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ntroductio

This paper is a sequel to my earlier paper "Geometry of
Schubert cells and cohomology of Kac-Moody Lie-algebras”. It uses
many results from the paper, just mentioned, in an essential manner.

Let g be a Kac-Moody Lie-algebra and let py be a parabolic
subalgebra of finite type. Let G be the algebraic group (in general
infinite dimensional), in the sense of S’afarevic’, associated with ¢
(called a Kac-Moody algebraic group) and let Py be the parabolic
subgroup (of finite type) of G, associated with py. " One of the
principal aims of this paper is to study the rational homotopy theory
of the flag varieties G/Px. We prove that G/Px is a "formal"” space
in the sense of rational homotopy theory. Further, we explicitly
determine the minimal models of the flag varieties G/B. We also
prove that the Lie-algebra cohomology, with trivial coefficients,
H‘(gl) {resp. H,‘(g,rx)) is isomorphic, as graded algebras, with singular
cohomology H'(G,ﬂ:) {resp. H'(G/Px,c)) and the isomorphism is
explicitly given by an integration map. (gl denotes the commutator
‘subalgebra of g and ry is the reductive part of Py '

Now we describe the contents of this paper in more detail.

Chapter (0) is devoted to recalling various definitions and well
known elementary facts from Kac-Moody theory. We fix notations to
be used throughout the paper.

Chapter (1). Main result of this section is theorem (1.6). This
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states that H (g,ry) (resp. H (gl) is isomorphic with H (G/Py,C)
(resp. H‘(G,m)), as graded algebras and moreover the isomorphism is
explicitly given by an integration map. In particular, this gives a
"complete” description of the cohomology algebra of the loop algebra
S ® m[t,t'l] and its central extension (the affine algebra), for any
finite dimensional semi-simple Lie-algebra g Kac-Peterson also
claim to have proved that H‘(gl) is isomorphic with H‘(G,IIZ).
Their proofs have not yet appeared, but presumably, it is very
different from ours. As more or less immediate corollaries (corollaries
(1.9)) we deduce that H.(g) and H‘(gl) are both Hopf algebras; for a
finite dimensional simple Lie-algebra aq Hz(go ® m[t,t'l]) is one
dimensi_cmal:’ Hz(gl) is always 0 for any symmetrizable Kac-Moody
1_, gy ©
m[t,t'lj (where g is the affine Lie-algebra associated with the finite

dimensional simple Lie-algebra gg) is a universal central extension. A

Lie-algebra and hence, in particular, the standard map g

similar result is true in the twisted affine case. Universality of this
central extension is originally due to H. Garland, R. Wilson and V.
Chari. _

Chapter 2. One of the main results of this section is theorem
(2.2), which states that the DGA (differential graded algebra)
C(g.rx) is formal (in the sense of rational homotopy theory). Our
proof of this is similar to one of the proofs given by
Deligne-Griffiths-Morgan and Sullivan for the formality of compact
Kahler manifolds, but there is one essential di.fferencé in that the
usual Hodge decomposition for Kahler manifolds is replaced by the
"Hodge decomposition” with respect to the disjoint operators d and @
developed in [Kuy]. This theorem, coupled with a technical lemma
(lemma 2.6), gives rise to theorem (2.7) which states that G/Px is a
formal space (where PX is any standard parabolic of G of finite type).
So that, complete rational homotopy information of G/Py can be
derived from the cohomology algebra H'(G/Px). Also, in particular, all
the Massey products of any order are zero over @. As a second
application of theorem (2.2), we prove that the Leray-Serre spectral
sequence in cohomology corresponding to the fibration G — G/B
degenerates at Ej over @. In fact, recently, Kac-Peterson have
proved a far reaching result that this spectral sequence degenerates
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at E3 even over Z/p 2, for any prime p.

In Chapter 3, we explicitly determine the minimal models for
the flag varieties G/B (for any symmetrizable Kac-Moody group G).
We also determine the Lie-algebra structure (under Whitehead product)
on x.(G/B) ® ©. See theorem (3.8) for the complete description.

After this work was done, I learnt from Victor Kac that
theorem (2.7) was observed by P. Deligne (using the machinery of
g~-adic cohomology) in a private communication to him. My very
sincere thanks are due to Dale Peterson for many helpful
conversations. I thank Heisuke Hironaka, Victor Kac, James R.
Munkres, Leslie D. Saper and Pradeep Shukla for some helpful

conversations.
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Q. Preliminaries and Notations
(0.1) Definitions.
(a) A symmetrizable generalized Cartan
matrix A = (aij)lsi.jS£ is a matrix of integers satisfying a; = 2 for

all i, a;: < 0 if i # j, DA is symmetric for some diagonal matrix D =

ij
diag. (ql,....qz) with q; > 0€ Q.
(b) Choose a triple (b,x,xY), unique up to
isomorphism, where b is a vector space over € of dim#+co-rank A, »
]
= (0}¢ge € b and v = Chid1¢icp € b are linearly

independent indexed sets satisfying aj(hi) = a The Kac-Moody

ii
algebra g = gl(A) is the Lie-algebra over €, generated by b and
the symbols ©; and fi (1€i<4#) with the defining relations [h,b] =

T 0; [hel = gayhle;, [hf] = -ai(h)fi for h€h and all 1<i<e;

_ .. l-aij _ - 1-aij
[ei,fj] = sijhj for all 1<i,i<2; {ad ei) (ej) =0 = (ad fi) (fj) for
all 1<i=j<4.

' b is canonically embedded in g.

{0.2) Root space decomposition [K43. There is available the

root space decomposition g = b @ 2 x @y Where g,
. gEACh

x € g [hx] = ah)x, for all h € b)Y and A =

e € b - (0) such that g, # 03. Moreover A = A  V A

2
where A, C { X na;: n, € 2, (= the non-negative integers) for all
i=]
i3 and A_ = -A,.
{resp. negative) roots.

Elements of A, (resp. A_) are called positive

{0.3) Parabolics. We fix a subset X (including X = ¢) of
C1,...,£} of finite type, i.e., the submatrix Ay = (aﬁ)i,jEX is a
classical Cartan matrix of finite type. There is a natural injection
gx = ofAy) « alA)l. Define A} (resp. AX) = A, N ¢ 3 Z o

X
{resp. A_ a) €z 2 a;3), then gy =
h e p e X 1€xhere b linear span of Ch;3
, W = linear s o P Fp—
X GEAf_ Sa aEaX Sq X hi3jex
Define the following Lie-subalgebras. n = % G U = uy =
a€A,

z gis r=ry =gy +t+had p=py =1r + u Of
aeanaX %a X = ex X

course r is a reductive algebra. p is called the F-parabolic
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subalgedra (F for finite dimensionality of gy) defined by X. If
X = ¢, the associated parabolic p (= b + n) is the Borel
subalgebra. If A itself is of finite type (i.e. A is a classical
Cartan matrix), then the F-parabolic subalgebras are precisely the
parabolic subalgebras of g containing the Borel subalgebra b & n.

{0.4) Weyl group [K;]. There is a Weyl group

x

W C Aut{h ) generated by the reflections ,Cri)lsis z(ri(ﬂ) =
B'B(hi)ai)' associated to the Lie-algebra g. (W, cri)ISiS 3)
is a Coxeter system, hence we can talk of the lengths of elements of
w. ’

W preserves A. A™ is defined to be Wex and Al =
ANA™. For a € A™, dim g, =1 and A N Za = Caq,~ad.

Given a subset X of finite type, as in §(0.3), there is defined
a subset W}l(, of the Weyl group W, by

Wy = Cw € W: A, nwA_ € ANAKD,

(0.5) Cartan jnvolution. There is a (C-linear) unique
involution w of g defined by m(fi) = -¢ for all 1<i<2 and wi(h)
= -h, for all h € h. It is easy to see that w leaves ga(R)
{= "real points” of g) stable.

Further, there is a unique conjugate 1i{inear involution
wy of g which coincides with w on g(R).

(0.6) Algebraic group associated to a Kac-Moody Lie-algebra
¢ [KP;1.[KP,] and [T1. A gl (= [gg]) modue (V,6)
(9: gl — End V) is called integrable, if @(e) is locally nilpotent
whenever e € g, for @ € A™. Let G" be the free product of the

additive groups Cgyd care’ with canonical inclusions
acA

iy gq — G. For any integrable gl—module (V,0), define a

homomorphism 6 G — AutyV by Gs(ia(e)) = exp(fle)) for e €
gg Let N be the intersection of all Ker 6. Put G = G /N .
Let q be the canonical homomorphism: G — G. For e € - (a
€ A™), put expe = qlige), so that U, = expg, is an additive one
parameter subgroup of G. Denote by U the subgroup of G generated
by the U,'s with @ € ALS.
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Choose A; € b (1<i<e), satisfying Afh) = 8 for all
1<j<£. There is an embedding [KP,; page 162-163]

£ 2 s
:G— A=[6 LAl e[ o LA
i=] i=]

defined by i(g) = g( 2 VA) + 8(12 VA ).

Here (L(A; ) x(A )) is the integrable highest weight module with
highest weight A L (Al) is the vector space L(Al) regarded as a
g-module under x*(A;}) = x(A)ow; v A is a highest weight vector in

L(A;) and v, is denoted v* regarded as an element in L'(A-).
1 A1 A:l 1

By "di.fferentiatingé' i, we get an embedding i: gl —_— A
More explicitly i_(x) =x{ X v, Y+ x( 2 VA ), for x € gl

A is endowed v}\ntlll a 1I-[ausdor.flf topology defined as follows.
A set V C A is open if and only if V N F is open in F, for all the
finite dimensional vector sub-spaces F of A. Now, put the subspace
(through i) topology on G. G may be viewed as a, possibly infinite
dimensional, affine aléebraic group in the sense of E‘;afarevic; [Sa]
with Lie-algebra gl. For a proof, see [KPZ; §4]. In [KPZ;
§4(G)], (a priori) a different topology is put on G but it can be seen
that these two topologies, on G, actually coincide.

(0.7) Recall, from %(0.5), the conjugate linear involution wg
of g. On "integration” this gives rise to an involution wg of G. Let
K denote the fixed point set of this involution.

(0.8) The subgroup of Autm(h) generated by the reflections
Eri}-lsis 2 (resp. Cri:}iex) is denoted by W (resp. WX), where
ri(h) = h'“i(h)hi' for all h € h. It is easy to see that, under the

=z
canonical identification x: Aut b — Aut (h ) (given by (xf}a(h) =
ﬂ(f"lh). for f € Aut h; 8 € h and b € h), W corresponds with W,
in fact X(r-i) =1 for all 1<i<¢. From now on, we would identify W
with W (under x) and use the same symbol W for both.

For each 1<i<#, there exists a unique homomorphism
8 SLZ(E) —+ -G satisfying Ei[cl, :] = exp(tei) and Ei[i cl)] = exp(tfi)

(for all t € €). Define H; = ai{[g 2-1]: t € Ch G =
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Bi(SLz(lD)); Ni = Normalizer of H; in G; H = the subgroup (of G)
generated by all Hi; N = the subgroup (of G) generated by all Ni‘
There is an isomorphism v: W — N/H, such that Y(ri) is the coset
N;H\H mod H. See [KP;; §2]. We would, sometimes, identify W
with N/H under v.

Put B = HU (U is defined in §(0.6) and P = Py = BWyB.
Denote by Ky the subgroup K N Py. It is easy to see that the
canonical inclusion K/Ky — G/Py is a (surijective) homeomorphism.
Use [KPZ; Theorem 4(d)]. (K C G is given the subspace topology and
topology on G is described in %{(0.6)).

(0.9) Bruhat decomposition [KP;1; [KP,] and [T]. Recall
the definition of W,l( from %(0.4). W,l( can be characterized as the set
of elements of minimal length in the cosets Wyw (w € W) (each such
coset contains a unique element of minimal length).

G can be written as disjoint union G = V , (U a(w)~1 Py), so

wEWy

that G/Py = v L atw)™! Py/Py).

{a(w) is an element of N satisfying aliw) mod H = v(w). In
fact, we will choose a(w) € N N K, which is possible because
KH > N.)

G/Px is a C-W complex with cells , =
U a(w)'1 Py /Py 3 and dimg V, = 2 length w. (To interchange

' XX 1 R "w
weW,

right and left cosets we have, in the expression of Vw' a(w)'1 instead
of a(w) as in [KPZ]') _

(0.10) Notations. Throughout the paper, unless otherwise
specifically stated, all the vector spaces will be over € and linear
maps would be C-linear maps. For a vector space V, A(V) denotes
the exterior algebra and S{V) denotes the symmetric algebra.

For a Lie-algebra pair (g,r), Clg,r) denotes the standard

co-chain complex associated to the pair (g,r). See, e.g.,
[HS; 81]. For a topological space X, C(X,T) will denote the (usual)
singular co-chain complex of X with coefficients in C. Unless

otherwise stated, cohomologies would be with complex
coefficients.
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The  symmetrizability assumption on the
Kac-Moody Lie-algebras g(A) (i.e. A {s symmetrizabl e)
would be implicitly assumed throughout the paper. By
a Kac-Moody algebraic group, we mean a group G (as defined
in §(0.6)), associated to some Kac-Moody Lie algebra g. The
subgroup K ({defined in %(0.7)) would be called the standard
compact real form of G (though it is non-comhact. in generall).
By a standard parabolic of G, we would mean Px {defined in
§(0.8)) for some X C {1,..,£3. If, in addition, X is of finite type PX
would be called a standard parabolic of finite type.
When X = @, so that Px = B, it is called the standard Borel
subgroup of G..
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1. An Analogue of Cartan-deRham Theorem for Kac-Moody Groups
(1.1) Let'g = g(A) be a Kac-Moody Lie-algebra associated to

a generalized Cartan matrix A = (aii)lsi,js o and let X C
€1,...,22 be a subset of finite type. There is associated a group G,
its standard compact real form K and a standard parabolic subgroup P
= PX as described in $(0.10).

(1.2) Definitions.

(a) We recall the definition of a smooth map from a
finite dimensional smooth manifold M to K or K/Ky from
[Ku;; §(4.3)] (Ky = K N Py).

Let f: M — K be a continuous map. Consider the composite

of the maps
M-f.KoG-i, A (is defined in §(0.6)).

Since iof: M — A is continuous, given any Xg € M, there exists .
an open neighborhood N(xo) of Xg in M such that iof(N(xo)) C F, for
some finite dimensional vector subspace F of A. We say that f i s

smooth at x, if the restricted map iof N(XO): N(xo) —+ F is smooth

(= C”) in the usual sense. The map f itsel_f. is said to be
smooth if f is smooth at all x5 € M.

Amap : M — K/Kx {s said to be smooth if for any
xg € M, there exists an open neighborhood N(xo) {of Xg in M) and a
smooth lift f: N(xo) — K (ie. fis smooth and wof = f | N(XO)' where
x is the canonical projection: K -— K/Kx).

(b) By @ smooth siagular n-simplex in K
(resp. K/Ky), we mean a continuous map f: Al = Cty,nt) €
R t 2 0 and X t; €13 — K f(resp. £: A" — K/KX) such that
there exists an open neighborhood N of A™ in R™ and a smooth map
f ext’ N — K (resp. fext: N — K/Ky) extending f.

Let us denote by Ag=(K) (resp. Al=(K/Ky)), the free abelian
group on the set of all the smooth singular n-simplexes f in K (resp.
in K/Ky).

Finally, ~ denote z Homz(Agw(K),ﬂ:) {resp.
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oZo Hom{Ag=(R/Kg).0) by C_(K.C) (resp. C_(K/Ky,C).

{c) Let M be a finite dimensional smooth manifold with a

smooth map f: M — K (resp. 1t M — K/Ky). Given a u € Cn(gl)

{resp. u € Cn(gl,rl), r = ry Iis defined in %(0.3) and

rl=rn gl),
Fix a ¥y € M. Choose a local smooth lift f: N(xo) — K.

(When f: M — K, £ is, of course, f itself.) Consider the map

we construct a smooth n-form f-(u) on M as follows.

ioL.. -1°E N(xo) — A, where L. -1 is the left translation (by
f(xo) f(xo)

ﬁx )'1): K — K. Define (f*u) = {ioL., Oﬁ*l';, where u is any
0 f(x )-1

"0 0

translation invariant n~form on A (so that u is given by
Ug € Homg(AMA),C) satisfying v, RN (g} is identified
as a subspace of A via i, see %(0.6).)

It is a routine checking, using the_fbllowing facts, that f (u) is
well defined, i.e., (f'u) does not depend upon the particular choices

X0

of f: u and further (f'u) is a smooth n~-form on M.

Let M be a (finite dim.) smooth manifold and m, € M. Given
two smooth maps ff": Mmy) — (Ge) iie. f = iof: M — A is
smooth and so is '), then the following are true.

(1) The map ff"1: (M,mo) —+ {G,e), defined by ff"l(m) =

f(m)«(€(m)™] for all m € M, is smooth and d(ff'~}) 0
@)y, .
Do

(2)  Fix any a € A, then the map f;: M — A, defined by f,(m)

= f(m)+a is smooth.
@ (@) Ty M) < T

(4)  Fix a g € G, then the map gfg™): (Mmg) — (G.e), defined by

242



(gfg'l)m = gf(m)g'l, is smooth and for any v € TmO(M),

d(gfg'l)mov = i((Ad g)x(v)), where x({v) € gl is the element
satistying (&l v = ). (Ad: G — Aut(g)) is defined in [KP;
§2].)

(1) and (2) are easy in view of [KPZ; 94], Dale Peterson
showed me proofs of (3) and (4).

(1.3} Integration map. We describe an "integration” map
I: C(gl) — CCw(K,tB) as follows,

(J' Wt = j' (fu), for u € CHgl) and £: A" — K a
An

simplex € Agw(K).

Exactly similarly, we <can define an integration map
f: ctalel) — ¢ ®/Eg0.

We have the following two technical lemmas.

(1.4) Lemma. The integration maps I: C(gl) —_— CCOO(K,C)

and I: C(gl,rl) — C °,,(K/Kx,tll) are both co-chain maps. Further

they induce algebra homomorphisms in cohomology.

Proof. We would prove that I: C(gl) —_— CCW(K,C) is a co-chain
map, which induces algebra homomorphism in cohomology. The proof
of the analogous statement for K/Ky is similar.

To prove that I is & co-chain map, in view of Stokes' theorem,
it suffices to show that for any (finite dimensional) smooth manifold M
and a smooth map f: M — K, we have, for any u € Cn(gl),
d(f™w) = £ (du).

Extend u arbitrarily to an element u; of Homg(AR(A)C).
(g~ is canonically embedded in A via i. See §(0.6).) The

embedding i K K — A is K-equivariant (K acting on K by left

1

multiplication and of course A is a representation space for K).

Extend u, to a K-invariant form 6‘0 on A, though defined only on
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i{(K). Since the representation map: G X A ~— A is regular (see
[KPZ; $4]), ﬁ‘o can further be extended to a smooth {in the obvious
sense) n-form wu, defined on whole of A. Of course,
iof) (dGg) = d(tief) up). Further, (iof) U, can be easily seen to be
the form f'(u). So, in view of K-invariance of 6‘0 on i{K), it is enough
to show that '

‘dEO)i(e)(-ixO""’-ixn) = du(xo,...,xn), for all Xgoee Xy € gl.

Fix any ad locally-finite elements XXy € gl. Consider
the 1-parameter group of diffeomorphisms ¢(x§): RXA — A,
defined by ¢(xi)(t,a) = exp(txi)a. It can be easily seen that the
corresponding vector field ;i on A\ is given by ;i(a) = x;a. Now {we

would write e for i(e)),
- - - n - - - o -
(dug)efxgrrXy) = T 1Ry (gl X)) +
- - - - ‘/__\ o -
i%j -t J(uo)e([xi,xj],x(),....xi,....xj,...,xn)
- n . R
=z 1 Lt . ~Llag)lexpi-txxy expitxje...

i =
e OXD(-tX; )X, expltx;)e)
—(\-x-o)e(xoe,...,x’i‘e,...,xne)]

A ’
i-th place

' .+- - P - A Py -
+ Lz (™M) LXK Koo R orns R Xy)

But since, for all 0 € j € n,

exp(-txi)xj exp(txi)e—xje

Lt.
ta O t
- Le. (Ad(exp(—txi))xj)e-xje
ta0 t
((exp(ad(~tx )))x de~
= Lt. i R R
ta0 t

=~ [x;x;]e

- - exp(-txi)xj exp(txi)e-xje
Also, [xi'xj]e = Lt. -
tas 0 t
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= -[xpx;]e.
Putting these in (*) we get
ig) i) = 2 D 3 (@) (xger [xpk:Te
oexo,...,xn %0 151 0’6\ X0 '_."’ X4 €seees

x’i‘e,...,xne)

+

. Ej (-1)1"'5"‘ 1(60)0( [x;.%;1 e,xoe,...,x’i‘e.....

x’j‘e,...,xne)

j%i (-1)i+j+1(‘;0)e( [xi,Xj] e,er,...,x/j\e,...,

x’i‘e.....xne)

+

j§1 (—l)iﬂ(ﬁo)e( [x;.x;] e.xge,....X7e,...,

x’j‘e,...,xne)

+

. DG o [x X 1 0, Xg01 X o0

x’;e....,xne)

i+i+1,~ A
j§1 (-1 uglel [xpx;1e.xge, .. % Jers

x’i‘e.....xne)
(since the last two expressions
cancel each other)
i+i=
1%3 =1 tug) o [xi.xj]e,xoe,...,x’i‘e....,

x’j‘e....,xn-e)
(interchanging i and j)
du (xo....,xn).

1

Since ad locally-finite elements in g~ span gl, this proves that I is
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a co-chain map.

Now we prove that f induces algebra homomorphism in
cohomology.

Let SingC“(K) (resp. Sing(K)) denote the simplicial set

n ~ Sing" (K) (resp. Sing"(K)), where Singgw(l{) resp. Sing™(K))
denotes the set of all the smooth (resp. continuous) singular
n-simplexes in K with the standard face and degeneracy maps. Let
Q,. driSing _(K) = p;zo Qg_dR(Sing oK) denote the piece-wise
smooth de-Rham complex associated to the simplicial set SingC“(K).

where an element of Qg .gr(Sing_(K)) is, by definition, a function 6
Cc
which assigns to each element of Singzw(K) 0 =012,..) a complex

valued smooth p-form on A" (i.e. a p-form on A" C R", which
extends to a smooth p-form on an open neighborhood U of A"), such
that 9 commutes with the face and degeneracy operators. Qp-dR
is made into a DGA (DGA is defined in %(2.1)(a)) under pointwise
addition, multiplication and the usual differential of forms. Define a
DGA morphism 7n: 'C(gl) — Qp,dR(Sinng(K)). by (aw)s = s*w, for

w € Cp(gl) and for any smooth singular n-simplex s: A% — K.

There is a canonical integration map I:

a,. dR(Sinng(K» — CC“(K)’ defined by

(fors = {po(s), for 6 € 07, yx(Sine (K

and for any smooth singular simplex s: AP —s K. (We denote the

~

integration map here by J to distinguish it from our earlier integration

map I.)

By Stokes' theorem I is a co~chain map. Further, it is known

~
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(see [Sz; 871} and our next lemma (1.5)) that I:
op-dR(SinéCw(K))'_' CC“(K) induces  algebra  isomorphism  in

cohomology. Of course, by definition, fon = f and hence the
assertion, that f induces algebra homomorphism in cohomology, follows.

{(1.5) Lemma. The restriction map
v: CK,€) — C__(K,€) induces isomorphism in cohomology, where
C(K,C) is the usual (continuous) singular co-chain complex with complex
coefficients. A similar statement holds good with K replaced by K/KX
throughout.

Proof. For any n 2 0, let C:, be the sheaf on K associated with the
presheaf (for any open set U in K) U 11— Homz(Agw(U),ﬂ:),
where Agw(U) denotes the free abelian group on the set of all the
‘smooth singular simplexes @: A® —, U. There is clearly a sheaf
sequence

d d

{s) ... 0—»@—»52—»&;—‘1»63—»...

{C denotes the constant sheaf on K).

To prove the lemma, it suffices {see [Wa; Chapter 5}) to show
that the above sequence (S) is exact and all the sheaves C: are fine
sheaves.

(a) €2 are fine sheaves. Choose a locally finite open
cover CUa} of K (K being a' paracompact space, this is possible).
Choose a (discontinuous) partition of unity €e,3 subordinate to
the cover €U, 3 in which the functions ?q take values 0. or 1 only.
For each a@ and n, define an endomorphism eq of C’: by setting
(eaf)a = ¢a(a(0))f(a), for ¢ a smooth singular n-simplex in U and
f € Homz(Agw(U),m). This provides a partition of unity for all the
sheaves &, concluding that they are fine.

{b) The sequence (S) is exact. We; need to prove a
Poincare: type lemma. Write any element a € A as

247



1

a= I pX vy (a)
i=}] k € Weights of i
LAY
1 .
+ 3 p> wy, (a),
im] [T € Weights of i
L*(AQ)

where vl {resp. wl ) denotes \; (resp. u.) weight vector
A Hy i i

€ L(A) (resp. L*A)). Let N=(a € A: vii(a) ¢ |R+(-vAi)

and wt -A, (a) € R (-vAi) for any i3. Fix a smooth function :
R — [0, 1] satisfying #(t) = 0 for all t € 3/4 and #(t) = 1 for all
2 1. Define a contraction H: R X N —+ N by

hee(Aj=Ng)
1 Z w(t) Xi(a)

Hta = S M
il RESCA - A{) o1
UE e vk (@
X1

hteCAgtug)

1 2 ¢(t) u -(a)
+ 3 M i , for t > 1/2 and
i=1 RE=CA FU; T
nz e(t) v (a)ll
ui i

1 9(2t)a,(a)+1-9(2¢)
z vpo
1=1 1oz a, (r+1-p2e)1 A

1 p(2t) 8, (a)+1-p(2¢t) *
Vo for t € 3/4,
i1 19(2e) 8, (a)+i-p(2t)1 “4

+

v;i(a) wai(a) .
where ' = a.{a)jv, and = B.{ajv {(If \, =
||v,\I Ca)ll A uwai(a)u Ay 1
l\i - Z n,a, {vesp. w = -l\i + §: nju.j). then ht-Ai-Xi {resp.
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u+A;) is defined to be X n; + ©(t)" is defined to be =1)
H has the following properties..

{1) H is smooth (in the obvious sense).
(2) H(R X (N n i(K))) C N N i(K).
(3) H(t,a) = a, for all t 2 1 and a € N N i(K).
(4) H(t,;:) = j(e), for all t € 1/4 and all a € N,
Now we are ready to show that
0 s € —s cgw(x A ity -4 c(‘:,,(x n il 4 L

is exact. It suffices to find a homotopy operator, i.e., a linear map
hp: CPN(K o i"l(N)) — CP;I(K n i"l(N)). for all p > 1, satisfying
c [

*) dohy + b yq0d = Id

For a smooth singular simplex o: Ap"l - K N i'l(N). define
a smooth singular simplex lTpa: AP — K N i71) by,

~ -1 . ta fp
(b olty,...t ) = i Hit h.4t, ol )
P P p R T TR

for t1+...+tp>0
= e for t1+...+tp<1/4.

Now, define (h flo = f(h o), for £ € CP.K N 1),

It is easy to see that (*) is satisfied.

Since K is homogeneous under left multiplication and also that,
we can choose a co-final system ¢NE€3 of open neighborhoods of
ile) in N such that H(R % (N€ n i(K) ¢ N€ N i(K), we get that the
sheaf sequence (S) is exact.
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The case of K/KX is similar. (We can define a similar smooth

contraction of the open set N alw) U™ a(w)‘1 C G/PX.)
VGWX

Remark. A contraction, similar- to H above, has earlier been used by
Kac-Peterson to prove contractibility of U.

We come to the main théorem of this section.

{1.6) Theorem. Let g = g(A) be the Kac-Moody Lie-algebra
associated to a symmetrizable generalized Cartan matrix A =
(ai.i)ISi,.iSE and let X € (1,...,22 be a subset of finite type. Then
the integration maps {defined in §(1.3))

(a) f: ctalirg) — € /Ky €) and
b : Clgl) — € _KC
(b) [: oeh — c_mo

both induce algebra isomorphisms in cohomology.

Recall that gl = [g.gl: ry = @' N ry (ry is defined
in §{(0.3)) K is the standard compact real form of the Kac-Moody
algebraic group G associated to g and KX = K n PX (Px is the
standard parabolic subgroup of G). See §(0.10).

In particular, in view of lemma (1.5), the Lie-algebra
cohomology Ht(gl,r,l() {resp. H'(gl)) is algebra isomorphic with the
singular cohomology H,(K/Kx,ﬂ:) {resp. H:(K,II:)). Also, by [L; 6],

1

the canonical inclusion C(g,rx) < Clg ,r)l() induces isomorphism in

cohomology.

Proof.
(a) By lemma (1.5) and the Bruhat decomposition §(0.9),
dim H“(ch(K/Kx-ﬂ?» = dim HYK/Ky,C) = #(elements of length n/2

in W;(}. (W)l( is defined in %(0.4).) Also, by [L; %6] (see also
[Kul; §(3.3)]), dim Hn(g,rx) = #{elements of length n/2 in W}(}.
Hence dim H'K/Ky,C) = dim HYgry). Since, by lemma (1.4) [
induces algebra homomorphism, it suffices to show (for dimensional
considerations) that the induced map H(I): Hzn(g,rx) —_
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Hzn(ccw(x/xx.a:n is injective for all n > 0

For any w € W)I( of length n, U a(w)'l PX/PX is an open cell
(of real dim 2n) in G/Px (i.e. homeomorphic with C"). See 5(0.9).
Further, this extends to a smooth singular simplex o, A?n —

G/Py € °3(G/Py), so that Blo,) s a 2n-1 dim cycle in

(6/Pg)2"2. But since H,, 1(G/Py)2"?) = 0, there exists a 2n-dim
chain by in (G/Py)?"2 such that 8(b) = Blo,). In fact, we can
further choose b € Acw(G/PX)'

By [Kul, Theorem 45] there are "d;© harmonic” forms

W . W
cs°)wEW1 such that I = ‘[1 S = B, for
“tp

%n B a(n) x/Px

win € Wy with 2) = &) =n. So [ s¥= | sg’-{

%n~Pp %n n

5, n since I s‘: = 0. (Actually the integrand itself is 0, as s‘c‘: is

®a

a 2n-form and bn is a chain in (G/Px)zn'z.) Sincé

Cg‘;’)wew; with Iw) = n is a (C-basis of Hzn(g,rx), by [Kuy;
331, this inmediately gives injectivity of Hi([). Hence (a) follows.

(b) There is a Hochschild-Serre filtration F = (F )p>0 of
C(gl) with respect to the subalgebra bl defined as follows. Fn =
{u € C“(gl) u(rl, ,r) = 0, whenever n-p+l1 of the arguments r;
belong to b1 and F EO Fp

Also there is a Leray-Serre filtration G = {G 3 of C K}
associated with the fibration x: K — K/T (where T = B H K),
defined by G, = (c € C = 0, where KP~1

i

00

c°° :C|A(KP'1)nA (K)

denotes vr"l((K/T)p"l) and A(KP~ 1) denotes the usual (contmuous)
singular chain complex of KP-1, (K/T)P~ 1, as earlier, denotes (p-1)-th
skeleton of K/T ~ G/B under the Bruhat decomposition.)

1t is fairly easy to see that I(ﬁp) C 'Gp for all p.
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Let Er(ﬁ) and Er(G) be the spectral sequences associated with
the filtrations F and G respectively. Since f preserves filtrations, it
im_iuces a map Er(f): Er(f"') —_ Er(G) for all r.

By (HS; 6], ED°%FH = ®Pelel) ® HULY) and
converging to the cohomology H’(gl). (Although, in [HS], this is

1 is finite dimensional, it can

proved under the assumption that g
easily be adopted to our situation since bl acts reductively on gl.)

Further, we can suitably modify the proof of lemma (1.5) to
give the following generalization (of lemma (1.5)).

For any p 2 0, the restriction map: Hon'\z(A(Kp'l),C) —_
Hom(a (K) N AKP1),€) induces isomorphism in cohomology.

Using the five lemma, this gives that the filtration G = (Gp}
is regular {and hence strongly convergent) in the sense of [CE; page
324] and also (by Leray-Serre) ES *4G) = HPK/T) @ HYT).

By part (a) of this theorem H([): HP(gL.hY) — HP(/T), for
all p 2 0. From this it is fairly easy to see that Elz”q({f"') —_
ES>%G) for all p and q. Hence E2*%(F) — EP>%G) for all r 2
2 and all pq 2 0. '

This completes the proof of part (b} as well.

(1.7 Remark. Kac-Peterson also claim to have proved that
H'(gl) is isomorphic with Hz(K,t), although their proofs have not yet
appeared.

" The following lemma is trivial to verify.

(1.8) Lemma. For any Lie-algebra g and a subalgebra g,
Hz(g,s) %= H'(g/ 3,5/3), for a central subalgebra 3 of g such that
3 C s.

Proof. In fact the co-chain complex Clg,s) itself is isomorphic
with Clg/3,5/3),
{1.9) Corollaries.

(a) For any Kac-Moody Lie-algebra g, H'(gl) and
Hz(g) are both Hopf algebras.

{b) Let g, be a finite dimensional simple Lie-algebra and
let & be an automorphism of > of order k, induced by an
automorphism of the Dynkin diagram (so that k = 1, 2 or 3). Then
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H3(g™®) is one dimensional, where g = ¥ g, ® t™

M= - 00

1/2
(g, = (x € g: B(x) = er(-l) m/k-x}).

{c) Let g be any Kac-Moody Lie-algebra then Hz(gl) =
0. In particular, let g be the affine Lie-~algebra associated to a

finite dim. simple Lie-algebra g, and an automorphism 6 (of 'go), of

order k, as in (b). Then the one dimensional central extension
0 — 3 — g — g™ — 0 (see [W; page 2101, g! is nothing
but a(k) in the notation of [Wi-]) is universal.

@ H¥w =  Alg/gh)  and  HY@ =
H3(K) & A3(g/g1), for any g.

Proof. :
(a) Since H'(gl) ~ H'(K,Il:); K is a topological group and
H'(g) x H'(gl) ® Alg/ gl) by [Ku,; Proposition 1.9], (a) follows.

{b) We prove (b) in the special case & = 1. The general case
is exactly similar, Specializing theorem (1.6) (a) to the affine
Lie-algebra g associated with g, and choosing an appropriate maximal

parabolic pxr we get that Hz(gl,Bl

+g-o) is one dimensional, since,
from Bruhat decomposition, K/Ky can be easily seen to have only one
cell in dim 2.

By lemma (1.8), taking & = Bl + g, and 3 = centre
of gl, we get H'(g1.51+go-) x H'(go ® ﬂ:[t,t'l],go). Now using
[HS; Corollary in 86] (since g, is acting reductively on g, ©
CLtt11, this is available) and the fact that Hlg,) = HZ(g) = 0,
we get (b). '

{c} By theorem (1.6} (b}, we have Hz(gl) x HZ(K). But, by
[KPZ; Theorem 4],'K is simply connected. Further, using the long

exact homotopy sequence for the fibration K — K/T, we get
0 — KZ(K) — KZ(K/T, — Kl(T, —_ 0.

Since xz(K/T) (=~ HZ(K/T)) and xl(T) are free abelian groups
with equal ranks, we get KZ(K) = 0. This gives Hz(gl) = 0,
Now universality of the central extension follows immediately

from (1.9) (b) together with standard facts on central extensions. See
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[G; §1].
' (d) This follows easily from (c) and [Kuz; Proposition 1.9].

(1.10) Remarks. (1.9) (b) is due to the referee of [G]. See
[G: §2]. (1.9) (c) in the affine case is, independently, due to Garland
[G, Theorem (3.14)] and Vyjayanthi Chari (unpublished) and the
twisted affine case is due to Wilson [Wi]. (1.9) (d) is strengthening
of some results due to Berman [B].

(1.11) Remark. Using mixture of topological and geometric
arguments, we show that, in general, the inclusion of the space of
bi-invariant forms C(gl)g — C(gl) does not induce isomorphism
in cohomology. The counterexample exists in any irreducible
Kac-Moody Lie-algebra except in the case when it is a finite

dimensional Lie-algebra or @(2).
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2. ' Formality of Flag Varieties Associated to Kac-Moody Groups
We recall some, fairly known, definitions from rational homotopy
theory. See, e.g., [DGMS]; [GMI: [Q1; [S1; [S,].
{2.1) Definitions.
(a) A differential graded algedbra/C

{abbreviated to DGA) is a graded algebra (over £) A = & AP
p20

with a differential (i.e. 4> = 0) d: A — A of degree +1, such that
(1) A.is graded commutative, i.e.,
asb = (-l)qufa for a € AP and b € A%
{2) d is a derivation, i.e.,
d(a-b) = (da)=b + (-1)Pa-db for a € AP.

A is said to be connected if H°(A) is the ground field €
and A is one-connected if, in addition, Hl(A) = 0.
(b) A DGA u is a minimal differential
algebra, if
(1) d is decomposable, i.e., d(u") c u* « u*
{u* denotes the augmentation ideal p§0 uP).

{2) u may be written as an increasing union of

sub DGA's g = € ¢ uy € py < . v
iz20 )
#; C 4 an elementary extension for all 270, ie., ey is a
graded algebra of the form u; ® F(V4), for some di > 0 (F(Vy)
denotes the symmetric (resp. exterior} :]gebra on Vd_ if d1 is even

lli=l-lwith

(resp. odd). We assign grade degree d; to elements of V4.) and such
i

that d =d, and d (Vi) C ..
“i+1|ui 1 ey <M

{c) A minimal model for a DGA A is a minimal
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differential algebra A together with a DGA homomorphism
Py — A such that p induces isomorphism in cohomology.

An important fact is that every one connected DGA A, such
that Hi(A) is finite dimensional for all i, has a minimal model unique
up to isomorphism. See [DGMS; Theorem 1.1 (a)].

In this paper, we would only consider one-connected DGA's A
with the additional assumption that Hi(A) is finite dimensional for all i.
From now on, this would be our implicit assumption on
DGA's.

(d) A minimal differential algebra u is said to be
formal if there is a DGA homomorphism ¢: u — H (1) inducing
the identity on cohomology. (H:(u) is equipped with identically zero
differential.)

(e) The homotopy type of a DGA A {s a formal
consequence of its cohomology if its minimal model is formal.

Now we can state one of the main theorems of this section.

{2.2) Theorem. Let g = g(A) be the Kac-Moody Lie-algebra
agssociated to a symmetrizable géneralized Cartan matrix A =
(aij)lsi,js.e and let X € (1,...,22 be a subset of finite type.

Then, the homotopy type of the DGA C(g,r) is formal
consequence of its cohomology, where r = rx and Clg,r) are
defined in §(0.3) and §(0.10) respectively.

Proof. Our proof of this theorem is similar to the first proof of
formality of Kahler manifolds, given by
Deligne-~Griffiths-Morgan-Sullivan [DGMS; §6]. One essential
difference, however, is that the Hodge decomposition with respect to
the operators d;d‘ (d' is the adjoint of d) is replaced by the 'Hodge
decomposition’ proved in [Ku1], for the "disjoint” operators d and o.

We need the following dd€ lemma.

(2.3) Lemma. Recall the definition of the operators d;d';d™
C(g,r) — C(g,r)} from [Kul; §3]. As in [DGMS], define the

operator d® = i(d" - d') acting on C(g,r). Then, we have

(1) Im d N Ker d° C Im (dd®) and
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(2) Im d° N Ker d C Im (dd°).
Proof. Let w € Im d N Ker d°. Since d = d' + d"
(Il)“' dw=0=d"w

From the 'Hodge type decomposition’ [Kul; Theorem 3.13 and
Remark 3.14] and disjointness of (d',©') [Kuy; Proposition 3.7, we
got w € Im d' & Ker S'. Further, again by using [Kul; Lemma (3.8),
Theorem (3.13), Remark (3.14) and Lemma (3.5)], we get
Imd €CIm S=Imd & In @ Since, by assumption, w € Im d, we
get w € Im d’. Write w = d'n, for some n € C(g,r). Express n
= d'ny + a"nz + Ny, for some nynp € Clg,r) and ng €
Ker 8" = Ker S'. This gives, on taking d’,

(IZ)'“ w=dp= d'd"n1 + d'a"nz {since ng € Ker 8').

Using d'©@" + 2'"d' = 0 and d'd" + d"d' = 0 (see [Kul; Lemma
{3.1) and identity (118)]), we get d'n = -d“d'nl - B"d‘nz. So
dd'n = -d"0" d'nz =0 (since d'd'n = d"w = 0, by (Il»' By
disjointness of the pair (d",2") [Kul; Proposition 3.7], a"d'nz = 0.

Putting this in '(Iz), we get the first part of this lemma. The second

part follows exactly similarly,

{2.4) Proof of Theorem (2.2). Denote by Hdc(g.r) the
cohomology of the complex Cl(g,r) under d® and by ch(g,r) the
d® closed forms in C{g,r). Consider the diagram

Clar) ® 2 fgr) 5o H (lar),

where i is the canonical inclusion and a the canonical projection.

Since dd® = -d%d, ch(g,r) is stable under d. Moreover, by
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the previous lemma, the differential induced by d on H c(g,r) is
zero. d

We prove that i and a both induce isomorphism in cohomology,
if we consider C(g,r); ch(g.r) and Hdc(g,r) as co-chain complexes

under d.

(1) a is surjective: Given w € ch(g,r), we need to

_ show that there -exists a n € C(g,r) such that w + d%p is d
closed. By. dd®-lemma, dw = -dd®»n, so d(w + d%n) = 0.

(2) a" is injective: We need to show that Im d° N Ker d C
d(ch(g,r)). which is immediate from dd®-lemma.

) i is injective: We need to prove that Im d N Ker d° C
d(ch(g,r)). Use dd®-lemma.

(4) i' is surjective: We need to show that
Im-d + (Ker d® N Ker d) = Ker d.

By [Kul; Theorem 3.13, Remark 3.14 and Lemma (3.5)], Ker S C Ker
d® N Ker d and Ker S + Im d = Ker d. This gives surjectivity of i

Theorem follows, now, by choosing a minimal model 1t for the
DGA ch(g,r). (Observe that C(g,r), hence ch(g,r), is

one-connected and Hi(C(g.r)) is finite dimensional for all i, by
[L; §6] or [Kul; Theorem 3.15].) a
We recall the following

(2.5) Definition [S,]; [DGMS]. A polyhedron Y (we
assume, for simplicity, that Y is simply connected and HYY,@) is
finite dimensional for all i) {s said to be a formal
consequence of {ts cohomology over @ (or 4 formal
space over Q), if the homotopy type of the DGA of @-polynomial

258



forms Ey (see [DGMS; 2] for the definition of Ey) is a formal
consequence of its cohomology.

The formality of Y does not depend upon particular choice of
simplicial structure on Y, in fact let E; denote the DGA of
©-polynomial forms on Y with respect to some other triangulation of Y
then the minimal models of EYQE and EY@C are isomorphic. This
can be easily seen by taking a common subdivision. Now using [Ha$S:
Theorem 6.8] or [Sz: 312], we see that the minimal models of E;

~ %
and Ey are themselves isomorphic.

(2.6) Lemma. Minimal models of the DGA’s C(g,r) and
E; /Py g C are isomorphic.

Proof.- We have described the DGA Qp_dR(Sing {K/Ky))  of
plece-wise smooth forms associated to the simplicial set
SingC”(K/Kx) during the proof of lemma (1.4). Further, we described

an integration map I: Qb_ dRiSing_(K/Ky) — C_ (K/Ky).
Exactly similarly, we can define Op, dR(Sing K/Kx) associated to
the simplicial set Sing(K/Ky) and also  Qp;(Sing(K/Ky)) <
0, dr'Sing(K/Ky)), where Dpp consists of only polynomial forms /C
(with respect to the Barycentric co-ordinates on A"). We have the

following commutative diagram

Clg ,r,)
M
;
np'dﬁ(smgcm(x/xx)) —_— ccm(x/xx)
Yq Y

85, (Sing(K/Ky)) ———L—3 c(x/ky)

* s
g 88 T Cosmp, (K/Ky)
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, where E; /K is the space of @-polynomial forms on K/KX with
Csimp.(K/KX) is the

simplicial co-chain complex of K/Ky. the maps a, 4 ¥, Yg are

respect to some (fixed) triangulation of K/KX,

the canonical restrictions and the map n is defined during the proof
of lemma (1.4).

All the three horizontal maps induce algebra isomorphisms in
cohomology.* (See [Sz; $7] and our lemma (1.5).) By lemma (1.5)
(resp. theorem (1.6)) ¥ (resp. 72) induces algebra isomorphism in
cohomology. a, of course, induces algebra isomorphism in cohomology.
Hence q ~and Yo both induce isomorphisms m cohomology, which
proves the lemma. ‘

As an immediate corollary of theorem (2.2), lemma (2.6) and
[HaS; Corollary 6.9], we get the following.

(2.7) Theorem. Let G be a Kac-Moody algebraic group and
let P = Py be a standard parabolic {of G) of finite type (see $(0.10)
for terminologies).

Then the space G/P is a formal space over Q.

S0, complete rational homotopy information of G/P can be
derived from the cohomology algebra H'(G/P.tn). In particular, the
rational homotopy groups wa{G/P) @ €, viewed as a graded
Lie-algebra under Whitehead product, d%pends only on the cohomology
ring Ht(G/P,Q). Moreover, all Massey products of any order are zero
over 0.

(2.8) Remarks.

(a) Compare the above theorem with formality of Kahler
manifolds proved in [DGMS].

~ *A more detailed proof can be found in Chapter 12 of "Lectures on
Minimal mogels by S. Halperin, Publications de L' U.E.R.
Mathematiques pures et Appliquees”.
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(b) Since HS(G,Q) is a Hopf algebra, the minimal model
g of G (i.e. the minimal model of DGA of @-polynomial forms E;) is
H*(G,0), so that H*(G,@) = S(xeven(G) g Q) ® A(xodd(G) g ®) as

[

(G) (resp. xodd(G)) denotes 20 xzn(G)

n=

graded algebras, where R oven

(resp. ngo xzn,,_l(G)).

{c) In the next section, we would specifically determine
the minimal model of G/B and the Lie-algebra x.{(G/B) ® @ under
Whitehead product. z

As an application of our theorem (2.2), we prove degeneracy of
the Leray-Serre fiber spectral sequence/@ corresponding to the
fibration K — K/T.

" Recently, Kac-Peterson have proved an important result that
this spectral sequence degenerates at E3 even over any finite field.

(2.9) Proposition. Let K be the standard compact real form
of a Kac-Moody algebraic group G and let B be the standard Borel
subgroup of G. (See §(0.10) for the notations.)

Leray-Serre spectral sequence in cohomology/@ corresponding
to the fibration K — K/T where T = B N K degenerates at E3, ie.,
E§*? ~ EE*? for all p and q. :

Proof. Step I. Let A be a one connected DGA and let G, be a
finite dimensional connected Lie-group. Given a linear map 6: P —
Z(A) of degree +1 (where P C H'(G,ﬂ:) is the linear subspace
generated by primitive elements and Z(A) = Ca € A: da = 03), we

put a twisted differential D = Dy on the tensor product of
graded algebras A g H'(Go), to make it a DGA, as follows.

D A= differential of A and
Dx = 6(x), for all x € P.
Denote the DGA, thus obtained, by Ag.

There is a filtration F = CFD}, of the co-chain complex
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Ag: defined by F, = 3 A* @ H(Gy). Clearly, F_ is D-stable.
Further, it is easy to see that the corresponding spectral sequence
has Eg ' 9 x HP(A) @ Hq(Go) and converges to H’(AG).

The above construction is motivated by Hirsch lemma. Also the
only property of H'(Go), which we are using is that it is free (in the

graded sense) graded algebra on P.

Step II. In Step I, if we assume that the homotopy type of A is
formal consequence of its cohomology and G0 is a torus T then the
above spectral sequence degenerates at Ey.

To prove this, fix a minimal model p: 4 — A and .a DGA
morphism, inducing the identity at cohomology, ¢: u — H'(u).
There exist linear maps o: Hl(T) — uz and y: Hl(T) — Al, such
that pog(x)-e(x) = dy(x) for all x € Hl(T). Further, there exists a
DGA isomorphism £§: A » s — Ag defined by £ l A= Id~ and £(x)

= 1@x + y{x)®1, for x € Hl(T). We have the following DGA morphisms
* ~ Ide. Ide - &
H ), 5 825 fes —L8I% L A5 —— Ag

All of these morphisms preserve filtrations and induce
isomorphisms at Ez level. Hence degeneracy of the spectral sequence
for A, at E3 is equivalent to the degeneracy of the spectral sequence
for H (u)¢°'§ at E3.

We come to prove the degeneracy of the spectral sequence for
H‘(-u) v oo at E3. By definition (see, e.g., [GH; page 441])
ED = zB/(zB71 + D@BZ}™"), where 28 = Ca € F: Da € F 3
and the differential ds: Eg —_ Eg+3 is a — Da for a € Zg. So,
it suffices to show that D(Zg)‘c DZE':}, for all s 2 3. Let
a= I a € ZP, where a, € HYw @ H(T). By definition of D,

t2p
t+2 * . p L .
Da, € H'“(u) ® H(T). Since a € Z;, Da € F_, . in particular

Da, = 0 and hence Da = D( X a) € DZpti-
P ‘ t2p+1 8

p¥s
Step III. Consider the DGA C(gl.hl) and a degree +1 {transgression)
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map 6f) = d ,(f), for all £ € (h1)", where f| ; = f and fI =0

for root spa%es Sq correspondmg to all the (nonzero) roots a.
d 1 denotes the usual co-chain map of C(gl). It is easy to see
g

that d l(ﬁ is, in fact, an element of C(gl,hl).) As in Step I, o .
g

gives rise to a DGA C(gl.hl)g = C(gl,hl) 8 ABYY).  There is a

DGA morphism ¢: C(gl,!»\l)g — C(gl), defined by ¢ o 151) =
. g,

{i is the canonical inclusion: C(gl,hl) N C(gl)) and ¢{f) = ffor f €
nl®,
In §(1.3), we have defined a co~chain map

I: C(gl) —_ CCw(K). Composing with ¢, we get a co-chain map
Io.p: C(gl,bl)g — C __(K). We have described a filtration F = (F_3

C p
of C(gl,bl)o in Step I. Also CCOO(K) has a Leray-Serre filtration

G = EG 3, described in §(1.6). It is fairly easy to see that
f«np(F e G, for all p.  Further, by Step I E3*%F =
Hp(g hl) ] Aq(hl) In view of theorem (1.6) (a) (applied in the
special case X = @), we get that Ioo/: induces isomorphism: E‘z"q(F)
— E‘z”q(G) for all p and g and hence degeneracy of the spectral
sequence, corresponding to the filtration G, at E3 is equivalent to the
degeneracy corrésponding to the filtration F, which, in turn, follows
from Step II and theorem (2.2). This establishes the proposition.

(2.10) Remark. The proof of proposition (2.9) can be modified
to give the following generalization of (2.9).

Let Y be a simply connected space such that Hi(Y,Q) is finite

dimensional, for all i. Assume further that Y is a formal space/@

and let E — Y be any principal T bundle (T is a torus), then the
corresponding Leray-Serre spectral sequence in cohomology/@

degenerates at E3.
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(3.1} From the proof of proposition (2.9), we know that
H’(K,ﬂ:), as a graded algebra, is isomorphic with the cohomology of the
DGA H (K/T), = H (K/T.0) § Alhl"), where the notation H (K/T),
is as in Step [ of the proof of proposition (2.9) and
#: b1" — HAK/T) is the map defined by 4(f) = [ (dglf”)], for all £

€ 51’. (F is, as in Step III of the proof of proposition (2.9), an
element of Cl(gl) satisfying f| b1 =f and f I o = 0, for root spaces
a

ga corresponding to all the roots a. I is the integration map,
defined in §(1.3), from C(gl,hl) to C__(K/T) and [ ] denotes the
cohomology class.) Extend 8 (again denoted by 8 itself) to an
algebra homomorphism (called the Borel homomorphism) from
s(h!") — H'K/T). H"(K/T) becomes a S(h!*)-module under 8.

It is fairly easy to see that the DGA H‘(K/T) g can be
identified with the standard chain complex 'A(hl'.H'(K/T)).
corresponding to the abelian Lie-algebra hl' ‘with coefficients in
H’(K/T) {considered as h1*-module under B8). So H‘(K,lr), which is
isomorphic with the cohomology of the DGA H'(K/T) 8 is isomorphic
(as a graded algebra) with He(h1",H (K/T)).

By [Kz; page 4, assertion 4] (in fact it is valid even over
2/v2), H (K/T,C) is free as S(h1) = S(h1")/Ker A-module (Ker 4
denotes the kernel of 4: S(hl') — H'(K/T,(E)). Hence

H(K,C) Ha(b 1" H (K/T)

&

R

Hob 1" 561" _ @, HK/T)H
S5(h" D

R

Ho(b 1" 56 1%) 5 1%, H (K/T)

P24

(Iy).. H (KC) Ho(b1* 5§k 1% @ [H ®/T)/<§ K17

as graded alg_ebras. (Since H,(hlz,é-(hl‘)) is trivial hlt-module.)
<§+(l-,1:)> .denotes the ideal, in H*(K/T), generated by

T Sipl®)
i>1
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(3.2) Definition. A graded algedra A is said to be
free if A is isomorphic (as graded algebra) with S(WO) ® A(Wl),
- where W (resp. W4) is evenly > O (resp. oddly) graded vector space.

(3.3) Lemma. Let A be a free graded algebra and let B and
C be two graded subalgebras of A such that A, as a graded algebra,

is isomorphic with B @ C then B and C are free algebras.

Proof. Choose a graded algebra isomorphism ¢: B @ C ~— A. It is
fairly easy to see that (V' @ 1 @ 1 @ V") & At . At = At
where V''C B¥ (resp. V" ¢ C%) is any graded vector space such that
V' @ B* « B* = B* (resp. V" @ C* + C* = C*) and A" denotes 2
Al Further, for a free graded algebra D and any graded vector space
W c D* such that W @ D* - D' = D*, F(W) is isomorphic as graded
algebras, with D. (Where F(W) denotes S(WO) ® A(Wl); WO {resp.
W1) is linear span of evenly {resp. oddly) graded elements in W.)

In particular F(V' ® 1 & 1 @ V") 2, A is an isoﬁlorphism,
where O is the graded algebra homomorphism with @ V'elelgv” =
¢LV.®1$1®V". _ Clearly 8(F(V' ® 1) C #(B) and
(F(1QV")) C #(C). But since 8 is an (surjeclive) isomorphism, we get
OF(V' ® 1)) = #(B) and 8(F(1 @ V") = #¢(C). This proves the
lemma.

(3.4)' We return to the situation of %(3.1}. K being a
topological group, H*(K,ll:) is a free graded algebra. Write

(). H(KC) ~ AW,) & SWy),

where W0 (resp. Wl) is an evenly (resp. oddly) graded vector space.
Since, clearly, all the elements of H;(Bl‘,s—»(blt)) of positive

degree are nilpotent and H*(K/T) consists of evenly graded elements

only, we get from (13) and lemma (3.3) '

(Ig)... Ha(b1"5(h 1) » AW,) and

(16)... H*(K/T)/<§+(I-)1*)> x S(WO) as graded algebras.
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We prove the following.
(3.5) Lemma. H (K/T) = §(h") @ S(Wy) as graded

algebras.

Proof. Consider the graded algebra homomorphism p: §(hl*) % S(WO)

— H(K/T) defined by pla ® b) = &la) = 6(b), for a € S(hl’)
and b € S(WO). (8: S(hl*) — H'(K/T) is the Borel homomorphism
defined in §(3.1); a denotes a mod Ker # and @ is any graded
algebra homomorphism: S(WO) — H*(K/T) such that mof is an
isomorphism as in (Ig), where =: H*(K/T) — H*(K/T)/<§+(I—s1*)> is
the canonical projection.) From Ig) it is fairly easy to see that p is
surjective. We assert that p is injective as well.

Let J be the kernel of p, so there is an exact sequence of
§(l—,1*)-modules (§(l—;1‘) acts on H*(K/T) via # and it acts on
5(51,) ) S(WO) by multiplication on the first factor.)

0— J— 561 8 SWg) — H (K/T) — 0

- - g 1% ,5+, 1* S 1*
considering € = S(h~ }/S(h~ ) as S(h~ )-module by multiplication, we

get an exact sequence.
S(h ™) gt h 1%
(I)... Tor; (CH K/T) — J/8* 0BT —
(§(h1’)@3(w0»/(§*(b1')gs(w0)) — HE /TS 6 — 0
(Since € - @« M = MEGB)M for any

S(h1*)-module M.)
By (Igh (1) ® SWN/(§*(h 1) 8 SWoh =~ SWy —

H (&/T)/<8*kh 1" is an isqmorphism.  Also, H (K/T) is §(b!")-free
module and hence Tor?“" )(II:,H*(K/T)) = 0. Putting these in (I7),
we get J/§+(BP-=)-J = 0, i.e.,

(Tg)... J = 8§61
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Assume, if possible, that J # 0. Pick a homogeneous element
a # 0 € J of minimal degree. By (18). a can be written as

a= Z )‘iai’ for some homogeneous elements )‘i € §+(I-;1*) and a; €
1

J. Since §+(I-;1') has no elements of degree 0, we have deg a; < deg

a, contradicting the minimality of deg a. This proves the lemma.

(3.6) Determination of minimal model for G/B. Since by
theorem (2.7) G/B is a formal space over @, in view of the Lemma
(3.5), it suffices to determine the minimal model for the DGA §(Bls)
(with d = 0). '

Denote by I the graded ideal Ker 8. Choose a C-linear
graded splitting s of the canonical projection: I — I/S+(Bl*)-I and

let Cfl,...,fmoJ be a homogeneous €-basis of s(I/S+(I-;1,)-I) with

fi of degree 2(i) (assigning deg 1 to the elements of Blt). By
[K,1, Cfl,...,fmoJ is a S(hl‘)-regular sequence. (Since S(hlt) is

Noetherian, m, is finite.) As 8&: hl* — HZ(G/B) is an isomorphism,
£(i)>2f0rall1$i$m0. . .
Define a minimal differential algebra By = S(hl’) ®
“iO .
[1§1 A(ng(i)-l)] .(A(x;z(i)-l) denotes the exterior algebra on
1 dim vector space in grade degree 22(i)-1 and the elements of Bl’
are assigned grade degree 2) with d S(hl‘) = 0 and d(xgg(i)_l) =
fi. . :
Define a DGA homomorphism #&: Hy — S(hlt)/Ker 8 by
g 8 ,) is the canonical projection and G(X;Q(i)_l) = 0. (Since
fi € If(er B, 0 is a co-chain map.)
(3.7) Lemma. O induces isomorphism in cohomology.

Proof. Ht(uo) can be, easily, identified with

CLyqseen¥py 1 .
Tor 0 ((C,S(hl )), where € is trivial ﬂ:[yl,...,ymo] module
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and S(blt) is ﬂ:[yl....,ym] module under y.,-f = fi-f for all
0

. : 1=
ISISmOandeS(h ).

m[yln'ﬂ"Yﬁ ] «
Purther Tor, ® @sk) = 0 for all i > 1.

This follows from [Se; Proposition 2 on page IV-4], Cfl,...,fmol is

a S(h 1*)-regu1ar sequence. of course

m[yls"'sym ]

0 1= - 1* =
Tor €,8h" ) = Sth )/<f1,...,fm0> =

S(I—»l*)/Ker 8. (Since the ideal <f1,...,fm >, generated by fl""’fm , is
0
equal to Ker 8.) This _easi]y gives that 6 induces isomorphism in
cohomology. -
We summarize all this in the following
(3.8) Theorem. Let G be a Kac-Moody algebraic group and B
the standard Borel subgroup of G. (See %(0.10).) Then

(1) Let {fl,...,meD C Ker 8 be a homogeneous CT-basis of Ker 48

modulo S+(l->1t)-Ker 8, with fi of degree 2(i} (assigning degree 1 to
the elements of I—;l*) (8 is the Borel map defined in %(3.1)).

Then the minimal model of the space G/B (this is defined to be
the minimal model of the DGA E:; 8 8 C with respect to some
triangulatipn of G/B. See %(2.5)) is of the form

ey
Hg/p = SW) @ SB) 8 [ 8 M3 p(sy-1)],

where WO is an evenly graded vector space which is isomorphic (as
graded vector spaces/C) with ‘;1 xzn(G) gﬂ: and Mx;.e(i)—l)

. a - n/. .
is the exterior algebra on a 1 dim. vector space in grade degree

22()-1. Further the differential d on /B is described as follows
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d =
sth1%)
dx3p05y-1) =1
In particular, El "on-1G 8 C = El 7on-1G/B) @ C

nz n
is finite dimensional and dimg(x sz/B) @ €) = #Cf: deg
Cc'"2n-1 2 ]
nl. .

j

(2) The map: H*(G/B,C) — H*(G,C) (induced by the canonical
projection: G — G/B) has the kernel precisely equal to the ideal
generated by Hz(G/B) and the image of H‘(G/B,u:) in H‘(G,E) is
isomorphic (as a graded algebra) with S(W).

(3) Determination of Whitehead product in n«(G/B) @ €. The
Whitehead product map [, ]: (n'n(G/B) % C) 9 (xm(G/B) g C)
—_— xn+m_1(G/B) g C is given by

@  [a.8] =0 for a € x,(G/B) @ € and 8 € x_(G/B) gc

unless n = m = 2 .

(B (n,(G/B) § ©) ® (x,(G/B) @ T) — x5(G/B) @ C is
Z P4 2

surjective.

Proof. (1) follows easily from theorem (2.7); (14); lemma (3.5); %(3.6)
and lemma (3.7) coupled with [DGMS; Theorem (3.3}a)].

From §(3.1), it is easy to see that the map: H‘(G/B,E) —
H‘(G,ﬂ:) has kernel precisely equal to <§+(B1‘)>. Hence, by (Ig), 2}
follows.

To prove (3), observe that the Whitehead product
[.1: (x,(G) g C) ® (x,(G) 8 T — x . 4(G) % C is zero (G
being a group). From the homotopy exact sequence, corresponding to
the fibration G — G/B, =, (G) % = (G/B) for n > 3. Hence
[.1: (x,(G/B) 8 €) ® (x,(G/B) 8 €) — =« .. 4(G/B) @ C is
zero unless one of m and n is equal to 2. From first part of this
theorem and [DGMS; Theorem (3.34a)], it is fairly easy to see that
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[ 1 (x5(G/B) & ©) 8 (xp(G/B) @ ©) — mpyy(G/B) @ T is also

zero for m 2 3. Finally the map d: = G/B =
. 2 2 1# 18
) Cx; _ u ® u = b @ h- can

those i 22(1)-1 — Hg/B G/B
seteg(i)=2
be easily seen (using its definition) to be injective.

This completes the proof of the theorem.
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