + +@,, a,) - n, d& a,)(up(h,)) 

=a(P,P)+(n:-k,n,)a(cc,,cci) 

z fJ(P, PI. 

So the expression (E) reduces to the sum 

(2Jq2"U ' 1’:: (I!,’ CaluPpka,, t’P-kai)-a(P. PI1 ‘1 

R::’ ’ “‘[Rj’j(h”). e(h,,@a,,)]. 

But R$ ’ ~“~[R~l(h“).e(h,,Oa,,)] = R~i’~‘(h”).e(6,~0~,,). Hence the 
expression (E) equals 

2 fl2"" 
( 

ho- ’ 
‘(k”) n [Q(UP-k a,, l’p-kx;)-a(p, p)lP’ 

k=l > 

R;y- ‘(h”)~(h,~@aJ. 1 

The following lemma gives the coefficient of 11”’ in Rz ‘(h’). e(h,,@a,). 

(3.7) LEMMA. Let ~7 = r,u he such that v < w. Then 

(ad b,,)k’lm ‘b,, 0 (ad ~l,,)~o 1 a,t 

in /j(g), uhere @ = ri( @,.) c A + ; k,, > 0 is the same as in Lemma (3.4) artd 
the notation b, 0 a@, for any @ = {CD, ,..., Qp) c A + consisting of real roots, 
means h,, A ... A h,$a@, A ... A a@,EA(g). 

Proof: Denote I(o) = p. Fix any positive roots 16, ,..., 6,,) ). (not 
necessarily real and not necessarily distinct) such that C,, 6,, = (@). If 
there exist h,, E g @, satisfying h, A . A h, # 0 in A”(n ) and none of the 
6,, equals c(;, then {G, ,..., 8,) = @. To prove this; consider the element 
O#h, A ... A h, A h,,E A r+‘(n ). Since 6-,+ ... +6,+cc,=(@)+or,= 
(Q,,.) (see the proof of Lemma (3.4)), by [9, Theorem 8.51, 
hl A ... A h, A h,, = beM (up to a scalar multiple). Hence the assertion, 
that { 8, ,..., s,,) = @, follows. 
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Since c(, 4 @, , we get 

for some constant r (since, by Lemma (3.4) (@)=(@,V)-oc,= 
<@, > + (k” - 1) a,). 

Consider the s1(2) spanned by {e,, f,, h ,I. Let this s1(2) act on A(g) by 
the adjoint representation. We claim that 

(ad r,) b,, = 0 

(ad hi) b,, = (k, - 1) hQL. 

(II,) 

(II,) 

To prove (I ,*), it suffices (since xj$ @,) to observe that, for BE QV, if 
/I-a, is a root then fl- (x, E @,.. (If c(, BE VA + n A + such that cx + fi is again 
a root, then cx+/?~oA+ nd,.) Of course, (I,,) follows from the definition 
of li,. 

(I,,) and (119) in conjunction with [28, Theorem 1, p. IV-41 yield 

(ad c,)~“~ ‘(adfi)ku ‘(bJ= (k,- l!)‘b,$. (1,“) 

Consider the pairing ( , ): Az’(n )@ A’(n) + @ (defined by the Killing 
form) bOa++ (b, a). By (I,,), we get 

((ad h,8)kU~m’bo,, (ad ~.,)~(~~‘a~,) =;(b,, a,). 

Using the invariance of ( , ), this yields 

(- l)komm ‘((ad rc,,)“O ‘(ad h,Jko ‘b,,, aoz,) =: 

(since (b,, a,) = 1). (Iz,) 

Further, {e,, t’,} = [f;,f,i = (e,,fi) =2/o(ri, c(,) and hence a,, (resp. b,,) 
can be taken to be (a(~,, c(,)/2) ei (resp. (a(~,, ~;)/2)f;). Now (I,,) and (Ill) 
give ( - l)!+” ‘(Lo- l!)‘(o(c(,, cc,)/2)““- ’ =Z (since (b,, a,,) = 1 ). 

Putting together Lemmas (3.6) and (3.7), we get 

(3.8.) COROLLARY. 2" =(- l)((II" 'k,, Ithere k, is as crefined in 
Lenznzu (3.4). 

Proof Use the relation a(vp - kcc,, t!p - kcr,) - a(p, p) = k(k -k,) 
o(a,, LX,) (see the proof of Lemma (3.4)). 

(3.9) Pro@ qf Theorenz (3.1). Denote by d”’ the integral 
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2’“““jUw exp(2(wp-p) h(g)) dg. Write MI= riu such that u< w. By (a sub- 
sequent) Corollary (3.13), we have (for some n”“) 

sL’ 
b.$-(-l)/$+ c nw’s”’ E Im d. 

II ’ f ,v and 
i(d) = i(W) 

Assume, by induction, that d” = (471)““’ netVmldm nd+ a@, v))‘. Of 
course, fi = (47~) o(p, cti) ~ ‘. By (I I ,) and Corollary (3.8), d”& = ( - 1)“‘) 
dn’z’v=dM‘.ko. So, 

(sincek,=2a(p'u~'C(') 
4% a;) 

and a@. a,) =i o(oc,, a,)), 

Hence the proof of the theorem is complete modulo the following 
proposition due to Bernstein, Gelfand, and Gelfand [3, Theorem (3.17)]. 
(Though their proof is in the finite dimensional situation, the proof goes 
through in the infinite dim case without any change.) 

Let a” denote the cohomology class of G/B (where G is the group 
associated to any, not necessarily symmetrizable, Kac-Moody algebra 
g(A,) and B is standard Bore1 subgroup of G as defined in (1.2)) which is 
dual to the closure of the Schubert cell BuP1 B/B. (Of course, the cell, 
being complex, is oriented. See (1.4)) 

(3.10) PROPOSITION. Recall, from (1.4) that x, (1 < i < 1) is any element 
of h* satisfying Xi(hj)=6,,,. For any simple reflection ri and any element 

UE w, 

ErzEV = c Xi(V) &)I‘. 
&.+‘I+. 

(As in [3], the notation u -+” w means that VEAL with C,U= w, and 
I(w) = l(u) + 1, where G” E W denotes the reflection a,(x) = x - x( vu) u, for all 
2 E h*. Of course, vu E h denotes the co-root defined explicitly by v” = uhj, if 
ua,=vfor any UE W.) 
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(3.11) Remark. In the notation of [3], our E” is the same as P,, I and 
that is why we have v’ instead of u ‘\I’ as in [3]. 

As an immediate consequence of the proposition, we have 

(3.12) COROLLARY. Let r,u = U’E W he such that l( 111) = I( z!) + 1, then the 
coefficient of Eli’ in .??z” is 1. 

We get the following as a corollary of the above corollary. 

(3.13 ) COROLLARY. With riu = w  as above (i.e., I( ~1) = I(u) + I), rhe coef- 
ficient of s”/d”’ in (s“/d’)(s’~/&) is (- 1)““‘. 

Proof By [23, Theorem 4.51 and [24, Theorem 1.61, there is an 
algebra isomorphism [J]: H*(g, h) -+ H*(G/B, C), such that the 
cohomology class (s”‘/d” ) E H*(g, h) maps onto ( - 1 )p’pP “i2~“‘, where 
p=/(w). (The sign (-1)“‘” “I* appears because of a different orientation 
convention, on complex manifolds, in this paper.) 

4. THE NIL HECKE RING R AND ITS “DUAL” A 

Throughout this section g = g(A,) denotes an arbitrary (not necessarily 
symmetrizable) Kac-Moody Lie algebra, associated to a Ix I generalized 
Cartan matrix A, with its Cartan subalgebra h and Weyl group W (1.1). 
Let Q = Q(h*) denote the quotient field of the polynomial algebra S= 
S(h*), i.e., Q is the field of all the rational functions on h. 

(4.1) Ring structure on QIV. The group W operates as a group of 
automorphisms on the field Q. Let Qw be the smash product of Q with the 
group algebra @[ W]. More specifically, Q I+, is a right Q-module (under 
right multiplication) with a (free) basis ‘6 .I , ,, , ,, t ,+. and the multiplicative 
structure is given by 

(d,.q,.) (S,,.q,,.) = d,.,,.(M.- ‘qr) 41, for v, 1~ E Wand qr, q,, E Q. (Izz) 

Observe that though Q,,+, is an associative ring (with unity S,), it is not an 
algebra over Q, since S,Q = Qs, is not central in QIt.. 

Let S,, c Qw be defined in the same way as Qc(, with S replacing Q. The 
ring QIy (and S,,) admits an involutary anti-automorphism t, defined by 

(~,,,q)‘=~,,.-f(v) for MOE W and qEQ. (I,,) 

Of course, t is not right Q-linear. Clearly the left action of W on Q,,+, (given 
as the left multiplication by 6,,., for U’E W) is (right) Q-linear but the right 
action is not. 
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Now, for i = l,..., 1, consider the elements 

s, = .K I, = -(6,+6..)$=~(s~,-6,,)tQ, (124) 
I I 

where Y, E W is a simple reflection and C(~ is the corresponding simple root. 
Inspired by [3], we have 

(4.2) PROPOSITION. Let MI E W and let M’ = r,, “. rc be a reduced 
expression. Then the element xi, . . . sin E Q ,+, does not depend upon the choice 
of reduced expression of iv. We define x,,. as xi, . s,“. We denote Hal X,,. = 
(.K,,.-Iy. 

Proqfl For any XE~*, we have 

We assume, by induction on II, that for any u with I(v) <n and any two 
reduced expressions v = r,, r+ = r,, . . . rlr (p = l(v)), we have x,, . . . Y+ = 
I II . . . I,~ (which we denote by x,.) and 

for any 1 E h*. (1x1 

(See Proposition (3.10), for the notations II -+’ D and \I”.) 
Fix M’ = llrj with II< H’. Now 

x.K,.K,= 
[ 
.K,.(V ‘x) - c .K,~~(V”‘) x, 

Ii’ +’ I, I 
(by I,,)) 

xs,.x, = s, x,(riO ‘1) -.K, . v~ ‘X(h,) - C x~,~.Y,~(I+‘) (by I,,)). 
u’ -1’ , 

(I,,) 

Further, by [6, Theorem 1.11, 

(u’: U’ L v and u’r, > u’} L {II: II L 11’ and u # I) )-, 



HECKE RING 211 

under the map U’ H U’Y; and, under this correspondence, V’ H 11’. Hence we 
get (by I,,), exchange condition [ 13, Lemma 3.1 l(c)] and the fact that 
x2=0) 

xs, .K, = .K,..K,(I(‘ ‘x) - 1 .K,~(V’). (1%) 
u -’ II 

In particular, if ii‘ = or, = u’r, with I(c) = I( c’) < /(w), we have 

XS,..K, - .K,..K,(W ‘x) = X.K,,,.K, - .K,,~.K,(M’ ‘x). (129) 

By (a subsequent) Proposition (4.3)(c), we can write 

(I,,) 

and 

(131) 

for some q,,,. and 4,,, E Q. Substituting (II,) and (I,,) in (Iz9), we get 

In particular, for any it.‘< it’ and any 1 E h*, we have 
( 11’ ‘- ‘x - \V ‘x)(q,v, - q,,.,) = 0. But W + Aut(h*) being a faithful represen- 
tation, we get q,v, = y,,., for all W’ < $2’. This proves, by (I,,) and (IX,), that 
.Y,..Y, = .Y,.,.Y, and hence, by (I,,), the induction is complete. 1 

As a corollary, we get 

(4.3) PROPOSITION. (a) X,:X,,, = s,.,, , if’ I(W) = 1(u) + /(NJ) and 
x,. s,,. = 0 othenvise. 

(b) ~.s,,.=I,,(~~~‘~)-~~_,,, .u,~(v”)~ .for uny 1 E h* and H’E W. 

(c) Write 

x,. I =cq ,,,, d,,. I ,for some (unique) c,..,,. E Q. (132) 

Then (cl) c,.,,, = 0, unless MI d o, and (c? ) c, ,,,. = n, E ,,~ tA, n d + v ~ ‘. In par- 
ticular, c,.,, # 0. 

Proof (a) Follows from Proposition (4.2) and the exchange condition 
[ 13, Lemma 3.11 (c)] together with the fact that of = 0. 
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(b) is nothing but (Izb). 

(c, ) follows from [6, Theorem 1.11. Let o = Y,~ . . . r,” be a reduced 
expression. To prove (q); observe that by the definition of x,. I, c,,,,. = 
Cain(rina,n- ,I.. . (yin ... ri2cI,,)]~‘. But then, by [26, Sect. 23, (cl) follows. 1 

(4.4) Remark. Observe that (cz) does not depend upon 
Proposition (4.2) in fact we use it to prove Proposition (4.2). 

The elements (S,,.} ,I’E w are a right (as well as left) Q-basis of Qw. But 
also 

(4.5) COROLLARY. Define the matrix C= (c, ,,,,. ), .,,, t ,.,,, where c ,,., ~ is 
defined in (IX2). By Proposition (4.3)(c), C is a “lower triangular” matrix 
with non-zero diagonal entries and hence, in particular, {x,,.},,.~ w, is a right 
(as well as left) Q-basis of Qw. 

Now, clearly, Q has the structure of a left Qwmodule. defined explicitly 
by 

(6,,J) 4’ = NW’) for MI E W and q, q’ E Q. 

Our main result centers around the subring R c Q w, defined by 

R= {~EQ,,: xScS}. 

Obviously S,C R. Furthermore, one can easily see that X, (and hence x,., 
for any MJE W) belong to R. By applying the involution t, one gets another 
subring R’ of Qw. One has the following crucial structure theorem for R. 
The proof of (a) below can be simplified in the finite case using the theory 
of “harmonics.” 

(4.6) THEOREM. (a) R is free as a right (or left) S-module. In fact the 
elements {x,. f ,llt w form a right (or left) S-basis of R. In particular, any 
x E R can be uniquely written as 

x = c xw PM with some p,, E S. 

(b) Furthermore, one has R n R’ = Sw. 

(4.7) Remark. Note that R is a finitely generated ring over @, since it is 
generated by {x,}, s ,<, and S. 

We need a few lemmas to prove the above theorem. 

(4.8) LEMMA. Let e # w E W be such that w fixes pointwise a hyperplane 
Din h. Then w=vr,v ‘, for some v E W and for some simple reflection r,. In 
particular, I7 is the real-root plane Ker(ucr,). 
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Proof: Step I. We first prove that, as an element of Aut h, u’ is semi- 
simple. Since MI fixes a hyperplane in h, the only other possibility is that 
M’ E Aut h is unipotent and, in fact, (n - 1)’ = 0, i.e., n2 + 1 = 2~. Multiply- 
ing by n- ‘, we get IV - 1 = 1 - M’~ I. Considering the (dual) representation 
of W in h* and evaluating at p, we get -(p - \rp) = p - ii’m ‘p. But, by 19, 
Proposition 2.51, p - v ‘p (and p - n‘p) are both sums of IOr) positive 
roots. Since, by assumption, M‘ #e, we get a contradiction. So 1~ is semi- 
simple. 

Step II. We want to show that f7 is a real-root plane, i.e., Z7= 
Ker(oa,), for some D E W and simple root CI,. 

We need some notations. Let h, be the real points of h. (In the 
Definition (1.1) one can take any field k of characteristic zero in place of C 
and define g,, h,, etc.) As in [13, Sect. 3.121, define 

C= fhEhR:~,(h)>O,forall lbi61) 

C”= ~/ZE h,: cr,(h)>Ofor all 1 <i<1j. 

Set 

x= (J 11.c and p = u L’ . p. 
I’ t CC’ I t l+’ 

The Tits cone X is a convex cone by [ 13, Proposition 3.121. Let Urw = 
nn h,, n being a hyperplane, h,\l7, has exactly two connected com- 
ponents n; and Hi. Since n is semi-simple and W leaves an integral lat- 
tice in h, stable, the only eigenvalue of 11’ E Aut(h,), different from 1, is - 1. 
Since x” is W-stable, it is easy to see that Z7$ n J? and fl, n x0 are both 
non-empty. Choose a point h + (resp. h ) E I7,+ n x0 (resp. Ui n x0). The 
line joining h + and h intersects the plane I7, in a point (say) h”. Since 
I76 n x” and fl, n x0 are both open in h, (in the Hausdorff topology) 
and x’ is convex, there is an open subset N (containing 1~‘)) of n, contained 
in X. In particular, X being a cone, Z7, itself is contained in X. Further, 
since any point of X’o has no isotropy with respect to the W-action [ 13, 
Proposition 3.12(a)], we get that 

Uox c x\J? = u v( Ker z,,,,~). 
I t CC’. 
IC,C/ 

Since I7 is a hyperplane, we get that n= Ker(vcc,), for some t: E W and 
some simple root c(;, as required. 

Step III. Finally, we want to show that M’= vriv ‘. The element 
11 ‘IVU has fixed plane L’ ’ I7. which is the same as Ker ~1, by Step II. Choose 
a point hg Ker rrlhoa, such that a,(h) >O for all .j# i. By [ 13, 
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Proposition 3.12(a)], the only non-trivial isotropy element (with respect to 
the W-action) at h is r,. This shows that ti- ‘MJ=Y,, proving the lemma. 

(4.9) LEMMA. Let p he an irreducible polynomial ES and let 

(RI 
\tAere p,,.~ S (,for all M’), any p,, is either 0 or co-prime to p and p,, #O,for 
some 11‘ of length k. Therl p is a real root. 

Proc$ Rewrite .Y = C ,(n ,<k PI< -y,s. = C,,,,.j.k qu 6 ,,., where q,,, E Q. In fact, 
y,, has in its denominator only products of real roots. By Proposition 
(4.3)(c), for l(w,)= k, we have q,, = P,~‘c,,. I~,(. I, where c,,. I ,,,. I = 

rI,.w., n-J,” ‘. 
Define v’= U,-, ,t.,l.Zc. Ker( c‘ - 1 ) (r: - 1 acting on h). We first prove that 

Z(p) c V, where Z(p) denotes the zero set of p. If not, pick any h,, E 
Z(p)\ V. In particular h,, has no W-isotropy. Pick 1~~~ of maximal length k 
such that p,,,, # 0. There exists a polynomial p. E S such that pO( H’~, ’ ho) = 1 
and pO( 1‘ ‘A,,) = 0 for all those (finite in number) ~1’ # rvU satisfying qu. # 0. 
Evaluating .YY’ p. at 11,. we get from (R), p,,,,(h,,) c,,,, I,,,~~ l(hO) =O. (Since h,, 
has no W-isotropy, c,,(, I ,,,.” ](A,) makes sense and, of course, is non-zero.) 
Hence p,,,,(h,) =O, i.e., p divides p,,,,,, which is a contradiction to the 
assumption. So Z(p) c C’. 

Since p is irreducible, we get that Z(p) c Ker(c - 1 ), for some I? E W and 
moreover Z(p) being a hyper surface in h, Ker( zl- 1 ) is a hyperplane. The 
lemma follows now by Lemma (4.8). 

(4.10) LEMMA. Let ( p,, ] ,,II , G k he polynomials ES such that 

CC ,(,, , ~ A p,, x,, ) S c CI, S, ,for some simple root a,. Then cx, divides all the p,,.‘s. 

Proof Denote by .Y = ( I/r,) x p,, s,, E Q,+,. Write .Y = .Y + + .Y , where 
.I-+ (resp. I ) = ;(.Y + ~S,.Y) (resp. f(-~- 6,s)). Since .Y+ again satisfies 
.Y+ SC S and, by Proposition (4.3), s + is of the form (l/xi) C pi s, , for 
some pi. E S (a similar statement holds good for .Y ), we can assume that 
either cS,s = .Y or 6,s = - X. Write 

where, as in the proof of the previous lemma, we have 

Y,,, = Pw c’,,. 1.11, ’ if l(\c)=k. (I,,) 
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Fix \I’,) of length k such that p,,,#O and rewrite (I,,) 

where 

Also fix a point h,,~ Ker cc,n C (C is defined in the proof of Lemma (4.8)) 
such that I?, does not lie on any other real-root plane and choose a 
polynomial P~)ES such that p,Jtt’; I h,) = 1 and p. at it’-‘h, has a “deep” 
zero for any (finite in number) iv such that q,,. # 0 and M’ # )I’~, r,i~~. (Since 
W-isotropy at h,, is precisely { 1, r,), this is possible.) 

Curse I. (5,s=s. In this case, by (I,,), we have -(r,q ,,,” )=q,,,,,]. In par- 
ticular, r,\t’” < u’~,. Choose a reduced expression bco = Y, . r,, rir 1 (since 
r, bt’o < b2so, this is possible). By (I,,), (13h), and Proposition (4.3)(c), we 
have 

(I,,) 

Evaluating (cI:.x). p. at /z. (since cr,(h,)=O, po(~t~o ‘ho)= 1, and p. has 
“deep” zero at points other than ~1’~ ‘ho), we get, by (I,,), p,,,,(h,) =O. 
Hence zj divides p,,,,,. 

Case II. 6,.u = - s: In this case, we have r,y ,,,,, = q, ,,,,,,. In particular, 
again we have r,kt’o < )I’~. Analogous to (13,), we get 

where fi is the same as in (I,,). 
Considering c(;.Y( ~~~ ‘c(, . po) and evaluating at h,,, we get again 

p,,,(h,) = 0, i.e., z, divides p ,,,,, in this case as well. This proves the lem- 
ma. 1 

(4.11) Proof of Theorem (4.6)(a). Let .X E R. By Corollary (4.5), we can 
write x = (l/p) &,V,sk p,~ ,,,, for some p, (p,,.} ,~ E S. We want to prove that 
p divides p,,,, for every MY. We can assume, of course, that p is irreducible. 
By Lemma (4.9), if p does not divide some p,, then p has to be a real root 
(say) vu,, for some v E W and simple root ~1,. Since 6,-, R = R and 
6,.(C,, Sk,, ) = C,. SX,, (as is easy to see), we can assume that p = a,. But 
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then Lemma (4.10) proves that x E C,, S.K,,.. The rest is clear from Corollary 
(4.5) together with Proposition (4.3). 

(b) Fix x E R n R’. Since .Y E R, we can write, by (a), x = C p,, x ,,., for 
some P,~ E 5’. Express x = x q,.d,, , where q,vE Q. Upon multiplying by a 
suitable polynomial, we can assume, without loss of generality, that all the 
q,,.‘s have only one fixed real root (say) UCI, in their denominators. Further 
since 6, -I R = R, 6,. ~I . R’= R’, and b,-l. S,,= SIV, we can further assume 
that all the q,,‘s have only c(~ in their denominators, i.e., 

x =; c p,,s?,, for some p,, E S. 
i 

We want to prove that all the p,,.‘s are divisible by c(;. Analogous to the 
proof of Lemma (4.10) considering .Y = +(.x + 6,x) + 4(x - 6,,x), we can 
assume that either 6,s = .Y or 6,,x = -.Y. 

Case I. 6,~ = X. In this case, by (I,,), we have 

PC = - r,(Pr,). 

By (I,,), we get (taking t) 

(139) 

Fix h, E Ker c(,, such that h, does not lie on any other real-root plane. 
Choose a function p. E S such that p,(h,) = 1 and p,Jwh,,) = 0 if 1~ # e, r, 
and p,V #O. (This is possible because, by the choice, isotropy at h, is 
precisely (e, r,).) Considering a,(~‘. po) and evaluating at h, we get (by 
(I,,) and (I,,)) p,(h,) = 0, i.e., CL, divides p,. To prove that 0~~ divides p,V for 
general M’, we can consider ~‘6,~ and argue as before. 

Case II. S,,X= -.Y. In this case, by (I,,), we have 

P, = r,P,,. (I,,) 

Fix h, and p. as in the previous case. Considering CL,(.X . pO) and evaluating 
at ho we get (by (I,,) and (I,,)) p,(h,)=O. So again cli divides p,. This 
completes the proof of (b) part as well. 1 

(4.12) DEFINITION. The elements ix,.} have much in common with the 
standard basis of a Hecke ring. However, .x:, =.x; = 0. This and a further 
nilpotence condition, in its action on n (Sect. 4.19), persuade us to refer to 
R as a nil Hecke ring. A departure from usual conditions is that S is not 
central in R. 
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We describe the left action of the Weyl group Win terms of .U,,. basis (Y,, 
is defined in Proposition (4.2)). 

(4.13) PROPOSITION. Fix a simple wflection r, E W. The11 

Cuse I. r,w < )I’. In this case only L:’ with the property that 2;’ + M‘ and 
2:’ + r,u’ is r,w. Hence, by Proposition (4.3), the above sum reduces to 
- 2-u,,. + .r,,. = - .u,, 

Case II. r,w > 1~. In this case, 

Further, as in the proof of Proposition (4.2), it is easy to see that (II’: 
11’ +” MI and ~1’ + r,v’i + - jl;: ~1 +I’ riw and 2’ # \i,), under the map 
11’ H r,D’. Moreover, under this map, V’ corresponds with r,\l’. (It is clear 
that r,(v’) is a positive root.) Hence, by (I& we get the required result. 1 

(4.14) Co-product structure on Q,, . Let Q,,. Ov Q,+. be the tensor 
product, considering both the copies of Qw. as right Q-modules. Define the 
diagonal map A: Q ,+. + Q ,+. Ov Q bl.r by 

A(6,,q)=6,,qO6,, =8,,06,,.q for \rE Wand qEQ. (I,,) 

A is clearly right Q-linear. Moreover, it is easy to see that the co-product A 
is associative and commutative with a co-unit E: QM. -+ Q, defined by 
46,,.q) = 4. 

We introduce an associative product structure, denoted by 0, in 
Q,+. O. Q M., so that A is a ring homomorphism. Define 
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In the next proposition, we describe the diagonal map A in terms of 
(.Y,, ). basis. 

(4.15 ) PROPOSITION. For any’ u’ E W, bve have 

A(.?,,.) = c X, 0 .U,( PC:,) 
u, LJ G ,I 

for some homogeneous pol.vnomials pi;, ES qf degree I(u)+/(u)-[(uj). In 
particular pi:,,. = 0 unless I(u) + I( 0) 3 I(bv). 

Proqf We prove the proposition by induction on I(w). For MI= rir we 
have 

A(S,)=.U,~.U,(~A,)+~,.OS,~+.Y,,~S,,. (14,) 

Now take arbitrary ~-3 and write M’ = M”r,, for some simple reflection r, so 
that TV’ < 1~. Since A is multiplicative, we have A(,?,,,) = A(.U,,.,)oA(.U,), 

A (S,, ) = c (146) 
l,‘.1,’ < w  

(by induction hypothesis). 
It is easily seen, from (I,,), that 

for any s, ,V E Q,+,, IV(, E W, and q E Q. 

Hence from (I,,), we get 

A(.U,,)= 1 .r,,,6,,~~~,.,6,.,(r,pl’::,,)$- 1 S,,,@X,,p;.:,.. i 
I,‘.L.’ s 11.’ 1 u’.P s w’ (1 

= c .U,.(Sr, - S,.) L 
u’.P 5 w r*, U’,P s I,.’ 
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3(-f,,.) = c (.u,,,,,O-~,,,,(r;P:::,.)C(, 
r,‘.,‘< I,’ wllh 

14’ < !1’1., and 
I < L.‘l< 

+ 1 S,,,@ .f,.&-,p::~:,~) + 1 .u,,,,,o .Y,.,(r, /It’::,..) 

I,‘., s I,’ unth I,‘., ‘s pi \\lth 
I.’ < lv-rl I,’ < 11’1, 

- C .~,,,~.u,,E,,(p::::,,) (by Proposition (4.3)) (I,,) 

where E,, is the classical BernsteinGel’fanddGel’fand operator [3, Sect. l] 
acting on S and defined by E,<(p) = (p - r, ~)/a,, for any p E S. 

The proposition follows now by observing that E,,: S + S decreases the 
degree by 1 and further using [6, Theorem 1.11. 

(4.16) Retmrk. We will determine {pi,,.) more specifically later 
in (4.3 1 ) and (4.32). The fact that Proposition (4.13) (resp. 
Proposition (4.15)) gives the Weyl group action (resp. the cup product) on 
the cohomology ring H*(G/B) would be clear in the next section. 1 

Now we dualize the concepts (and results) introduced (proved) so far in 
this section. These dual objects will play an important role in determining 
various structures on the cohomology of infinite dimensional flag varieties. 

(4.17) The algebra 52. Regarding Qlc. as a right Q-module, let 
52 = Homa( Q C,-r Q). Since any $ E Sz is determined by its restriction to the 
(right) Q-basis [S,, i I, t ,+. and conversely, we can (and often will) regard 52 
as the Q-module of all the functions: IV-+ Q with pointwise addition and 
scalar multiplication, i.e., 

Furthermore, 52 inherits a (commutative) Q-algebra structure with the 
product as pointwise multiplication of functions on IV. In fact, this mul- 
tiplication is precisely the one obtained by dualizing the Q-linear co-mul- 
tiplication A in QItJ (see (I,,)). 

More subtly, L2 also has the structure of a left Q,,-module defined by 

(.v.*) y=l)(.u”y) for s, J’ E Q II. and $ E C?. (I,,) 

Moreover the action is Q-linear. In particular, we have the Weyl group 
actiotz as well as the He&e-type operators A,, (wl~ W) on Sz, defined by 

WI) = d,, $ (IS”) 

A,,ti=.u,,.$ for )vE Wand $EL?. (IS, 1 
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(Recall that x,, is defined in Proposition (4.2)). Taking M’ to be one of the 
simple reflections Y;, from (I,, ), we get 

We would generul1.v ahhreoiate A,, by Ai. 

(4.18) Remark. Observe that Q is a Q-module (under (I,,)) as well as a 
left Q.,-module (under (Id9)). Further, Q injects into Q u by q + 6,,q (for 
q E Q); in particular, R inherits a Q-module structure (from the restriction 
of Qwmodule structure). But these two Q-structures are different, in 
general. Whenever, we refer to 52 as a Q-module, we would mean the first 
Q-action. 1 

We define the following important subring /1 of Q. 

(4.19) DEFINITION. n = {$ E Sz: $(R’) c S and $(.U,,) = 0 for all but a 
finite number of u’ E W}. (R is defined just before Theorem (4.6) and X,,. is 
defined in Proposition (4.2).) 

One has the following 

(4.20) PROPOSITION. (a) A is a S-subalgebra ofsZ. 

(b) A is a ,free S-module. In fact .(t”‘},,, is an S-basis of A, where 
<” E l2 is d&ned (uniquelja) by t”(X,,) = 6, ,,,,,, for ~1, 11 E W. 

(c) A is a stable under the left action of R c Q #.. 

Proof: To prove (a), use Proposition (4.15). Since, by 
Theorem (4.6)(a), {X,, I,,, is a right S-basis of R’, we get (b). Again using 
Theorem (4.6)(a) and Proposition(4,3)(b), (c) follows. 1 

The matrix D (defined below) is very basic to our paper. 

(4.21) The matrix D. Define the matrix D = (d, ,.,, )V,,,,. ,+. by d, ,,,,, = 
c“(w). The relevance of D to the cup product and Weyl group action on the 
cohomology of infinite dimensional flag varieties will be clear in the next 
section. 

(4.22) Remark. In the finite case, the matrix D can be extracted from 
[3, Theorem 5.91 (see Sect. 6 of this paper). 

(4.23) DEFINITION. Let a=aw be the space of all the functions B: 
Wx W+ Q, with the property that there exists a d,> 0 such that 
B(v, ~3) = 0 whenever I(u) - l(w) > d,. g is an associative algebra over Q 
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under pointwise addition and convolution as multiplication (i.e., 
B,~B,(~,~)=~,B,(u,u)B~(u,u~), for B,, B,E:%~). 

We can think of 98 as an appropriate subspace of all the W x W matrices 
over Q. Under this identification, the multiplication in .9 is nothing but the 
matrix multiplication. 

We collect various properties of [r’ 1 in 

(4.24) PROPOSITION. For any u, w E W, we haoe 

(a) {“(bv)=d,.,,, =O, unless u< w and [“‘(w)=d,,..,, =n,.,,. lAJnJ+ V. 
In particular, d,.,,,. # 0 and the matrix D (dtlfined in (4.21) belongs to .B. In 
fact, it is “upper triangular” with non-zero diagonal entries and hence inuer- 
tihle. 

(b) A,;” = 5”” if r,\t’ < ~1, =0 otherE,ise. 

(c) ~“(rv)=~,-u ‘z, (1, is dejined in (1.4)). 

(d) t”(w) is u homogeneous polwomiul sf‘ degree I(u). 

(e) C’= D ‘, where the matrix C is defined in Corollary (4.5), C’ 
denotes the transposed matri.u, and D ’ denotes the inverse of the element 
DE d,,,. 

( f ) T”i”’ = xu., < ,v p;:r5”‘> IThere pz:,. is defined in Proposition (4.15). 
We recall that pi::,. is a homogeneous polynomial qf degree l(u) + l(u) - I( ~$1). 

(g) r,<“‘=t” {/‘ r,w>w’, = ( - ‘2’ ‘E,) ;rt’r + i’” -c, ,,,, _, I, cti(V’) 5’ 
othern~ise. 

(4.25) Remark. We will give a characterization of the matrix D in 
Proposition (5.5). 

Proof: (a) Assume that v 4 M’ and assume further, by induction, that 
for any u < H’, we have [“(lo = 0. By Proposition (4.3)(c), we can write 

d,, I= n I’ x,,. I + c q1,6L,mI for some q,EQ. (I,,) 
I’t II’ “I 1>.1- 1 I, < I, 

Taking t, we get 

This proves (a). 

(b) Follows by dualizing Proposition (4.3 )(a). 
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(c) If \I’ = e, (c) follows from (a). Otherwise write u’= rju, for some r, 
so that I: < K’ and assume, by induction, that (‘I( a) = x, - o- ‘xi. Now 

(by induction). 

But A,i’l=6,., by (b). Hence we have 

i’“(w’)=(5,,,(u %,)+x,-o ~‘x,=x,-$1’ Ix,. 

This proves (c). 

(d) If H‘ = e, there is nothing to prove. So, assume that w # e and 
write II‘ = r,w’, for some r, so that $2” < W. Now, by (b) and (15J, we have 

(A,r”) )1’, _ LfV(M’) - i“(M”) 
(W’ $1 

=o 

if r, 1: < 11. 

But, by induction, we can assume that, in the case r,u < o, tq’(w’) is a 
homogeneous polynomial of degree I(riu), and also ~‘(Lv’) is a 
homogeneous polynomial of degree I( a). This proves (d). 

(e) Since D is invertible, it suffices to show that D. C' = Id. Fix 
u, 12‘~ IV. By definition, <“(.\-,.)=S,,.,,.. But by (I,,). s,. I=CC~,,~CS,, I, i.e., 
2, = C c?~,c~.,~,. Hence t”(.f,) = a,,.,,. = C,, cl,,,,~,,,,,. This proves (e). 

( f ) Follows easily by dualizing Proposition (4.15). 

(g ) Observe that, by Proposition (4.13 ), we have 

The rest of the proof is along the lines of the proof of 
Proposition (4.13). i 

The following lemma is trivial to verify. 
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(4.26) LEMMA. Let 11/,, II/: ~52, then 

Ai(~I'~~)=(A,J/I)~2+(rilCII)(AilCI?). 

More generally, by induction on /(M,), we get 

(4.27) LEMMA. Let I$‘= r,, r,,, be u reduced expression. Then for an? 
$, , Ic/2 E Q, bt’e huue 

A,,($,.$,)= 1 A,,,““‘/,(, ‘.” q .‘. ,,AJ$,) 
0 c ,’ < II 

IS,,<’ ‘<,ps,, 

. (A,$: .” ‘A&) 

tchere the notation A, means that the operator Ai is replaced by the WeJll 
group action r,. 

(4.28) COROLLARY. For UHJ w E W and t,b E Q, we have 

ProoJ By Proposition (4.24)(b), (g), and Lemma (4.27), we get 

A,,.(i”.rC/)=(~cS”).(A,,.5)+ c (r,,...A,i...r,,,i~l) 
I s;s,, 

.(A,, .. ,>,j;,c ... ,.A,,,$) 

where w = r,, . r,,, is a reduced expression. Thus 

A,,(;“.~)=(,~i’,).(A,,.~)+ c CA,,(r,,+, .. r,,,P)l (A,,.,$). 
those I < , G ,z such that 

w, = r,, i,) rc IC 
reduced 

(I,,) 

By Proposition (4.24)(c), it can be easily seen that 

A,,(r;,+, . . f r,“<“) = x,(v”) where ~1,~~ ’ 2 N’ ‘. (1%) 

Substituting (I,,) in (I,,) and using [3, Proposition 2.81, we get the 
corollary. 1 

As an immediate consequence of Proposition (4.24)(a) and (b), we get 
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(4.29) LEMMA. Let II/ EQ. E.xpress $ = C,,. q”t”‘, ,for some (unique) 
q”‘E Q (infinitely many of q”“s could he non-zero). Then q” = (A,,. I $I) e. 

The following proposition follows easily from Corollary (4.28) and 
Lemma (4.29). 

(4.30) PROPOSITION. For any UE Wand simple reflection r,, we have 

More generally, we have 

(4.31) PROPOSITION. (generalized cup product formula). For any 
u, w E W, we have (by Proposition (4.24))(f) t”t” = XV ,,,, G u p; ,,,, ?j”, where p;,,, 
is a homogeneous polynomial qf degree I(v) + l(w) - l(u). Write u- ’ = 
ri, r,” as a reduced expression, then 

where m = I(w). 

Proof Follows easily by combining Lemmas (4.27) and (4.29) together 
with Proposition (4.24)(a) and (b). 1 

Recall the definition of the matrix D = (dl,,,I.)L,,,,.S ,+, from (4.21). 

(4.32) PROPOSITION. (a) Fix WE W. Define two matrices P,,. and 
D,,.ES?~, by DJu, u) = 6,,,d,.,,. and P,.(u, u) = pt.,,, for u, VE W. Of course, 
by definition, D,. is a diagonal matrix. Then explicitly, 

P,.= D. D,: D-‘. 

(b) For u,v E W write 

(IS,) 

where g:,,, is a homogeneous polynomial of degree f(u) - l(w). (This is 
possible by Proposition (4.24)(g).) For a fi.lced w E W, define G,, and S, E aw 
by G,.(u, II) = g;;,, and S,.(u, II) = 6,,,,.. Then 

D.S,,,D-‘=G,.. 
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Proof: Since p:;.,, = 0 unless 216 21, we get P,, E .$‘,,: 

(P,.D)(u,u) = c PJU, M”) D(k, u) 

= 1 p::::, d,,.,d 

= d,,.,,. d,,., by Proposition (4.24)(f) 

= (D. D,, )(u, ~~1 proving (a). 

By (I,,) we have d,,,,. I~=C,,., g;:,,., d,,,., , i.e., (DS,,.)(u, r)= (G,,.D)(u, 0). 1 

To conclude the section, we make the following 

(4.33) DEFINITION. Recall the definition of the S-algebra A from (4.19). 
For any subset Xc ( l...., I) and let W,Y c W be the subgroup of W as 
defined in ( 1 .l ). We dqfine A” to he the S-suhalgehra of A, consisting of W,y 
invariant elements in A. (Of course the W-module structure, in particular a 
WY-module structure, on A is the one given by (I,,).) 

The following lemma describes the structure of A.‘. 

(4.34) LEMMA. A"=C,, t w.~ St’ ( W:. is defined in ( 1.1 ). In particular, 
A ’ is a ,free module over S. ’ 

Proqf: Recall that W,\. is characterized as the set of all those 11’ E W such 
that H‘ is (the unique) element of minimal length in its coset W,y~s. In par- 
ticular, for any i E A’, r, 1~ > u’ for H’ E W:.. Hence, by Proposition (4.24)(g), 
5” EA.‘, for any M’E W:. 

Conversely, take 5 E A,’ and write (Proposition (4.20)) <=x,, p”t”, 
where all but finitely many p”“s are zero. Fix iE X. Since ri(: = 5. we have 
A,5 = 0. This in particular (by Proposition (4,24)(g)), gives that p”‘ = 0, 
unless r,\i’ > H’. So any N*, with p”’ # 0, belongs to W,\,. 1 

(4.35) Remarks. (a) In the next section, we will see that Co OS A ’ is 
isomorphic with the cohomology algebra H*(G/Px, C), where G is the 
group associated to the Kac-Moody Lie algebra g and P, is a parabolic 
(corresponding to the subset A’) in G. Further, when X= @, the 
isomorphism is W-equivariant. 

(b) Many concepts and results in this chapter can be extended (with 
suitable and easy modifications) to an arbitrary finitely generated Coxeter 
group W with a specified set of Coxeter generators and also equipped with 
a representation satisfying root-system condition, as given in [7, Sect. 23. 
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5. MARRIAGE OF THE SECOND AND THE FOURTH CHAPTER 

Throughout this chapter, g = g(A,) would denote an arbitrary sym- 
metrizable Kac-Moody Lie algebra with Cartan sub-algebra h and Weyl 
group W. 

(5.1) Recall the definition of d, 8 harmonic forms 
(s;; j ,, t c,-c C(g, h) from Section 3 (case X= 0). (s; is the unique cl, 6 har- 
monic form such that jBr, ,BjB s;; = d,,,,,., for all D E W with I(o) = [(MI).) Also 
recall the definition of the map q: Ker S + C{ W), from Theorem (2.7). 

Consider the function fi: W x W -+ @, defined by &o, ~3) = $sb)(w’). We 
want to relate the function b with the function D introduced in (4.21). 

(5.2) PROPOSITION. For atz~~ D, M’E W, B satisfies the followkg: 

(a) B(v, M’)=O, $I(M’)<I(u) and L:#M~. 

lb) &v t(‘)=n,..,,. 13 ,j+ v(h(p)), where h(p) is the unique eletnenr 
of h safkfving x(/~(p)) = cr(x, p), for all 1 E h*. 

(c ) For an?’ simple wflection r,, 

d(r,, K,) = (x, - 12’ ‘x,) h(p) (x, is defined in (1.4)) 

(d ) Cup-producr formula 

where br E UI( Wl is defined /I), bL.(\tt) = a(t), M’), ,for any 21, \VE W and 
brt 8l.1 W + @ denores rhe,funcrion, ohrained !I), rhe point\iYse multiplicution 
of’ brJ und d”. 

Proof: (a) and (b) follows easily from the definition of i?, by observing 
that X,s, R’(h”‘)EIm L (see (3.5)). 

(c) We show that 

(1%) 

where I, E g* is the element satisfying i,,,, = xi and xils, = 0, for any root a. 
(d, denotes the differential (of degree + 1) of the co-chain complex 
Ck, a=).) 

We clearly have i(h)(d,(f,)) and ad(h)(rjg(ji)) equal to 0, for all 11~ h. 
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Hence cl.& i,) E C ‘(g, h). Further dd,(j,) E C’(g, h) and C’(g, h) can be easily 
seen to be 0. So d&j,) is d, r7 harmonic. Now 

~~,(ij)(e,.f,) = - x,(h,) = -hi., for all 1 6 i,j 6 1. (I,,) 

Moreover, by Theorem (3.1) and the expression of .F” as given in (I’,h), 
we have 

.C(e,, .t;) = 
4x,, cc,) fl 

471 
e(h,, 0 u,,Ne,, ./;I, i.e., 

since lle,ll’= ll.fJl’=&. 
I’ / 

(I,,) 

Combining (Is,) and (I,,,), (I,,) follows. Further, it is easy to see that 

(d,, h,, and u0 are defined in (3.5). 
Let @,, =A+ nwd = [p, ,..., B,,) (p = I(\$,)). Recall the definition of 9 

from Lemma (2.4) 

= yiFj 4x,3 @I e(h,). (itao) e(h,,, A ... A hljp)) 
i 

(by the definition of q) 

=,!, 4%,,b,)4h,,, A “’ A h&l 

=a(X,,P-“‘I’)e(h,,, A “’ A h,j,,) since C j3; = p - ,zsp. 

Hence rj(s,;‘)(~) = (x, - w ‘x,) /z(p), by the definition of tj as in (2.7). This 
proves (c ). 

(d) Since br8b” E 2 ,,[.) , (by Lemma(2.11) and Corollary (2.14)), 
we have 
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for some constants :‘I’. Let p0 be the minimum integer, such that 2”” # 0, for 
some u’~ of length pO. Then p0 > I(u). For otherwise, by part (a) of this 
proposition, we would get, by evaluating (I,,) at M’“, z”~~“‘~( M’“) = 0, which 
is a contradiction by part (b). Exactly the same argument shows that 2” = 0 
for all U’E W with 10~) = I(u) and u’ # ~1. To determine :I’, evaluate (16J at u 
to get brf(o)=?‘. Finally, by Theorem (2.12) Gr C{ Wj z H*(g, h) as an 
algebra. In view of Proposition (3.10) and [23, Theorem 4.51 along with 
[24, Theorem 1.61, the (d) part follows. 

(5.3) LEMMA. Let V# M’E W. Then (tq- wxi) h(p)#O, for some 
1 <i<I. 

Proof: Define h,* = {x~ h*: X(h,) =O, for all 1 did 1). Clearly h,* n 

I:=, C)xi = (0). Hence, by dimension count, h,* + xi=, @xi = h*. Assume 
that the lemma is false, i.e., x,(o -‘h(p) - ~9~ ‘h(p)) = 0, for all i. Further 
x(u ‘h(p)- H-- ‘h(p)) = 0, for any x E h,* (since up’h(p) - M’- ‘h(p) lies in 
the span of (1~~) ,<,<,). Hence u-‘h(p)=w -‘h(p), which gives v~-‘p= 
1~ ‘p. This is possible only if v = ~1, by [9, Corollary 2.61. 1 

(5.4) DEFINITION. Recall the definition of the matrix D from (4.21), 
which can also be viewed as a function: W x W + S. Fix any h E h. There is 
an evaluation map evh: S + C, defined by ev,(p) = p(h). We define the 
function D,,,,,,: W x W + @ hi 

D,,(u, w) = ev,J D( v, w)). 

We prove the following characterization of D,(,,,. 

(5.5) PROPOSITION. Let E: W x W + C he any function satkjjing 

(1) E(v, w)=O iff(u~)<l(v) and w#v. 

(2) E(w, ~1) = Dh,,,)(w, w) for all U’E W 

(3) E(r,, M’) = Dh,,,,(ri, ~$1) for all simple reflections ri and all M’E W, 
and 

(4) the cup-product formula holds for E, i.e., 

FE“= c x,(v’) E” + E(ri, v) E“ 
I( +’ II 

for all r, and u E W. 

(The notation E” is similar to the one in Proposition (5.2)(d).) Then 
E = D,,(,,,. 

ProoJ We prove the proposition by induction on I( v, ~1) = I(w) - f(v). 
For (v, uv) with 1(0, ~1) ~0, by (1) and (2) and Proposition (4.24)(a), we 
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have E(u, w) = D,,,,(u, M’). So assume that E(u, M’) = D,,,,,(v, w), for v, M’ 
with I(u, w) < n and let ( vO, M’~) be such that I(o,, ~2~) = n + 1. We have, by 
(4), [F’(w,) - E”(v,)] E““(wl,) = C,., +?,, x,(v”) E”(M’~). By induction, 
E”‘(Iv~) = D,,,,(w, wo) (since 1(w, MZ,,) = 0) and, by (3), fi(~.,,) - E’l(o,) = 
Dhlp,(r,, u’,,) - DhtJa,(rr, uO). By Lemma (5.3) and Proposition (4.24)(c), there 
is a ldidl such that D/,(,,j(r,. 1.(.o) - D,r,,,jr,, ~0) Z 0. So, by 
Proposition (4.30), E(v,, M.~)) = D,,,,,( v,,, wo). i 

Recall the definition of 8: Wx W+ @ from (5.1). The following result 
provides a bridge between Sections 2 and 4. Combining Propositions 
(4.24), (5.2), and (5.5), we get 

(5.6) COROLLARY. b = D,s,,, us f&wtions: Wx W + C). 

(5.7) Remark. There is nothing very special about h(p) in 
Proposition (5.5). Any h E h, such that Lemma (5.3) holds for h(p) replaced 
by h will do. 

We recall the following. 

(5.8) DEFINITION. Let K be the standard real form of a Kac-Moody 
group G and let T denote the “maximal torus” of K (see (1.2)). There is an 
action of the Weyl group W z N,( T)/T (NJ T) denotes the normalizer of 
T in K) on K/T defined as 

n.(kmod T)=(kn -‘)mod T, for nEN,(T)andkEK. 

In particular, W acts on the cohomology H*(K/T, Z) as well as on the 
homology H,(K/T, Z). Also recall, from (3.9), that j~“j it ,,+. denotes the Z- 
basis of H*(K/T, Z) dual to the closures of the Schubert cells. The follow- 
ing lemma, in the finite case, is due to [3, Theorem 3.14(iii)]. An easy 
proof of the lemma (in the general case) can be given by using 
Proposition (3. IO). 

(5.9) LEMMA. 

(5.10) Remarks. (a) This lemma does not require the symmetrizability 
assumption on G. 

(b) The formula for CJ~’ P,. given in [3, Theorem 3.14(iii)], in the 
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case when I( NV,) = I(M’) - 1, is incorrect. The correct formula (in their 
notation) is 

o;P,,=P,,.+ c wcr(H,.)P,,,. 
,I lil. +’ 11.’ 

(5.11) Recall the definition of /1 from (4.19). Let Co = S/S+ be the 
l-dimensional (over C) S-module (S=S(h*)), where S+ is the augmen- 
tation ideal (evaluation at 0 E h) in S. By Proposition (4.20), C, OS n is an 
algebra and the action of R on A descends to give an action of R on 
Co OS A. Also, from Proposition (4.20)(b), the elements 

fJ’I‘= 1 @<“EC, OS/t (163) 

provide a @-basis. Moreover by Proposition (4.24)(f), the algebra n is 
filtered by { Ar) Pt n+, where /1,, = &I,j i ,,S<“. Again using Proposition 
(4.24)(f), it is easy to see that this filtered algebra structure gives rise to an 
(obvious) graded (commutative) algebra structure on Q, OS /1. 

Further, besides having a ring structure and being a module for W 
(described in (5.8)), H*(K/T) also admits a ring of operators .d (with C- 
basis .(A,,.),,.EC,.)r where A, (1 < i < 1) corresponds topologically to the 
integration on fiber for the fibration G/B + G/P, (P, is the minimal 
parabolic containing r,). The ring of operators .d on H*(K/T) was 
introduced by Bernstein, Gel’fand, and Gel’fand [3] in the finite case. The 
definition in the general case is carried out by Kac and Peterson. 

We come to one of the main theorems of this chapter. 

(5.12) THEOREM. Let K he the standard real ,form qf the group G 

associated to a symmrtrkahk Kac-Moody Lie algebra g and let T denote the 
“maximal torus” qf K (see ( 1.2)). Then the map 

0: H*(K/T, C) + Co 0s A 

dc$ned by O(E”‘) = a”, ,for any M’ E W is a graded algebra isomorphism. 
Moreover, the action of IVE W and A,,. on H*(K/T) corresponds (under 9) 
respectively to that of 6,,., .Y,,,E R on CO OS A (see (I,,)). 

Proof: We give a “geometrical” proof of this theorem. It also admits a 
more “algebraic” proof (see Remark (5.17)(a)). 

Consider the @-linear map ,f: Co OS /1 + Gr @ [ W], defined by 
,f’(a”‘) = b”’ mod ,$ ,,,V, + , E Gr “““C( W), where B”‘, $,,, and Gr C( W} are 
defined respectively in Proposition (5.2) (2.Q and Lemma (2.11 ). By 
Corollary (2.14) ,f’ is a @-vector space isomorphism. Further, we recall 
from Proposition (4.24)(f) that 5°C’ =x.,,,, i ,, pi:,, <‘I, where pi:,, is a 
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homogeneous polynomial of degree I( U) + I( U) - I( ,v). In particular, &‘o’ = 
C ,,.,. G ,,. and ,,uj+ ,,,,,= ,,,, ) ~$1, d”. Now the fact, that .f is an algebra 
homomorphism, follows from Corollary (5.6). By [24, Theorem 1.63, there 
is a natural graded algebra isomorphism [J]: H*(g, h) + H*(K/T, @), 
given by an “integration” map. We claim that f~& [I] =Gr(f)~$,i as 
maps: H*(g, h) -+Gr @{ W) (see Theorem (2.12)). The claim is easy to 
establish if we keep track of the definitions of various maps (L 8, Gr(f), 
and Ic/c,,s) involved and observe further (see the proof of [24, 
Theorem 1.61) that [J](s;;) =F”‘, for all EVE IV, where s; is as defined in 
(5.1). Now since Gr(~)S~$~,.~ is a graded algebra isomorphism, by 
Theorem (2.12), we get that 6’ is a graded algebra isomorphism as well. 

The assertion, that 0 commutes with Weyl group action, follows by com- 
bining Proposition (4.24)(g) with Lemma (5.9). Finally the claim, that 
the action of A,, on H*( K/T) corresponds (under /!I) to that of x,, E R, 
follows from Propositions (4.3)(a), (4.24)(b), and the analog of [3, 
Theorem 3.14(i)] proved by Kac and Peterson. 

( 5.13 ) COROLLARIES. (a) We cm use either of Piopositiorls (4.3 1) or 
(4.32)(a) to determine the cup product &'E" (,fbr arhitrar), u and u E W) in 
terms sf’ the Schubert basis (e”’ ) of H*(K/T, Z). Similarly, M’e can also write 
un expressionjtir 11. E“ (in terms of the Schubert basis) as given in (4.32)(b). 
Observe thut the Proposition (4,32)(a)-(b) gives cup product as well as the 
We)>1 group uction purely in terms of’ the n1utri.u D. 

(b) A result qf’ Chevalle~~ (that, in the ,finite case, H*(K/T. @) is W- 
isomorphic l+‘ith the left regular representution of W) cm be trivially deduced 
from the above theorem 

(c) Let Xc {l,..., I) be arbitrar)!. There is a standard parabolic sub- 
group P y (us defined in (1.2) qf the group G and let K,k = K n P,.. Also recall 
the dejkition of A.‘, .from (4.33 ). 

There is a (unique) graded algebra isomorphim 0 “1 H*( K/K ,., C ) 4 
C, @ ,s A ‘, muking the ,follo\~~ing diagram conmutative. 

H*(K/K,, 02) I)\ COOSAt 

I 
r; 

H*(K/T, @) 0 
I 

Id 0,’ 

@o@.sA 

Ic>here p: is induced,fionl the projection P,~: K/T --+ K/K,, and i”: Ax 4 A is 
the canonical inclusion. 

Proof It is well known (and easy to prove) that the map p,$ is injective 
and the image of p,* is precisely the C-span of (E” I,, t ,++. Further, by 
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Lemma (4.34), the map Id. 0 ix is injective with image precisely equal to 
the span of (o~‘},,,~ MJ;. This proves the corollary. m 

The following is actually a corollary of the (c) part above. It (the follow- 
ing corollary) has earlier been obtained by Kac and Peterson. 

(d) With the notations as in (c), P;(H*(K/K,~))= H*(K/T)““, where 
Wx is as defined in (1.1) and H*(K/T) wy denotes the Wxinvariants in 
H*(K/T). In particular H*(K/T)@‘= p(K/T). 

Proof: Since the map (3 (of Theorem (5.12)) commutes with W-actions, 
it suffices to show that, for 4 E A, if ri( 1 @ 5) = 1 @ 5, for all i E X then there 
exists a t’ E AX such that 1 0 r = 1 0 [‘. Write r = C p”‘t”‘, for some p”‘ E S. 
Fix i E X. By Proposition (4.24)(g), 

ri( = 1 p”r” + C p”’ (‘I’- 1 aXI <I’- (M.P Ia,) trfic . ( 
II’ < Till r,,, < II’ L 1,111 +v L 1 

Since ri( 1 0 iJ) = 1 0 rit = 1 @t (by assumption), we get by (I,,), 

10 c p” 1 a,(v”)<“=O. 
,,l, c I,’ ,,M -1’ L. 

We can rewrite (I,,) as 

LA) 

165) 

10 c 2p”5”‘+1@ c p”’ c ri(vu)y=o. (166) 
T,ll( < I, r,,(‘ < II r<M -Lfn t’ 

For a ir with r,w’ < ~1 and any v E W such that r,w + v and D # u’, we 
have r,v > v. In particular, from (Ibe), we get that p”’ E S+, if there exists 
in X such that r,w < ~1, i.e., 1 @r = 1 @C,, t w;V ~~5”‘. 1 

We further generalize Corollary (5.13)(c) to Schubert varieties in G/P,y. 
We need some preliminaries. 

(5.14) Let @ = @,Y be a subset of W with the following proper- 
ties: 

(P, ) @ is left WX-stable. 

(P?) Whenever M, E @ and up’ < ~1 then MJ’ E @ 

To any such 6, we can associate a (left) B-stable variety Vg c G/P,, 
defined by 

Vg = u Bw’P,/P,. 
WE@ 

(167) 
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By property (Pz) of @I, Vg is closed in G/P,. (see [29]). Conversely, 
any (left) B-stable closed subset of G/P, is Vg, for some appropriate 
choice of @ = @Jx. 

Let sZo denote the Q-algebra of all the maps: @ + Q. There is a restric- 
Define A& = r@(A”). From Proposition (4.24)(a) 

(5.15) LEMMA. A& is a free S-module with a basis 

We have the following generalization of Corollary (5,13)(c). 

(5.16) THEOREM. Let G he the group associated to a Kac-Moody Lie 
algebra g = g(A,) and let X he any subset (including X= @) of { l,..., I). Fix 
@ = 6X c W satisfying (P, ) and ( PZ) as above and let Vg c GJP, be the 
suhvariet~~, defined by (I,,). Then there is a unique graded algebra 
isomorphism fl& : H*( Vg, C) + C, @ ,~ A&, making the following diagram 
commutative: 

H*(K/Kx, @) a co OS A,‘ 

ki,here i* o is induced by the inclusion i. : Vg 4 GIPx and v’= F. is induced 
by the restriction map ro. (The grading on CO OS A& comes from the 
grading ef Co @ s A x via F. ) 

Proof: Of course the map ? is, by definition, surjective. It is easy to see 
that the kernel of i& is precisely the C-span of {E” ). ,,.E w;, @. Moreover, for 
any M’E WL.\@, t;“@ = 0 by Proposition (4.24)(a). Hence the C-span of 
{a” \ 1 II’ t b+$ @ is in the kernel of ?. But then due to Lemma (5.15), by 
dimensional considerations, it is precisely the kernel of r’. This proves the 
theorem. 1 

(5.17) Remarks. (a) Theorem (5.12) admits a more “algebraic” proof 
using an unpublished result of Kac and Peterson (which Peterson kindly 
told to the second author), asserting that A.,E” =srl*‘ if r,u’< M’ and =0 
otherwise, together with the “twisted derivation property.” For this to be 
valid, they do not need the symmetrizability assumption on g. In par- 
ticular, Theorem (5.12), the Corollaries (5.13)(a), (c), (d), and 
Theorem (5.16) are true in the general (not necessarily symmetrizable) 
situation. 
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(b) In the finite case, Theorem (2.12) was proved by the first author 
(unpublished) and also independently by Carrel1 and Lieberman [S]. 
Recently (and quite independently) Akyildiz, Carrell, and Lieberman [ 1 ] 
have proved an analog of Theorem (5.16) in the special case when G is 
finite dimensional and X= 0. Their methods are very different from ours 
and it is not clear if their proofs can be extended to the infinite case. 

6. CONNECTION BETWEEN THE D-MATRIX 

AND HARMONIC POLYNOMIALS 

(6.1) Let G be the group associated to an arbitrary Kac-Moody 
Lie algebra g = g(A,) and let K be the standard real form of G with 
“maximal torus” T (see (1.2)). Denote by fi: S(h’*)+ H*(K/T, C) the 
characteristic homomorphism, given by the classifying map: K/T+ B(T) 
corresponding to the principal T-bundle K -+ K/T, where h’ = h n [g, g] is 
the C-span of {h,} , <, < ,. 

Recall the detinition’of the algebra n from (4.19). Let fl: S= S(h*) + n 
be the @-algebra homomorphism defined by 

i3(p)(n,)=(-l)d”“P11’~‘p for p~Sandu>~ W. (I,,) 

The fact that p(p) E /1, follows from Proposition (4.24)(c). It can be 
easily seen that the composite map S +B n +rvu@O OS A (where 
“evaluation at 0” ev,: II + C, OS /i is given by t H 1 0 5) factors through 
S(h’*). (See the proof of Lemma (5.3).) We denote the map, thus obtained, 
by 8: S(h’*) + Co OS A. We have 

(6.2) LEMMA. With the notations as above, 

(a ) The, folloning diagram is commutative.. 

S(h’*) ” b H*(K/T) 

\c / 
@o 8,s A 

rthere 6 is riefi’ned in the Theorem (5.12). 

(b) For any p E S( h ’ * ), p( E,, p) = xr,. p(p), where E,, is the classical 
Bernstein-Gecfand-Gerfand operator defined in the proof qf Proposition 
(4.15) and the element x,, is d&ned by (IId). 

Proqf (a) Since all the maps in the triangle are algebra 
homomorphisms, if suffices to show that @g(x) = /J(x), for all XE h’. Of 
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course, the span of j~,,,,l i , <,<, equals h’, where x, is as in (1.4). Now 
p( x,,,,,) = ~‘1 (as is known) and 0(s”) = g” (by the definition of 0) and hence 
(a) follows by Proposition (4.24)(c). 

(b) The map B clearly commutes with W-actions. So by 
Lemma (4.26) and the analogous property for E,, acting on S(hl*) (which 
can be proved similarly), we again only need to prove that fl(E,,(~)) = 
xr, : F,Fr x E h’*. Further, for 1 6 i, j< 1, E,,(x~,,,I) = 6,., and x,, lj(~,,,,l) = 
-yr, I_, by Proposition (4.24)(b). 1 

In the next theorem we show, in the finite case, how the D-matrix can be 
obtained from the harmonic polynomials. Recall from (3.9) that j~“},,,~ It, 
is a L-basis of H*(K/T, Z)). 

(6.3) THEOREM. Let g be finite dinzensionul. For an)’ M’E W, choose 
,f” E S”““(h*) such thut P(,f” ) = c”’ and consider the nzutrls F= (f;.,,,.),,,, t u., 
Irhere ,f;.,,. = ( ~ 1 )““‘wl ‘(,f”). Then the matrix F (over S= S(h*)) can be 
decomposed us 

F=E.D 

where D is as defined in (4.21 ) and E = (e,.,,,.),,,,, t ,$, is a lower triangular 
rrmtrls over S with diugonul entries 1 and, in ,fhct, e,.,,,. is a homogeneous 
pol~~nomial of degree l(v) - I( IV). 

(6.4) Renmrks. (a ) Choice of { .f’“‘ ), as in Theorem (6.3), is always 
possible in the finite case since /I is surjective (in this case). In fact we can 
choose for {j““}, G-harmonic polynomials on g [ 181. 

(b) Of course such a decomposition, as in the above theorem, is 
unique. We call D (resp. E) the upper (resp. lower) triangular part of F. In 
particular, the upper triangular part of F does not depend upon the choice 
of (f” 1. 

(c) A less precise (but illuminating) way to describe the theorem is 
that “G-harmonic polynomials on g determine the D-matrix.” 

Proqf sf‘ Theorem (6.3). Recall the definition of the map a: S(h*) -+ A 
from (6.1 ). By Proposition (4.20)(b), we can write 

b7.f 1 = Z e,,,,, t”. (169) 

for some unique e,.,,. E S. Since, for any \$‘E W, a is a homogeneous 
polynomial of degree l(v) and (“(u”) is a homogeneous polynomial of 
degree l(w) by Proposition (4.24)(d), by the uniqueness of decomposition 
in (I,,), we get that et,,,, is a homogeneous polynomial of degree l(u) - l(w). 
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Now, from Lemma (6.2), it is easy to see that for any w  with I(W) = I(u), we 
have e,.,,,. = 6, ,,,,., i.e., (I,,) reduces to 

D(fV, = c e,,..p + 5”. (I,,) 
/(M’) < /( c) 

Evaluating (170) at MI’, by (IeR), we get (- l)““(~‘~ ‘f’) = 
ch9<w e,,,.t”‘(w’) + t”(w’). [ 

(6.6) Remark. Since, in the finite case, the characteristic 
homomorphism /I: S(h*) + H*(K/T) is surjective, by complete reducibility 
of W-modules, we can choose a W-equivariant splitting s of p (e.g., G-har- 
monic polynomials on g provide one such splitting). By composing s with 
the IV-equivariant map a: S+ A (defined in (6.1), we get a W-equivariant 
map flc~ s: H*(K/T) -+ A which splits the surjective map F ’ oev,: A+ 
H*(K/T), where ev, is defined in (6.1) and 8 is defined in Theorem (5.12). 
Now, the W-equivariant map 0-I 0 ev, is always surjective (i.e., even in the 
infinite dim case), and, we just have seen that, it admits a W-equivariant 
splitting in the finite case. But, in general, it can be seen that it does not 
admit any W-equivariant splitting. The counter example exists, e.g., in any 
affine case. 

REFERENCES 

1. E. AKYILDIZ. J. B. CARRELL, AND D. I. LIEBERMAN. Zeros of holomorphic vector fields on 
singular spaces and intersection rings of Schubert varieties, preprint, 1984. 

2. N. BOURBAKI, “Groupes et algebres de Lie,” Chaps. 4-6, Hermann, Paris, 1968. 
3. I. N. BERNSTEIN, 1. M. GEL’FAND. AND S. I. GEL’FAND. Schubert cells and cohomology of 

the spaces G/P. Russian Math. Suroe.vs 2S (1973). l-26. 
4. H. CARTAN, AND S. EILENBERG. “Homological Algebra,” Princeton Univ. Press, 

Princeton, N.J., 1956. 
5. J. B. CARRELL AND D. I. LIEBERMAN, Vector fields and Chern numbers, Math. Ann. 225 

(1977), 263-273. 
6. V. V. DEOVHAR, Some characterizations of Bruhat ordering on a Coxeter group and 

determination of the relative Mobius function, Invent. Math. 39 (1977) 187-198. 
7. V. V. DEOVHAR, Some characterizations of Coxeter group, preprint. 
8. H. GARLAND, The arithmetic theory of loop algebras, / Algebra 53 (1978). 48&551. 
9. H. GARLAND AND J. LEPOWSKY, Lie-algebra homology and the MacDonald-Kac 

formulas. Itwent. Math. 34 (1976). 37-76. 
IO. H. GARLAND AND M. S. RAGHUNATHAN, A Bruhat decomposition for the loop space of a 

compact group-A new approach to results of Bott, Proc. Nut. Acad. Sci. U.S.A. 72 
(1975) 47164717. 

Il. E. GUTKIN AND P. SLODOWY, Cohomologie des varietes de drapeaux intinies, C. R. Acad. 
Sci. Paris 2% (1983), 625-627. 

12. N. IWAHORI AND H. MATSUMOTO. On some Bruhat decomposition and the structure of 
Hecke rings of p-adic Chevalley groups, Inst. Hautes Etudes Sci. Publ. Math. 25 (1965), 
548. 



HECKE RING 237 

13. V. G. KAC, Infinite dimensional Lie algebras in Progress in Mathematics Vol. 44, 
Birkhluser. Base], 1983. 

14. V. G. KAC, Constructing groups associated to intinite-dimensional Lie algebras. MSRI 4, 
pp. 167-216, Univ. of Calif.. Berkeley, 1985. 

15. B. KOSTANT AND S. KUMAK, The Nil Hecke ring and cohomology of G/P for a 
Kac-Moody group G, Proc. Nat. Acad. Sci. U.S.A., in press. 

16. B. KOSTANT. Lie-algebra cohomology and the generalized Borel-Weil theorem. Ann. o/ 
Math. 74 (1961). 329-387. 

17. B. KOSTANT, Lie algebra cohomology and generalized Schubert cells, Ann. of Ma/h. 77 
(1963), 72-144. 

18. B. KOSTAN.T, Lie group representations on polynomial rings, .4mer. J. Math. 85 (1963). 
327-404. 

19. B. KOSTANT. Quantization and unitary representations, in Lectures in Modern Analysis 
and Applications III, Vol. 170, 87-207, Springer-Verlag. New York/Berlin, 1970. 

20. P. 0. KOCH, On the product of Schubert classes, J. D$fereniia/ Geom. 8 (1973), 349-358. 
21. V. G. KAC ANI) D. H. PETERSON. Infinite flag varieties and conjugacy theorems. Proc. Nar. 

Awd. %i. U.S.A. 80 (1983). 1778-1782. 
22. V. G. KAC AND D. H. PETERSON. Regular functions on certain infinite dimensional groups, 

in “Arithmetic and Geometry,” edited by (M. Artin and J. Tate, Eds.). pp. 141-166. 
BirkhZuser, Base], 1983. 

23. S. KUMAR, Geometry of Schubert cells and cohomology of Kac-Moody Lie-algebras, 
J. Dlff&-ential Geom. 20 ( 1984). 38943 I. 

24. S. KUMAR, Rational homotopy theory of flag varieties associated to Kac-Moody groups, 
preprint, 1984; in “Proceedings, Conf. Infinite dimensional groups at MSRI.” Springer- 
Verlag, Berlin/New York, in press. 

25. R. V. MOODY. A new class of Lie algebras, J. Algebra 10 (1968). 21 l-230. 
26. R. V. MOODY, AND K. L. TEO. Tits’ systems with crystallographic Weyl groups, J. Alxehra 

21 (1972), 178%190. 
27. A. N. PRESSLEY AW G. 8. SE<;AL, Loop groups, Oxford Univ. Press, London/New York, 

1986. 
28. J. P. SERKE, “Algtbres de Lie semi-simples complexes,” Benjamin, New York, 1966. 
29. R. STEINBERG;. Lectures on Chevalley groups. mimeo notes, Yale Univ., New Haven, 

Corm., 1967. 
30. J. TITS, “R&sum6 de tours,” College de France, Paris, 1981-1982. 
31. A. AKAHIA. Cohomologie T-kquivariante de G/B pour un groupe G de Kac-Moody. 

C.R. Awl. SC. Paris. 302, 1986. 


