
A Brief Summary of Body of My Works: Shrawan Kumar

My main interests lie in Representation Theory of finite dimensional semisimple groups
and their Kac-Moody analogs and the geometry and topology of their flag varieties. In ad-
dition, I have been interested in the moduli of semistable principal G-bundles over curves in
its connection to Verlinde formula for the dimension of the space of conformal blocks and
also the G-analog of the classical Hermitian eigenvalue problem, where G is any complex
semisimple group.

The following is a brief description of some of my main results.
I extended the Laplacian calculation of Kostant (in the finite case) and Garland (in the

affine case) to any symmetrizable Kac-Moody algebras and used this to develop a Hodge
theory for their flag varieties (1984).

Motivated by Hodge theory, I jointly with Kostant introduced a ring (now commonly
known as the Kostant-Kumar nil-Hecke ring or just the nil-Hecke ring) and used this to give
a purely algebraic model for the cohomology of flag varieties associated to any semisimple
group, more generally, any Kac-Moody group (1986). In particular, we gave an expression
for the cup product of any two Schubert cohomology classes. This is the only known
‘explicit’ formula for the cup product which works in general. This work has been used in
several important works including in uniformly determining the quantum cohomology of
flag varieties. (Arabia extended this work to the equivariant cohomology in 1989.)

Jointly with Kostant I obtained similar results for the equivariant K-theory of any flag
variety (1990). Again, this work has extensively been used in later developments in the
subject. More recently, I came back to the study of equivariant K-theory of flag varieties
and made a ‘positivity’ conjecture jointly with Graham (2008) for the dual Schubert basis.
This conjecture has been established by Anderson-Griffeth-Miller (2011) in the finite case.
In the general symmetrizable Kac-Moody case, the conjecture has been established by me
(2017). I also proved an analogous positivity result for the Schubert basis jointly with
Baldwin in the general symmetrizable Kac-Moody case (2017). In particular, this settles a
conjecture due to Lam-Schilling-Shimozono (2010).

I proved the Demazure character formula for an arbitrary Kac-Moody group G by a
new algebro-geometric method (1987). Recall that the Demazure character formula ex-
plicitly gives the character of the B-submodule generated by any extremal weight vector in
an integrable highest weight G-module, where B is a Borel subgroup of G. This work has
numerous applications, e.g., this is fundamental to the proof of Verlinde formula (see be-
low). Moreover, I used this character formula to extend the celebrated Weyl-Kac character
formula for symmeterizable Kac-Moody algebras to an arbitrary (not necessarily symme-
terizable) Kac-Moody algebras.

In the nineteen sixties, Parthasarathy-Ranga Rao-Varadarajan gave an important con-
jecture on the decomposition of tensor product of two representations. Their conjecture
asserted that for any two irreducible G-modules V(λ),V(µ) with highest weights λ, µ re-
spectively, and any Weyl group element w, the tensor product V(λ) ⊗ V(µ) has a compo-
nent with extremal weight λ+ wµ, where G is a complex semisimple group. Subsequently,
Kostant strengthened this conjecture by identifying the ‘first ocurrence’ of this piece in the
tensor product. Now, I proved this conjecture by employing a mixture of algebro-geometric
and representation theoretic techniques (1988). This result has found many applications by
several mathematicians in different areas.

I (in collaboration with Ginzburg) determined the cohomology of quantized enveloping
algebras at roots of unity (1993). This result has been used in several subsequent works
including a fundamental work by Arkhipov-Bezrukavnikov-Ginzburg.
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I (jointly with Vergne) introduced and studied the equivariant cohomology of manifolds
with generalized coefficients (1993). We proved a version of Kunneth theorem and local-
ization theorem for this new cohomology. This new cohomology has been used by others,
especially in the study of the index of transversally elliptic operators.

A very important conjectural formula came out of Mathematical Physics, known as the
Verlinde formula given by E. Verlinde (1988). The Verlinde formula attracted a lot of at-
tention from mathematicians when it was heuristically realized that for the Wess-Zumino-
Witten model associated to a simple algebraic group G over C (which is a particular Ra-
tional Conformal Field Theory), the space of conformal blocks admits an interpretation as
the space of generalized theta functions, which is the space of holomorphic sections of the
theta bundle on the moduli space MG(Σ) of semistable principal G-bundles on a smooth
projective curve Σ. This interpretation was rigorously established by Kumar-Narasimhan-
Ramanathan (1994) (and also independently by Beauville-Laszlo and Faltings). Now, by a
result of Tsuchiya-Ueno-Yamada, the dimension of the space of conformal blocks is given
by the Verlinde formula. Thus, by the above result of Kumar-Narasimhan-Ramanathan
(and others), Verlinde’s conjectural formula for the dimension of the space of generalized
theta functions gets established. A Séminaire Bourbaki talk by C. Sorger on ‘La formule
de Verlinde’ during November, 1994 was devoted to these works. Building upon the above
work, I (jointly with Narasimhan in 1997 and in another paper with Boysal in 2005) deter-
mined precisely the Picard group of the projective varietyMG(Σ).

I jointly with Hong have begun a systematic study to extend the theory of conformal
blocks to a ‘twisted’ setting where the curve Σ is replaced by a finite Galois cover of Σ and
the affine Kac-Moody group by the twisted affine Kac-Moody group (2019). Specifically,
we study the spaces of twisted conformal blocks attached to a Γ-curve Σ with marked Γ-
orbits and an action of Γ on a simple Lie algebra g, where Γ is a finite group. We prove
that if Γ stabilizes a Borel subalgebra of g, then Propagation Theorem and Factorization
Theorem hold. We endow a projectively flat connection on the sheaf of twisted conformal
blocks attached to a smooth family of pointed Γ-curves; in particular, it is locally free.
We also prove that the sheaf of twisted conformal blocks on the stable compactification
of Hurwitz stack is locally free. Let G be the parahoric Bruhat-Tits group scheme on the
quotient curve Σ/Γ obtained via the Γ-invariance of Weil restriction associated to Σ and the
simply-connected simple algebraic group G with Lie algebra g. We prove that the space
of twisted conformal blocks can be identified with the space of generalized theta functions
on the moduli stack of quasi-parabolic G -torsors on Σ/Γ when the level c is divisible by
|Γ| (establishing a conjecture due to Pappas-Rapoport). Further, we (jointly with J. Hong)
proved that the space of twisted conformal blocks is isomorphic to the space associated
to a quotient group of Γ acting on g by diagram automorphisms and acting on a quotient
of Σ (2022). Under some mild conditions on ramification types, we prove that calculating
the dimension of twisted conformal blocks can be reduced to the situation when Γ acts
on g by diagram automorphisms and covers of P1 with 3 marked points. Assuming a
twisted analogue of Teleman’s vanishing theorem of Lie algebra homology, we derive an
analogue of the Kac-Walton formula and the Verlinde formula for general Γ-curves (with
mild restrictions on ramification types). In particular, if the Lie algebra g is not of type D4,
there are no restrictions on ramification types.

I determined the precise singular locus of any Schubert variety in any flag variety in
terms of the nil-Hecke ring (1996). Partial results in this direction were given earlier by
several mathematicians. However, my criterion is a uniform criterion to determine such a
locus and it has widely been used. It was extended by Juteau-Williamson in char. p.
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An important breakthrough in understanding the geometry of Schubert varieties was the
introduction by Mehta-Ramanathan of the notion of Frobenius split varieties and the result
that the flag varieties G/P are Frobenius split. I (jointly with Lauritzen and Thomsen) have
shown that the cotangent bundle of the flag varieties is Frobenius split for any good prime
p (1999). This has provided several uniform and sharp results in the area.

In addition, I (in collaboration with Littelmann) have given a complete and self-contained
representation theoretic approach to the Frobenius splitting method for G/P (2002). This
new approach provides the Frobenius splitting very explicitly at the level of representa-
tions. The geometric Frobenius method (in char. k = p > 0) has been replaced by Lusztig’s
Frobenius maps for quantum groups at roots of unity (which exist not only for primes but
any integer ` > 1).

I (jointly with Thomsen) gave a conjectural generalization (2003) of the famous n!
theorem due to Haiman for any simple Lie algebra in terms of the geometry of principal
nilpotent pairs.

The classical Hermitian eigenvalue problem asks the possible eigenvalues of the sum
A + B of two Hermitian matrices A and B under the constraint that the eigenvalues of A
and B are fixed. The first nontrivial result towards this problem was obtained by H. Weyl
(1912). This problem continued to attract the attention of several mathematicians during
the last century and it was finally solved by combining the works of Horn (1962), Klyachko
(1998), Knutson-Tao (1999) and Belkale (2001). This work was generalized for other com-
plex reductive groups by Berenstein-Sjamaar (2000) and Kapovich-Leeb-Millson (2005).
However, their work did not provide an optimal solution to the problem. Their system of
inequalities had redundancies for any group G of type different from An. Now, I (jointly
with Belkale) came up with a new product in the cohomology of flag varieties (now known
as the Belkale-Kumar product) and used this to give a (in general much smaller) set of
inequalities solving the eigenvalue problem (2006). It was shown by Ressayre that these
smaller set of inequalities given by Belkale-Kumar provides an optimal solution of the
eigenvalue problem for any reductive group G (2010). Thus, in some sense, my work with
Belkale concluded this fundamental problem at a theoretical level, though an ‘explicit’ de-
termination of the eigencone for general G is not yet fully achieved. Vergne, Berline and
Walter have made some progress in this direction. Continuing our work, I (in collaboration
with P. Belkale) determined the eigencone for the symplectic and odd orthogonal groups
in terms of that of the ambient special linear group (2010). Moreover, I (jointly with Bel-
kale and Ressayre) extended Fulton’s conjecture to an arbitrary group (2011). There was a
Séminaire Bourbaki talk in November, 2011 by M. Brion on ‘Restriction de reprsentations
et projection d’orbites co-adjointes’ (d’après Belkale, Kumar, Ressayre) covering some of
these works. I (jointly with Belkale) also solved the corresponding multiplicative eigen-
value problem for any compact group by giving an optimal set of inequalities to determine
the corresponding polytope in terms of the quantum cohomology of flag varieties (and its
deformed version introduced by us) (2016).

Cachazo-Douglas-Seiberg-Witten gave a conjecture on the structure of the conformal
algebra (associated to any complex simple Lie algebra g) arising in Supersymmetric Gauge
Theory (2002). They proved their conjecture for the special linear Lie algebra g = slN and
subsequently Witten and Etingof proved the conjecture for other classical Lie algebras.
Now, I proved a substantial part of the conjecture for any simple g (2008). I came up with
a uniform proof for any simple Lie algebra g using the geometry and topology of loop
groups. I further generalized the result to the symmetric spaces (2010).
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In an attempt to understand Valiant’s conjecture and its strengthened version due to
Mulmuley-Sohoni in Geometric Complexity Theory, I studied the geometry of the orbit
closure of determinant and permanent and showed that they are not normal (2013). I further
studied the representations supported by these orbit closures and connected its study to a
famous ‘Latin Square Conjecture’ from 1992 due to Alon-Tarsi (2015).

I began a study to connect the cohomology of flag varieties G/P under cup product
with the representation ring of L, where G is any semisimple group and P is any parabolic
subgroup with L as its Levi component (2016). This provides a substantial generaliza-
tion of the classical result connecting the cohomology algebra of the Grassmannians with
the representation ring of general linear groups. I (in collaboration with Rogers) have de-
termined this connection explicitly for the symplectic as well as odd orthogonal groups
and their maximal parabolic subgroups (2020). Further, in collaboration with Jiale Xie, I
have determined this connection explicitly for the even orthogonal groups as well as all the
exceptional groups (except for E8) and their maximal parabolic subgroups (2022).

In a joint work with Brown, I initiated a study of the saturated tensor cone for the in-
tegrable highest weight modules of symmetrizable Kac-Moody Lie algebras (2014). We
solved the problem for affine SL(2) and gave a set E of inequalities for general symmetriz-
able Kac-Moody Lie algebras and conjectured that these provide an irredundent set of
inequalities determining the saturated tensor cone. Our set E of inequalities has been
shown to be sufficient by Ressayre (2017) for affine Kac-Moody Lie algebras. Further,
in a joint work with Ressayre, I proved that the set E of inequalities provide a necessary
system of inequalities for any symmetrizable Kac-Moody Lie algebras (2019). Thus, com-
bining the above works, the problem of determining the saturated tensor cone for the affine
Kac-Moody Lie algebras gets solved.

In a joint work with Rimanyi and Weber (2020), we introduced a new notion in elliptic
Schubert calculus: the (twisted) Borisov-Libgober classes of Schubert varieties in gen-
eral homogeneous spaces G/P. Our approach leads to a simple recursions for the elliptic
classes of Schubert varieties. Comparing this recursion with R-matrix recursions of the
so-called elliptic weight functions of Rimanyi-Tarasov-Varchenko, we prove that weight
functions represent elliptic classes of Schubert varieties.

Let g be an affine Kac-Moody Lie algebra and let λ, µ be two dominant integral weights
for g. In a joint work with Jeralds (2021), we prove that under some mild restriction, for
any positive root β, V(λ)⊗V(µ) contains V(λ+ µ− β) as a component, where V(λ) denotes
the integrable highest weight (irreducible) g-module with highest weight λ. This extends
my corresponding result from the case of finite dimensional semisimple Lie algebras to
the affine Kac-Moody Lie algebras. Then, we prove the corresponding geometric results
including the higher cohomology vanishing on the G-Schubert varieties in the product
partial flag variety G/P × G/P with coefficients in certain sheaves coming from the ideal
sheaves of G-sub Schubert varieties, where G is the affine Kac-Moody group associated to
the Lie algebra g and P is a standard parabolic subgroup.

I determined the Lie subalgebra gnil of any Borcherds symmetrizable generalized Kac-
Moody Lie algebra g generated by ad-locally nilpotent elements and proved that it is ‘es-
sentially’ the same as the Levi subalgebra of gwith its simple roots precisely the real simple
roots of g (2021).

G. Lusztig asked certain questions (which he characterized as his ‘expectations’) relat-
ing the modular representation theory of a simple algebraic group over char. p with the
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representation theory of multi-loop algebra of g, where g is the complex Lie algebra asso-
ciated to the group G. In a recent work (2022) I prove that these questions have negative
answers.

I have authored three books: Kac-Moody groups, their flag varieties and representation
theory (2002); Frobenius splitting methods in geometry and representation theory (2004)
(jointly with M. Brion); and Conformal Blocks, Generalized Theta Functions and the Ver-
linde Formula (published January, 2022 by the Cambridge University Press). All three of
these are the very first books on the subject. The first two books have become standard
references.


