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1 Hermitian eigenvalue problem

For any n × n Hermitian matrix A, let λA = (λ1 ≥ · · · ≥ λn) be its set of
eigenvalues written in descending order. (Recall that all the eigenvalues of a
Hermitian matrix are real.) We recall the following classical problem.

Problem 1. (The Hermitian eigenvalue problem) Given two n-tuples of non-
increasing real numbers: λ = (λ1 ≥ · · · ≥ λn) and µ = (µ1 ≥ · · · ≥ µn),
determine all possible ν = (ν1 ≥ · · · ≥ νn) such that there exist Hermitian
matrices A,B,C with λA = λ, λB = µ, λC = ν and C = A+B.

Said imprecisely, the problem asks the possible eigenvalues of the sum of two
Hermitian matrices with fixed eigenvalues.

A conjectural solution of the above problem was given by Horn in 1962.

For any positive integer r < n, inductively define the set Snr as the set of
triples (I, J,K) of subsets of [n] := {1, . . . , n} of cardinality r such that∑

i∈I
i+
∑
j∈J

j = r(r + 1)/2 +
∑
k∈K

k (1)

and for all 0 < p < r and (F,G,H) ∈ Srp the following inequality holds:∑
f∈F

if +
∑
g∈G

jg ≤ p(p+ 1)/2 +
∑
h∈H

kh. (2)

Now, Horn conjectured the following.

Conjecture 2. (Horn) A triple λ,µ,ν occurs as eigenvalues of Hermitian n×n
matrices A,B,C respectively such that C = A+B if and only if

n∑
i=1

νi =
n∑
i=1

λi +
n∑
i=1

µi,
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and for all 1 ≤ r < n and all triples (I, J,K) ∈ Snr , we have∑
k∈K

νk ≤
∑
i∈I

λi +
∑
j∈J

µj .

Of course, the first identity is nothing but the trace identity.

Remark. Even though this problem goes back to the nineteenth century, the
first significant result was given by H. Weyl in 1912:

νi+j−1 ≤ λi + µj whenever i+ j − 1 ≤ n.

K. Fan found some other inequalities in 1949 followed by Lidskii (1950). The
full set of inequalities given above are due to Horn. Horn’s above conjecture
was settled in the affirmative by combining the work of Klyachko (1998) with
the work of Knutson-Tao (1999) on the ‘saturation’ problem. The above system
of inequalities is overdetermined. Belkale came up with a subset of the above
set of inequalities which forms an irredundant system of inequalities as proved
by Knutson-Tao-Woodward.

2 Generalization of the eigenvalue problem

Now we will discuss a genaralization of the above Hermitian eigenvalue problem
to an arbitrary complex semisimple group. (A further generalization to any
reductive group follows fairly easily from the semisimple case.)

So, let G be a connected, simply-connected, semisimple complex algebraic
group. We fix a Borel subgroup B, a maximal torus H, and a maximal compact
subgroup K. We denote their Lie algebras by the corresponding Gothic char-
acters: g, b, h, k respectively. Let R+ be the set of positive roots (i.e., the set
of roots of b) and let ∆ = {α1, . . . , α`} ⊂ R+ be the set of simple roots. There
is a natural homeomorphism C : k/K → h+, where K acts on k by the adjoint
representation and h+ := {h ∈ h : αj(h) ≥ 0} (for all the simple roots αj) is
the positive Weyl chamber in h. The inverse map C−1 takes any h ∈ h+ to the
K-conjugacy class of ih.

For any positive integer s, define the set Γ(s) :=

{(h1, . . . , hs) ∈ hs+ | ∃(k1, . . . , ks) ∈ ks:

s∑
j=1

kj = 0 and C(kj) = hj∀j = 1, . . . , s}.

Following is the generalization of the Hermitian eigenvalue problem to an
arbitrary G. (The case G = GLn and s = 3 specializes to the problem discussed
in the beginning if we replace C by −C.)
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Problem 3. Describe the set Γ(s).

By virtue of the convexity result in symplectic geometry, the subset Γ(s) ⊂
hs+ is a convex polyhedral cone (defined by certain inequalities). The aim is to
find these inequalities describing Γ(s) explicitly.

Before we can give a solution of the problem, we need some more notation.

Let P ⊃ B be a standard parabolic subgroup with Lie algebra p and let l be
its unique Levi component containing the Cartan subalgebra h. Let ∆(P ) ⊂ ∆
be the set of simple roots contained in the set of roots of l. For any 1 ≤ j ≤ `,
define the element xj ∈ h by

αi(xj) = δi,j , ∀ 1 ≤ i ≤ `. (3)

Let WP be the Weyl group of P (which is, by definition, the Weyl Group of
the Levi component L), then in each coset of W/WP we have a unique member
w of minimal length. Let WP be the set of the minimal length representatives
in the cosets of W/WP .

For any w ∈WP , define the (shifted) Schubert cell:

ΛPw := w−1BwP ⊂ G/P.

Then, it is a locally closed subvariety of G/P isomorphic with the affine space
A`(w), `(w) being the length of w . Its closure is denoted by Λ̄Pw , which is an
irreducible (projective) subvariety of G/P of dimension `(w). Let µ(Λ̄Pw) denote
the fundamental class of Λ̄Pw considered as an element of the singular homol-
ogy with integral coefficients H2`(w)(G/P,Z) of G/P . Then, from the Bruhat
decomposition, the elements {µ(Λ̄Pw)}w∈WP form a Z-basis of H∗(G/P,Z). Let
{εPw}w∈WP be the dual basis of the singular cohomology with integral coefficients
H∗(G/P,Z), i.e., for any v, w ∈WP we have

εPv (µ(Λ̄Pw)) = δv,w.

Given a standard maximal parabolic subgroup P , let ωP denote the cor-
responding fundamental weight, i.e., ωP (α∨i ) = 1, if αi ∈ ∆ \ ∆(P ) and 0
otherwise, where α∨i is the fundamental coroot corresponding to the simple root
αi.

3 Deformation of Cup Product in H∗(G/P )

Let P be any standard parabolic subgroup of G. Write the standard cup product
in H∗(G/P,Z) in the {εPw} basis as follows:

[εPu ] · [εPv ] =
∑

w∈WP

dwu,v[ε
P
w ]. (4)
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Introduce the indeterminates τi for each αi ∈ ∆ \∆(P ) and define a deformed
cup product � as follows:

εPu � εPv =
∑

w∈WP

( ∏
αi∈∆\∆(P )

τ
(u−1ρ+v−1ρ−w−1ρ−ρ)(xi)
i

)
dwu,vε

P
w ,

where ρ is the (usual) half sum of positive roots of g.

By using the Geometric Invariant Theory one proves that whenever dwu,v is
nonzero, the exponent of τi in the above is a nonnegative integer. Moreover,
the product � is associative (and clearly commutative).

The cohomology algebra ofG/P obtained by setting each τi = 0 in (H∗(G/P,Z)⊗
Z[τi],�) is denoted by (H∗(G/P,Z),�0). Thus, as a Z-module, this is the same
as the singular cohomology H∗(G/P,Z) and under the product �0 it is as-
sociative (and commutative). Moreover, it continues to satisfy the Poincaré
duality. Further, it can be proved that for a minuscule maximal paparbolic P ,
the product �0 coincides with the standard cup product.

Now we are ready to state the main result on solution of the eigenvalue
problem for any G stated above.

Theorem 4. (due to Belkale-Kumar) Let (h1, . . . , hs) ∈ hs+. Then, the follow-
ing are equivalent:

(a) (h1, . . . , hs) ∈ Γ(s).
(b) For every standard maximal parabolic subgroup P in G and every choice

of s-tuples (w1, . . . , ws) ∈ (WP )s such that

εPw1
�0 · · · �0 ε

P
ws

= εPo ∈
(
H∗(G/P,Z),�0

)
,

the following inequality holds:

ωP (
s∑
j=1

w−1
j hj) ≥ 0,

where εPo is the (top) fundamental class (which is the oriented integral generator
of Htop(G/P,Z)).

Remark. The above theorem specializes to a solution of the Hermitian eigen-
value problem if we take G = GLn. In this case, every maximal parabolic
subgroup P is minuscule and hence, as mentioned earlier, the deformed product
�0 in H∗(G/P ) coincides with the standard cup product. In this case, the above
theorem was obtained by Klyachko with a refinement by Belkale. (The set of
inequalities (b) for G = GLn in general is much smaller than the set of Horn in-
equalities discussed earlier. Further, as shown by Knutson-Tao-Woodward, the
set of inequalities (b) is an irredundant system for G = GLn.) If we replace the
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product �0 in (b) by the standard cup product, then the equivalence of (a) and
(b) for general G was proved by Kapovich-Leeb-Millson following an analogous
slightly weaker result proved by Berenstein-Sjamaar. It may be mentioned that
replacing the product �0 in (b) by the standard cup product, we get far more
inequalities for groups other than GLn (or SLn). For example, for G of type B3,
the standard cup product gives rise to 135 inequalities, whereas the new prod-
uct gives only 102 inequalities. I should also mention that by some results of
Kumar-Leeb-Millson and Kapovich-Kumar-Millson, the set of inequalities (b) is
an irredundant system for groups of type B3, C3 and D4. It might be expected
that the set of inequalities (b) is an irredundant system for any G.

My interest in the eigenvalue problem stems from the problem of tensor
product decomposition. Specifically, for any dominant integral weight λ ∈ h∗

(i.e., λ(α∨i ) ∈ Z+ for each simple coroot α∨i ), let V (λ) be the finite dimensional
irreducible G-module with highest weight λ. Given dominant integral weights
λ1, . . . , λs ∈ h∗, a classical and a very central problem is to determine which
irreducible representations V (ν) occur in the tensor product V (λ1)⊗· · ·⊗V (λs)?
By taking the tensor product of V (λ1)⊗· · ·⊗V (λs) with the dual representation
V (ν)∗, (and replacing s by s + 1) we can reformulate the above question as
follows.

Problem 5. Determine the set of s-tuples (λ1, . . . , λs) of dominant integral
weights such that the tensor product V (λ1) ⊗ · · · ⊗ V (λs) has a nonzero G-
invariant subspace.

This problem in general seems quite hard. So, let us pose the following
weaker saturated tensor product problem.

Problem 6. Determine the set Γ̂(s) of s-tuples (λ1, . . . , λs) of dominant ratio-
nal weights such that the tensor product V (Nλ1)⊗ · · · ⊗ V (Nλs) has a nonzero
G-invariant subspace for some positive integer N , where we call a weight a dom-
inant rational weight if its some positive integral multiple is a dominant integral
weight.

The above saturated tensor product problem is parallel to the eigenvalue
problem because of the following result. Let D := {λ ∈ h∗ : λ(α∨i ) ∈ R+∀i} be
the set of dominant real weights. Then, under the Killing form, we have an iden-
tification h+ → D. Under this identification, xi corresponds with 2ωi/〈αi, αi〉,
where ωi is the i-th fundamental weight.

Proposition 7. Under the identification of h+ with D (and hence of hs+ with
Ds), Γ(s) corresponds to the closure of Γ̂(s). In fact, Γ̂(s) consists of the rational
points of the image of Γ(s).

The following theorem is the main result on the saturated tensor product
decomposition.

Theorem 8. (due to Belkale-Kumar) Let (λ1, . . . , λs) be a s-tuple of dominant
integral weights. Then, the following are equivalent:

5



(i) For some integer N > 0, the tensor product V (Nλ1)⊗ · · · ⊗ V (Nλs) has
a nonzero G-invariant subspace.

(ii) For every standard maximal parabolic subgroup P in G and every choice
of s-tuples (w1, . . . , ws) ∈ (WP )s such that

εPw1
�0 · · · �0 ε

P
ws

= εPo ∈
(
H∗(G/P,Z),�0

)
,

the following inequality holds:

s∑
j=1

λj(wjxiP ) ≥ 0, (5)

where αiP is the simple root in ∆ \∆(P ).

I have said nothing so far about the proofs, nor can I say much for lack of
time. But let me mention that Theorem 4 on the eigenvalue problem for an
arbitrary G follows from Theorem 8 and Proposition 7. The proof of Theorem 8
makes essential use of the Geometric Invariant Theory, specifically the Hilbert-
Mumford criterion for semistability and Kempf’s maximally destabilizing one
parameter subgroups and Kempf’s parabolic subgroups associated to unstable
points. In addition, the notion of Levi-movability (defined below) plays a fun-
damental role in the proofs. Also, the new product �o in the cohomology of
the flag variety G/P is intimately connected with the Lie algebra cohomology
of the nil-radical of the parabolic subalgebra p.

Here is the definition of Levi-movability: Let P be any standard parabolic
subgroup of G with Levi component L. Let w1, . . . , ws ∈WP be such that

s∑
j=1

codim ΛPwj
= dimG/P. (6)

This of course is equivalent to the condition:

s∑
j=1

`(wj) = (s− 1) dimG/P. (7)

Then, the s-tuple (w1, . . . , ws) is called Levi-movable for short L-movable if, for
generic (l1, . . . , ls) ∈ Ls, the intersection l1Λw1 ∩ · · · ∩ lsΛws

is transverse at e.

Final Remark. I have no time to discuss the Geometric Horn Problem or the
Saturation theorems which have close connections with what I talked about.
Nor do I have time to talk about the multiplicative analog of the eigenvalue
problem.
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