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AbStract: vLet G be a connected simply-connected simple algebraic group over © and let T be a maximal torus, B > T a Borel subgroup
and K a maximal compact subgroup. Then, the product in the (algebraic) based loop group Q(K) gives rise to a comultiplication in the topological
T-equivariant K-ring K;OP(Q(K)), Recall that Q(K) is identified with the affine Grassmannian X (of G) and hence we get a comultiplication in
K;?p(x). Dualizing, one gets the Pontryagin product in the T-equivariant K-homology KJ (X), which in-turn gets identified with the convolution
product (due to S. Kato). Now, K;:JP(X) has a basis {€%} over the representation ring R(T) given by the ideal sheaves corresponding to the finite
codimension Schubert varieties X% in X. We make a positivity conjecture on the comultiplication structure constants in the above basis. Using
some results of Kato, this conjecture gives rise to an equivalent conjecture on the positivity of the multiplicative structure constants in T-equivariant

quantum K-theory QK (G/B) in the Schubert basis.

1 Introduction

Let G be a connected simply-connected simple algebraic group over C. We fix a Borel subgroup B and
a maximal torus 7' c B. We also fix a maximal compact subgroup K of G such that T, =T n K is a
(compact) maximal torus of K. Let X = G(C((¢))/G(C[[t]]) be the affine Grassmannian. Then, X is
an ind-projective variety with filtration

XocAXic...cX,c... given by Schubert varieties.

Let K°P (X) = I%Y;oLt' K3 (X,) be the topological T-equivariant K-group of X under the analytic
topology on X,,. Let W := W o< QV be the affine Weyl group, where Q" is the coroot lattice of G and W
is the (finite) Weyl group of G and let W’ be the set of minimal coset representatives in W/W. Let o be
the base point of X and U~ := G[t™*]. For any w € W', the sheaf £* := Oxw (-0X ") over X gives rise to
an element denoted [£*] € K"P (X) by using Lemma where X := U~ wo c X and 0X™ := X \U wo.
By Lemma [2.7]

KPP (X) = Myen R(T) [€7].
We also define the T-equivariant K-homology K{' (X) by K& (X) =dir.lt. KI' (X,,), where K{ (&,) is
the Grothendieck group corresponding to the T-equivariant coherent sheaves on the projective variety
X,,. Then, as in Definition [2.6]

Ki (%)= @ R(T)-[0x.].

where X, is the Schubert variety Bwo, B being the standard Iwahori subgroup defined as the inverse
image of B in G[[t]] under the evaluation map at ¢ = 0.

Let Q(K) be the based algebraic loop group of K endowed with the analytic topology (see the details
above Lemma . Then, K (in particular, Tp) acts on Q(K) via conjugation. We recall the following
well-known lemma (cf. Lemma :

Lemma 1.1. The inclusion map
B:QK)—> X, y=ry-0, foryeQ(K)

is a K-equivariant homeomorphism under the analytic topology on X .



Consider the K-equivariant multiplication map (which is continuous)
i QK) x Q(K) » QUK),  (71,72) =172

By virtue of the above K-equivariant homeomorphism g, we get a K-equivariant continuous (but not
regular) map m : X x.X — X. Thus, we get a pull-back map to the completed tensor product (cf.

Definition :
m*: KPP (X) = KPP (X) - KPP (X x X) = KPP (X) @ g K77 (X) .
The induced map m* can be written as follows (for any w e W’):

m* ([gw]) = - Ay [éu] ® [f”] , for unique ay;, € R(T).

u,ve

The following is our main conjecture (cf. Conjecture [2.9).

Conjecture 1.2. We conjecture that for any u,v,w e W',
(-1 gy e 7, (e 1), (% = 1)],

i.e., (—1)““)%(”)_@(’”)@371, is a polynomial in the variables e** —1,...,e* —1 with non-negative integral
coefficients, where {aq,...,q;} are the simple roots of G.
The pairing -
(,): Kp(X)®rn) Kq (X) > R(T)
as in Definition is non-singular by Theorem where K2 (z’\? ) is defined above Definition

Further, K (2? ) is canonically isomorphic with K7? (X) (cf. Lemma . Thus, the pairing induces
the identification:
¥ KPP (X) ~ Homgmy (Kq (X),R(T)),

and a similar identification 1[) for X x X. Using these identifications ¢ and z/;, we can rewrite the map
m* as

m* : Hompgry (Kg (X),R(T)) - Homg(r) (Kj (X x X),R(T))

giving rise to the product
pi Ko (X xX) = Kq (X) @rer) Ko (X) > Kq (X).

Thus, p makes KI (X) into an R(T)-algebra (cf. Definition for more details). Its product is called
the Pontryagin product. Let us write, under the Pontryagin product, for u,v € W',

[Ox,1%[0x,]1= > by, [Ox,].
weWw’

By Lemma |3.2 using Theorem we get, for any u,v,w e W',

aZ),U = bZ},v'
Thus, the above Conjecture translates to the following equivalent conjecture on the Pontryagin
product in KT (X) (cf. Conjecture .

w
u,v

Conjecture 1.3. Under the Pontryagin product as above, its structure constants by, satisfy

(_1)e(u)+é(v)—é(w) biv €Z,[(e* =1),...,(e* =1)].



Consider the diagram
X = GgxBx A x ,
I
y

where Y := G/B, u([g,x]) :=¢-x and 7([g,z]) := gB for g € G and x € X. Take B-equivariant coherent
sheaves S; on ) and S, on X supported in p~1(X,,) and X,, respectively (for some n > 0), where p: ) - X
is the projection. Their convolution product is defined by

S o Sy = o ((71'*81) ®L (6 IZB 82)) € Ké; (X) R

where e=®S, denotes the sheaf on GxB X the pull-back of which to Gx X is the product sheaf =S, (e being
the rank-1 trivial bundle over G), ®F is the derived tensor product Z(—l)iTor?"e and = ¥;(~-1)'Rip,.
Since py and ®F both descend to corresponding K-groups, we get a well defined map

o KB(YV)ey KB (X) - K5 (x).

Observe that ®" is R(B)-linear in the first variable but, in general, not R(B3)-linear in the second variable
but it is R(P)-linear (cf. Corollary [.5)). Then, we have the following result (cf. Proposition [4.3).

Proposition 1.4. ForueW andveW',
[Oxs]0'[Ox,]= [Ox,.. ] € Ko’ (X),

where X5 := BuB/Bc Y and * is the Demazure product in W (cf. Definition .

Observe that u * v may not lie in W'. We take its unique representative u*v in W'.

Let {w; },.,, be the fundamental weights of G. Recall that there is an isomorphism R(B) — K&(X) =
K§ (X) explicitly given by e* = [£ (=)\)], for a character e* of T, where £ (-\) is the homogeneous line
bundle over X = G/B associated to the principal B-bundle G — X via the character e* (cf. Definition
4.6). As proved by Steinberg, R(T) is a free R(G) = R(T)"-module (under multiplication) with a basis

€% := 27 My, 0 10,<0 e‘*’i}zew . Thus, {£(=64)} e is a basis of K§(X) as a K§ () ~ R(T)"-module.
Consider the pairing

() K&(X) @Ko K& (X) = Kg (%) = R(T)Y, (Vi, Vo) = xa (Vi @ V&),

where x¢ denotes the G-equivariant Euler-Poincaré characteristic. Then, it is non-singular (cf. Derfi-
nition . Let {£; = £(=0;)},y be the Steinberg basis of K (P/B) ~ K (P/B) (since P/B =~ X is
smooth) over KJ'(*) and let {£*}_.,;, be the dual basis of K] (P/B) under the above pairing.

Let i : P xB X - X be the product map [p,z] = p-x, for pe P and z € X. As mentioned earlier,
©' is not R(B)-linear in the second variable. To remedy this, following S. Kato, define the modified
convolution product: @ : K5 () QKB () KB (X) - KB (x) by

a®b:= Y (e(L") a) @’ﬁ!(ﬁmb), for a e K5 () and be KF (X),
zeW

where € : K (P/B) > KB(%) is the isomorphism. The following result is due to S. Kato (cf. Theorem

and Corollary [4.11)).

Theorem 1.5. The two products  and ® in K (X) coincide. Moreover, the product ® in K{ (X) is
associative and commutative. For any u,v € W', write

[0x,]10[0x,]1= ) pu.[0x,].
wew’
Thus,

w o _ pw /
pu,v _bu,vv fO’f‘ any u,'U,’U.)EW,

where bY . are the structure constants for the Pontryagin product in KOT(X) as above.

u,v



Thus, the above conjecture can equivalently be reformulated in terms of the structure constants for
the modified convolution product ® in K (X) (cf. Conjecture [4.10)).

Conjecture 1.6. For any u,v,we W',
(~1) Iy e 7 [(e* = 1), (e = 1)].
For any = € W, similar to the sheaf ¥ (w € W'), define the sheaf
(" =0y, (-0X7),

where X% := B-zB/Bc X = G/B , X* = X*\ (B 2B/B) and B~ > T is the opposite Borel subgroup
of G. Consider its class [(*] € KL (X) = KX (X).
Recall the K%(*)—algebra isomorphism

©: R(T) e R(T) - KX(X), e*@e e Lx (—p).
R ~

The domain of ¢ acquires the K9(x) = R(T)-module structure via its multiplication on the first factor.
The isomorphism ¢ allows us to view (* as an element ¢* € R(T) ?)R(T). For any element o =
R(G

Yia;®b; € R(T) ((gc;) R(T), we define |a| = ¥; a;b; € R(T). For any 0 < 4 < [, define a certain left
R
Demazure operator:
D;: R(T) ®pc)y R(T) - R(T) ®pc) R(T), Dj(a®b)=(D;a)®b, for a,be R(T),

A EFRY .
=% (Here sg = sp and ag = —0; 6 being the

where, for any 0 <i <1, D; : R(T) - R(T) takes e* to
highest root of G.)
The following is one of our main results (cf. Theorem [5.9).

Theorem 1.7. Toke ue W, ve W' and take a reduced decomposition u = s;, ...s;, (0<i;<l). Then,
under the modified convolution product

[Oxs]0[0x,]1= 3 >

reW 1<j1<-<jp<n

Dgl...ﬁgh "'5§jp"'D§n )

[Ox,

i1

P

where ﬁ; means to replace the operator D’ by the Weyl group action on R(T) ®g(qy R(T') acting only
on the first factor, * is the Demazure product in W and for w e W, w denotes the corresponding minimal
representative in wW .

Define an involution
t: R(T)®rq) R(T) - R(T) ®ra) R(T), a®brb®a, for a,be R(T).

Via the isomorphism ¢ identify any element of K9.(X) by an element of R(T) ®g(g) R(T). Thus, for
any class 7 € KX(X), we have the transposed class 1! := t(n) € K%(X). The same definition as that of ¢
realizes n' € K9 (XB) compatible with its restriction to X < XB. Viewed n' as an element of K- (XB),
we write it as n’g. For any u e W,v e W' and x € W, consider Xz =X, xB Xé x BX, together with
the standard product map py : Xy »0) > A and the standard projection 7y : X(y 5,0) = Xff7 where
X/ is the inverse image of Xf in G under G - Y and Xx c X = Y. Here, Xr is the Schubert variety
BxzB/B c X and X 7 is to be thought of as its inverse image in G. We have the standard pull-back map
i K9 (X) - K9 (X(WC,U . We give another expression for the modified convolution product ® in the
following (cf. Theorem [5.15):

Theorem 1.8. ForueW andve W,

[OXE]Q[OXJ = Z Z (([("’”];H)lxs 77rz!/'l’;:§w>|:oxw]‘

weW’ zeW




Using Theorem [I.7] we give an explicit expression in Section 6 for the convolution product ® in the
affine Grassmannian associated to G = SLo(C) (cf. Proposition [6.3). It was obtained earlier in [LLMS]
and also [Ka-1] by different methods.

!
Let QY := '69122004;’, where {aY, ..., o)} are the simple coroots of G. Consider the formal power series
i=

ring Z[[QY]] in the variables ¢; = ¢ . For any 8 = Yl niay, n; 20, we denote ¢° =[] q;". Additively,
T-equivariant quantum K-theory of X = G/B is defined as

QKT (X) = K’?" (X) [[QIa .. '7QI]]'

Thus, QK7(X) has a K%(*)[[q1,. - .,q]]-basis given by the structure sheaves {{O*] = [Ox,. Drzew.
It acquires a ring structure given by Givental and Lee. We denote the product structure by = called the

quantum product. Then, we get the following result (cf. Corollary which is obtained as a consequence
of Kato’s Localization Theorem

Corollary 1.9. For x,y e W and (31,82 € QY , in the quantum product

[07]+[0Y]= Y parl e, @ PP [07] € QK1 (X)),
5<0, zer’3

where QYy ={qe Q" : a;(q) <0, for all the simple roots o; of G}, pi:gl s, 7€ the structure constants

as above for the modified convolution product ® in K (X), W is the stabilizer of 8 in W and Wé 1
the set of minimal coset representatives in W [Wg.

For x,y € W, write the quantum product in QK7 (X):

[07]«[0"]= ¥ dyyd"[O7].

zeW, neQY

The above Conjecture [I.6] is equivalent to the following conjecture on the quantum product structure
constants in QK7 (X) (cf. Proposition [7.7)).

Conjecture 1.10. For any xz,y,z€ W and n e QY,
(1) HODALE g2 e 7, [(e* - 1),..., (™ - 1)].

We mention some of the known positivity results or conjectures related to QK (X) and QK (X) by
Lenart-Maeno [LM], Buch-Mihalcea [BM-1], Lam-Schilling-Shimozono [LSS], Li-Mihalcea [LiM], Buch-
Chaput-Mihalcea-Perrin [BCMP-1] and [BCMP-2], Lenart-Naito-Sagaki [LNS], Xu [Xu] and Benedetti-
Perrin-Xu [BPX]. For more details, see Remark
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2  Formulation of the main conjecture

Let G be a connected simply-connected simple algebraic group over C. We fix a Borel subgroup B
and a maximal torus 7' c B. We also fix a maximal compact subgroup K of G such that T, :==T n K is
a (compact) maximal torus of K. Let C((¢)) be the field of Laurent power series and let G := G((t))
be the loop group consisting of C((¢)) rational point of G. Let P := G[[t]] be the standard maximal
parahoric subgroup, which is the set of C[[¢]] rational points of G. Consider the affine Grassmannian



X =G/P. Then, X is an ind-projective variety with filtration Xy c X; c...c X, c... given by Schubert
varieties:

X, = U BwP/P,
{weWw’l(w)<n}

where B is the standard Iwahori subgroup defined as the inverse image of B in G[[t]] under the evaluation
map at t = 0, W:= W o @V is the affine Weyl group, Q" is the coroot lattice of G, W is the (finite)
Weyl group of G and W’ is the set of minimal length coset representatives in W/W. In particular, X
has inductive limit analytic topology. The torus T" acts on X via the left multiplication keeping each X,
stable. Define

KPP (X) = Inv. It. KyP (X,).

Observe that X' ~ G [t*'] /G[t], where we abbreviate G (C[t*]) by G [t*!] etc.
Let X := G((t™'))/G[t] be the thick loop group, where C((t™1)) := C[[t"*]][¢] is viewed as the set

of Laurent series in t™':{ ¥ ant™, an € C}.
n<k

Definition 2.1. For a quasi-compact scheme ), an Oy-module § is called coherent if it is finitely
presented as an Oy-module and any Oy-submodule of finite type admits a finite presentation.

A subset S ¢ W' is called an ideal if z € S and y <2 in W' imply y € S. An Op-module T is called
coherent if 7jys is a coherent VS-module for any finite ideal S ¢ W', where V° is the quasi-compact
open subset of X defined by V* := U,cg wld~0, where o is the base point of X and ¢~ := G[[t"']]. Then,
VS = Upes U wo; in particular, V° is U -stable.

We recall the following result due to Kashiwara-Shimozono [KS, Lemma 8.1].

Lemma 2.2. For any T-equivariant coherent sheaf S over X and any finite ideal S ¢ W, the sheaf Sjys
admits a finite resolution by locally free sheaves F; over V°:

O0->Fp—->->Fo->F —>.7:0—>S|Vs - 0.
Moreover, for any w e W', the sheaf € := Oxw (-0X™) over X is a coherent sheaf, where
C":=U wo, XV:=CvcX and 0X" := X"\C". O

et ¥) denote the Grothendiec group of T-equivariant coherent O -modules. us, Y
LK%Xd he Grothendieck fT h O% dul Th K%X

can be thought of as the inverse limit of K (VS ), as S varies over the finite ideals of W’. For any
w e W', the K-theory class of the coherent O p-module £ is denoted by

[€“] e K2 (X).
In particular, we can also think of [¢¥] as an element [f_“’] of KtTOP (X) by using Lemma [2.2
We also define the T-equivariant K-homology K& (X) by
KJ (X) = dir.It. KT (%,).
where Kg (X,.) is the Grothendieck group corresponding to the T-equivariant coherent sheaves on the
projective variety A,.
Definition 2.3. Consider the R(T')-bilinear pairing
(. ): K] (X)) Ki (X) > R(T)
defined by
([S). [F]) = (-1 (%0, Tor?* (8,7)),

for S a T-equivariant coherent sheaf on X and F a T-equivariant coherent sheaf on X supported in
X, (for some n), where xr denotes the T-equivariant Euler-Poincaré characteristic and R(T") is the
representation ring of 1" over Z.



We recall the following theorem due to Compton-Kumar [CK, Proposition 3.8].

Theorem 2.4. Under the above pairing, for any v,w e W',
(€], [O0x.,]) = bvw,
where the finite dimensional Schubert variety

Xy =Bwoc X.

Let
QK):= {fy :8' > K :74(1) = 1and v extends to an algebraic morphism 7 : C* - G}
be the based algebraic loop group of K. Then, K (in particular, Ty) acts on Q(K) via conjugation:
(k-7)(2) =ky(2)k™, for ke K,veQ(K) and z € S*.

Choose an embedding p:
KcG% GLy(T) c My(CT).

We endow Q(K) with the inductive limit topology induced from the filtration:
QUK) cQUK)yccQK)y,c-,

where

QUK), := {fy :8' > K : p(7) has its (i, )-th matrix entry of the form
S a7 2" with af’ € C for 2 e Sl}
k=-n

is realized as a closed subset of C@n+N? (under the analytic topology) coming from the coefficients
{a;f}. Then, this topology on Q(K) does not depend upon the choice of the embedding p.
The following lemma is well-known (cf. [PS, §3.5 and Theorem 8.6.3]).

Lemma 2.5. The inclusion map
B:QUK) > X, y=7-o, foryeQ(K)
is a K-equivariant homeomorphism under the above topology on Q(K) and the analytic topology on X .

Definition 2.6. Consider the multiplication map
i QK) x Q(K) - QUK),  (71,72) = 71172

From the above description of the topology on Q(K), it is easy to see that 7 is continuous. Moreover,
m is K-equivariant (in particular, Ty-equivariant) under the conjugation action of K on Q(K) viewing
the elements of K as constant loops and acting diagonally on the domain of .
By virtue of the K-equivariant homeomorphism S (cf. Lemma , we get a K-equivariant contin-
wOUS map
m: XxX - AX.

Thus, we get a pull-back map

m: KtT‘;p (X) = K (X) » KPP (X x X) = Kt (X) @ pery K (X)),



where
Ky (X) &pery Ky (X) = Tnv 1t (K7 (X)) ®per) Ki™ (X))

Observe that since T[T} is contractible, KtTC;p (X) = K;?P (X). Moreover, since K,°° (&,) is a free
R(T)-module (cf. [KK, Proof of Lemma 3.15]), by the Kunneth theorem [Mec, Theorem 4.1],

K (X < X)) » K™ (X) @ p(ry KpP (&)
Recall that (cf. [CK, Proposition 3.5])
K (X) =Tyan R(T)[€7]. (1)
By virtue of the above result, we call {[£"]},, an infinite basis.

Also, by [CK, Lemma 3.2],
K (X)= @ R(T)-[Ox.]. &)

Lemma 2.7. The canonical map -
ix: K9 (X))~ K& (X)
is an R(T)-algebra isomorphism. Thus,

KPP (&) = Hyen R(T) [€7].

Proof. Let Y := G/B. Then, by [KK, Proposition 3.39] together with [Ku-2, Proposition 3.6] (since the
Schubert varieties in ) have rational singularity [Ku-1, Theorem 8.2.2 (c)]), we obtain that the canonical
map

- 170 (V) top . . .

iy : K3 (¥) » KFP () is an isomorphism,

where V= G((t7))/G[t] n B
Let m: )Y — X be the standard projection. Then,

Rirm, ((95,) =0, for all i >0,

since H® (G/B, (9(;/3) =0, for all 4> 0. Thus, using the projection formula [Ha, Chap. III, Exercise 8.3]
we get that the induced map
* 0 v 0 (~)
™ KJ (X) > K§ ()
is injective.
Since 4y is injective, we get that so is ix from the following commutative diagram:

K2(X) 25 K¥P(x)
* iﬂ*
K3 37) = KO-

<

We next prove that ¢y is surjective:

By [KK, Corollary 3.20 and Lemma 2.27]|, we get that {L£(p)-[§5]} e is an infinite R(T) basis
of K (X), where L (p) is the line bundle over Y » G/B corresponding to the character e of B. Here
G is the universal central extension of G (cf. [Ku-3, Definition 1.4.5 corresponding to A, = 01]), B is the
inverse image of B in G, p is the weight taking value 1 on each of the affine simple coroots {a} }geie and
&8 = Oxp (-0XY), X§ =U wog,0XE = X ~U wog, 0z being the base point of Y. (We have used
here [KK, Proposition 3.9] and [CK, Proposition 3.8] to transform the basis in [KK] to our basis [£“].)

By [KK, Proposition 2.22| considering the localization map

ri KPP (X) » K2 (X7,



we get for any v e W',

[€"]= 3 au (L(p)-[€8]) e K7™ (X),

wew’
where

w

» { 0, for £(w) < 4(v) and w #+v
a

1
e’ P, for w=w.

Thus, the matrix A = (ay,), yen With entries in R(T') is an upper triangular matrix with invertible
diagonal entries. In particular, A is an invertible matrix. This shows that, for any v € W',

L(p)-[€p] € Muew R(T) [£7].

Hence,
K7 (X) = Tyenr R(T) [€"].
This proves the surjectivity of iy in view of and hence the lemma is proved. O

Remark 2.8. The map m : X x X - X is not an algebraic morphism with respect to the ind-variety
structure on X. In fact, it fails to be an algebraic morphism already for G = SLo(C).

The induced map
m*: Ky (X) = KPP (X) &gy KpP (X)

as in Definition can be written as follows by using Lemma (for any w e W’):

m* ([f_“’]) = . Aoy [5“] ® [f_”] , for unique ay;,, € R(T).

u,vE
The following is our main conjecture.
Conjecture 2.9. We conjecture that for any u,v,w e W',

(1) O g e 7, [(e* -1),..., (e - 1)],

i.€e., (—1)6(“)+e(“)_é(w)aﬁ,, s a polynomial in the variables x1 = e** —1,...,x; = e — 1 with non-negative
integral coefficients, where {a1,...,q;} are the simple roots of G. O

Remark 2.10. Considering the localization of £, it is easy to see that, in the above sum,

ay ., =0 unless £(u)+L(v)>Ll(w).

u,v

3 An equivalent formulation of the main conjecture in terms of
Pontryagin product

Definition 3.1 (Pontryagin Product). Recall from Definition [2.6] the multiplication map m : X x X - X
via the identification of X with Q(K) under . This gives rise to the pull-back map

m*: KyP (X)) - Ky (X x X).
By Lemma 2.7, we have a canonical isomorphism
iv: K9 (X) S KPP (X),
and a similar isomorphism (by the same proof)

iy K9 (X xX) S KPP (X xX).



Thus, the map m* gives rise to the map

under the identifications ix and iy -
Now, the pairing (over R(T"))

(,): Kp(X)®ner) K (X) > R(T)
as in Definition 2.3 is non-singular by Theorem [2.:4] This induces the identification:

W K3 (%) = Hompry (KJ (X) R(T))
and a similar identification

¥ K9 (X x X)~Homgry (Kg (X x X),R(T)).
Using these identifications v and 1/;, we can rewrite the map m* as
m* : Homgry (Kg (X),R(T)) - Homg(r) (Kj (X x X),R(T))
giving rise to the product
p: Ko (X xX) = K§ (X) ®per) Ky (X) > Ky (&),

where the first identification follows from the identity for X and a similar identity for X x X.

Moreover, the image of the map p lands inside K (&) c (K% (X)*),, due to Remarks where, for
an R(T)-module M,
M* = HOHIR(T) (M, R(T))

Thus, p makes K7 (X) into an R(T)-algebra. Its product is called the Pontryagin product. Let us write,
under the Pontryagin product, for u,v € W/,

[0x,1%[0x,]1= . by, [0x,]. (3)
weW'’

Then, by Remark
by =0 if £(w) > £(u) + £(v).

Moreover, by Theorem [2.4] we get the following. Also, see [LSS, §5.1], where they define their Kr(X)
as the continuous dual of K’ (X'), which is equivalent to our definition of K (X) in view of Theorem

24

Lemma 3.2. For any u,v,weW’,
w  _ pw
Ay yy = bu,v. O

Thus, Conjecture translates to the following equivalent conjecture on the Pontryagin product in
Kg (X).
Conjecture 3.3. Under the Pontryagin product as above, its structure constants by, satisfy

(~1)H ) o e 7 [(e™ - 1), (e = 1)],

where Z, [(e®* =1),...,(e™ = 1)] denotes polynomials in (e** —1),...,(e* - 1) with non-negative in-
tegral coefficients. [
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4 Pontryagin product in terms of convolution product

Consider the diagram
X = GxBx A x ,
7
y
where V:=G/B, u([g,x]) :=g-z and 7([g,z]) :==gB for ge G and x € X.
Observe that both g and 7 are G-equivariant morphisms under the left action of G on the spaces
involved.

Definition 4.1. Take B-equivariant coherent sheaves S; on ) and S, on X supported in p~!(X,,) and
X, respectively (for some n > 0), where p: ) — X is the projection. Their convolution product is defined
by

$10" Sy = ((1°81) @ (em” S2)) € Ki (X)),

where e ®? S, denotes the sheaf on G xB X the pull-back of which to G x X is the product sheaf e xSy (e
being the rank-1 trivial bundle over G) (cf. [SGA1, Chap. VIII, §1]), ®" is the derived tensor product

Z(—l)i'Tov“?)2 and gy = Y, (1) R .
Observe that (7*S;) ®F (6 b 82) is well defined; in fact,

7-07“?22 (71—*8176 =B 82) =0, for all i >0, (4)

as can be easily seen by pulling the two sheaves to G x X'. Further, the sheaf (7*S1) ®o (e =B 82) has
support in a projective variety (of finite dimension), and hence py is well defined.
Since 1 and ®” both descend to corresponding K-groups, we get a well defined map

o' KF(YV) ey KB (x) - KB (x).

Observe that @' is R(B)-linear in the first variable but, in general, not R(B)-linear in the second
variable but it is R(P)-linear (cf. Corollary [4.5)).

For generalities on convolution product, we refer to [CG, §5.2].

Definition 4.2. In any Coxeter group W, define the Demazure product x for any u € W and simple
reflection s;,

‘s u, if wus;<u
U*S; = .
¢ us;, if  wus; > u.

This extends to an associative product by defining

uxv=(((ux* 31‘1) * 5i2)"' * Sin)

for a reduced decomposition v = s;, ...s;, . (It does not depend upon the choice of the reduced decom-
position of v.)

Proposition 4.3. ForueW and ve W',

[Oxs]0' [0x,] = [Ox ] € K7 (%),

where X5 := BuB/Bc Y.
Observe that u * v may not lie in W'. We take its unique representative u* v in W'.

Proof. As observed in identity , following its notation,

TOT?* (W*Oxg,e&B Ox,) =0, for i>0.

11



Further,
(vOxs) 60, (c8°0x.) = (Opioxe) 8 0x) & (0555 Ox.)
Op-1(xy ®° Ox, , (5)

where p: G — )Y is the standard projection.
Thus,
[Oxz] @' [0x,] = (Op-1x2) x° Ox,) = (O-1 (xm)mex.,)) - (6)

Take a reduced decomposition u =s;, ...s;, , where {s;}o<i<; are the simple reflections of W. Let
Z?’L =Pi, xB Pi, B xB Pi,

be the BSDH (Bott-Samelson-Demazure-Hansen) variety, where P; > B is the minimal parabolic sub-
group of G containing s; (cf. [Ku-1, §7.1.3]). Then, we have a morphism

Bl 2l = (XEF), [p1y.-spa) = piD2 ... pn, for pj e Py,

Similarly, let 8, : Z, - X, be a BSDH desingularization (cf. [Ku-1, §7.1.3]). Then, we have the
commutative diagram induced from the morphisms 3, and 3,:
Zuy=Z2! xBZ, BuxBu

s

P (XB) <P X,

2N P

Xgwo
Observe that, for any sequence of simple reflections s = (s;,,...,s;,, ) in W,
Image (Ba) = X7 s, (cf. [Ku-1, Theorem 5.1.3 and Definition 7.1.13]). (7)
By [Ku-1, Theorem 8.1.13] for M = C,
R'B:(0z40) =0, fori>0 (8)
and
B (0z4.) = Ox., where fi= f,., 9)

since Xgzy is normal by [Ku-1, Theorem 8.3.2(b)]. A similar property as and (9 is true for the
morphism S, x 3,. Thus, by the Grothendieck spectral sequence for the composition of two functors (cf.
[Ja, Part I, Proposition 4.1]), we get

fori>0

i 0,
(R'11) (O xpymx,)) = { Ox_.  fori=0.

This proves the proposition by using @ | [

As before, let B c P; (0 < <) denote the minimal parabolic subgroup of G containing the simple
reflection s;.

Proposition 4.4. Let p; : Py xB x — P;/B be the map [p, +] = pB, for p e P;. Then, for any character

et of B, R R
Si

(1)1 (Ox, 8% ) = "M [Ox, ]+ (e -

1-exi

) [Oc) € K5 (X,
where X; = P;/B~ TP

Here sg is thought of as sg (reflection corresponding to the highest root 0 of G) and g := —0. Observe
that pu;) (OXi =5 e)‘) =Lx,(-)).

12



Proof. Write in K5 (X;)
[Lx,(M)] =ax[Ox,]+bx[Oc], for ax,by € K§ (+).
Take a character e* of B such that m := u(a)) >0 and n+m > 0, where n := A (o)) and « := —6". Then,
[Lx,(A+ )] = ax [Lx, ()] + bae™ € Kg (X3). (10)

By the Borel-Weil theorem for SLs,

XT (ﬁXL()\ +M)) _ e—()\+u) +€—()\+M)+(X7; bt e—(>\+u)+(m+n)ai- (11)
Similarly,
XT(Lx, () = e+ e o7l (12)
and
X7[Oc] = €°. (13)

By equations — ,
e ) [L+e% ++ e(“””)‘“] =aye *[1+e% +-+e™* ] +bre ™. (14)

Take ay = e7%* = A" and

e—)\ _ e—sik _)\ 1= eni
by=———"—=¢ .
1-e> 1—-ex

Then, considering the two cases n >0 and n < 0 separately, it is easy to see that with the above choices
of ay and by, the equation is satisfied for all p chosen as above. This proves the proposition. O

The following corollary follows immediately from Proposition
Corollary 4.5. For by e K (%) = K§ (%),
(1), (Ox, x® bo) =bo[Ox,] € K§(X;).
Thus, following the proof of Pmposition we get that for any a € K§ (V) and be K5 (X),
a® (by-b) =bya " b. O
We write the product in R (B) = R(T) additively by writing the character A of B as e”.

Definition 4.6. Let {w;},_, be the fundamental weights of G. Since X := G/B is smooth, we have
K (X) = K (X).

By [CG, §5.2.16],
' K§(X) =~ K§ (G %P )~ K (+) ~ R(B) ~ R(T). (15)

The isomorphism R(B) = K§(X) can explicitly be given as
e* = [L(-)\)], for a character e* of T, (16)

where £ (-)) is the homogeneous line bundle over X associated to the principal B-bundle G - X via

the character e.

By Steinberg [St, Theorem 2.2|, R(T) is a free R(G) = R(T)"-module (under multiplication) with
a basis

5,: . -1 (7F3
{6 =T Hai:xflai<0 € }a:eW .

Thus, {£ (=0.)},c is a basis of K§(X) as a K§'(*) ~ R(T)" -module.

13



The above identification easily translates to the identification:
R(T) = R(B) = K§ (P[B), "~ L(-))

thought of as a P-equivariant line bundle over P/B corresponding to the character e* of B (equivalently
a character of T).
By an analogue of Theorem [2.4] for X, we get that the pairing

(1) K& (X)®ko ) K& (X) > K¢ () =~ R(T)"Y
induced by
(V17 ‘/2) =XG (Vl ®‘/2)7

for G-equivariant vector bundles V7 and V5 (over X) is non-singular, where x¢ denotes the G-equivariant
Euler-Poincaré characteristic.

Let {L, = £ (~64)}, be the Steinberg basis of K’ (P/B) ~ K% (P/B) (since P/B ~ X is smooth)
over K (*) and let {£"}, ., be the dual basis of K} (P/B) under the above pairing.

Let A € K} (P/BxP/B) be the diagonal class, i.e., A is the class of the coherent sheaf Op, where
D c P/B xP/B is the diagonal variety.

Lemma 4.7. With the notation as above

A=Y L,wLe K] (P/BxP/B).

zeW
Proof. Take any P-homogeneous line bundles £ (\) and £ (p) over X = P/B. Then,
\p (Op ® (L () 8L (1)) = xp (£ (\+ ). (7)

Further,

(T eeemacm)

zeW
> xp ((La®L(N) (L ® L(1)))

xeW
- ZWXP (Le® LN)) - xp (L7 ® L(1))
= 3 (Lo, LON (LT, L(1))
xeW
:<ZW(@,£(A))£I,£(;L)>
=(L(N), L (1))
“xp (L ). (18

Comparing the equations and , we get

A= [OD]: Z ;Cwﬁdb,
weW

since {L£ (A)} er(s) Spans K} (P/B). O
Definition 4.8. Consider the commutative diagram:

KE(X)  SED(PxBX) L KD (PIBxX)

“

N /o
KE(PIB) 8 KT (X).
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In this diagram ¢ is the Induction Isomorphism [CG, §5.2.15], the isomorphism 7 is induced from the
‘P-equivariant isomorphism of the ind-varieties:

PxBx>P/BxXx, [px]~ (pB,pzx), forpeP and z € X.

The isomorphism ¢ is the Kunneth isomorphism (cf. [CG, Theorem 5.6.1]). To satisfy the hypotheses
of loc cit., we have used Lemma [4.7 and the result that

KP(V)=K§ (), forany P-ind-variety ).

By definition, ¢ = ¢ o7 o4 and hence it is an isomorphism. Analyzing the proof of [CG, Theorem
5.6.1], specifically on page 275 of loc cit., we get that

o(b)= Y, LTRE (Emgb), for any be KB (X)), (19)
zeW

where 7i : P xB X —» X is the product map [p, 2]~ p-x, for pe P and x € X. Here, we have abbreviated
B B
(p*L:)®b by L, ®b, where p: P — P/B is the projection. In particular, for b= Ox, (for ue W’) ,

2(0x.) =3 £up (/:moxu). (20)

zeW

As mentioned earlier, ®' is not R(B)-linear in the second variable. To remedy this, we modify its
definition following [Ka-2, §8]. Define the modified convolution product:

©: Kg (V) (X())Kg(?f)*K?(X)
Késx-

by
a0b:=Y (e(L")-a) @ L (,Cwb), for a e K8 (¥) and be KB (X)), (21)
zeW

where € : ng (P/B) 5 Kég *) is the isomorphism i~! as earlier for X replaced by *. It is easy to see
that ® does not depend on the choice of the basis £,,. From the definition of ©, it follows that ® is
KEB(#)-bilinear. It is clearly K& (#)-linear in the first variable. To prove its linearity in the second
variable, take a character e of B. Then,

aoetb = Ze(ﬁx)ﬂ@'ﬁ!(ﬁme)‘-b)
zeW
. Ze([lw)-ae'ﬁ!(ﬁ(—/\)-ﬁzb)
xzeW
_ e(/jm)(ﬁ(—)\)oﬁx,ﬁy)-adﬁl(Lygb)
z,yeW

since ® is R(P)-linear in the second variable by Corollary
_ (z e(cw)wm,ﬁ(—x)ay)).a@'u! (ﬁyb)

yeW \zeW
- Ze(ﬁ(—)\)ﬁy)-ae'ﬁ!(ﬁyb),

yeW

since y L7(Ly, L(-N)LY) =L(-\) LY
zeW

= Y ete(LY) a0 (Eyb)

yeW
= eaob.
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This proves that ® is K& (*)-linear in the second variable.
We now prove that for b e K} (X),

a®b=a0"b, foranyaeKp] (Y). (22)

Since b e K} (X), it is easy to see that, for any x € W,

I (L'w b) =xp (L) b, by the projection formula,

B B
since L, Rb=7"(L;) ® (e b), where 7 : P xB X — P/B is the projection.
Thus,

a®b

> (L) a0 xp (L.) b

zeW

= 2 (L) xp(Ls) a0 b,

zeW

since @' is K} (*) = R(P)-linear in the second variable
= €(Opj5)-a® b, as above since xp(L;) = (Ls, Op;s)
= a@'b

This proves (22).

Let * be the Pontryagin product in KOT (X) as in Definition 3.1 and ® the modified convolution
product KI'(¥) @ KI'(x) - KI'(X) as above. Since p:)Y — X is a G-equivariant (in particular, B-
equivariant) fibration; in particular, it is a flat morphism. Thus, there is the pull-back map p* : KT (X) -
KZI(Y). This takes, for we W', [Ox, ]+ [OXIB%], where w, is the longest element of W. Via this p*,

we get a (modified) convolution product ® on KT (X).
The following result is due to Kato with a proof indicated in [Ka-2, §8] and [Ka-1, §2.2].

Theorem 4.9. The two products * and ® in KI'(X) coincide.
For any u,v e W', write

[Ox,]0[0x,] = Z};leg,v [Ox,]. (23)

Thus
b

w _ Lw A

Duw = by s Jor any u,v,w e W,

where b , are the structure constants for the Pontryagin product in Ki (X) (cf. identity (3))). O

v
Thus, Conjecture 3.3 can equivalently be reformulated in terms of the structure constants for the
modified convolution product ® in KJ'(X).
Conjecture 4.10. With the above notation, for any u,v,we W’ ,
(~1) I e 7, [(e* = 1)L, (e = 1)].
As a corollary of Theorem we get the following.
Corollary 4.11. The product ® in K& (X) is associative and commutative.

Proof. The corollary follows from the corresponding properties of the Pontryagin product * in Kg (X).
The associativity of = of course follows since the product m : X x X — X (cf. Definition 3.1) is associative.

For the commutativity of *, recall that the inclusion Q(K) — Q" (K) is Tp-equivariantly homotopic
equivalence, where Q" (K) is the space of all the based continuous maps from S! to K under the
compact-open topology (cf. [PS, Proposition 8.6.6]). Further, Q" (K) being the loop group of a
compact Lie group, the coproduct in K;Op (Qcont(K )) is co-commutative and hence the (dual) Pontryagin
product * in KT (X) is commutative. O
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5 An expression for the modified convolution product structure
constants

We will use Theorem to get the structure constants for the Pontryagin product * in K OT (X) from
that of the structure constants for the modified convolution product ® in KI'(X).

Definition 5.1. Following [KK, §2.1] consider the ring Qyy , which is the smash product of the W-field
Q(T) (Q(T) being the quotient field of the representation ring R(T")) with the group algebra Z[W].
Specifically, Q is a free left Q(T')-module with basis {d, }weyw and the product is given by

(@16w,) * (@20w,) = q1 (W1 G2) Owyw,y,  for gi,g2 € Q(T') and wy, wz € W,
where sg acts on R(T) via sg.

For any simple reflection {s; }o<i<i, define the element z; € Qyy by

1
2= g (de = ds,), where we take ag = 6.
— e

Then, z; = e ?9); - €?, where ; is the same as y; in [KK, §2.1] except that we replace each simple root a;
by —a; and () =1 for all simple coroots ),0< i <1, where ag := —6. For any w € W, define

Zw = 2iy %, € Qy for a reduced decomposition w = s;,---s;, € W.

Then, it does not depend upon the choice of a reduced decomposition of w (i.e., z;’s satisfy the braid
property, cf. [KK, Proposition 2.4]). Moreover,

2=z forallO<i<l.

Further, we can write (cf. [KK, Theorem 2.9]), for any w € W,

Zw (6)\56) = Z f (v w; A) 2y,

v<w
for some unique f (v,w;\) € R(T). As in [KK, I5], Qyy acts on Q(T') via
(¢0w)Bq =q-(wq'), for q,¢" € Q(T) and w e W.

In particular,
2 (eM.) = e¥ 2 + z;m e, for any 0<i <l and e e R(T). (24)

As a consequence of Proposition 4.4, we get the following.

Proposition 5.2. For any w e W and any character e* of B,

M!B(oxgek): > f 0w A) [Oxs] € KB (D),

v<weW
where B : G xB + - Y = G/B takes [g, *] ~ gB, for g€ G and, as earlier, XB := BuB/Bc .

B
Proof. Observe that uP (Oxg e)‘) = LB(-)), where L8 (-)) is the restriction to X5 of the G-equivariant

line bundle over ) corresponding to the character e* of B. By Proposition and the identity ,
the proposition is true for w = s;, for any 0 < ¢ <[. We assume the validity of the proposition for w by
induction on ¢(w) and take s;w € W with £(s;w) > ¢(w). Consider the map

pl Py xBXB o XB [p,x]~ px, for pe P; and z € X5,

S;w?
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Then, By [Ku-1, Theorem 8.2.2(c)], p is a trivial morphism, i.e.,
(Rju;‘*’) (OPLXBXS’) = 0, forj>0,
= Oxs_, forj=0.

Thus,
L8, (=) = Ox,BLy(-)), where X, = P;/B
- oxig(z f (v, w;\) [oxg]), by induction
= Y sU@wD[oxn ] B s @w)[0x]
+7Z’: 1(21- @ f(v,w;\))-[Oxs], by l;rép;sition@
- Ugwf(v,siww [Oxs].

The last equality follows since

2+ (aq) = (2 @a) g+ (5i0) (2 q), for ae Q(T) and g Q. (25)

This completes the induction and hence the proposition is proved. O

Corollary 5.3. For any we W', and any character e* of B,

B
u!B (p*(OXW) X 6>\) = Z I (v, wwe; A) [Oxf] , where p:Y — X is the projection.

v<Wwwe, vEW

Proof. Tt follows immediately from Proposition and the fact that, under the projection p:)Y — X,

p ' (Xyw)=XE, , and the discussion before Theorem O
Definition 5.4. For any 0 <4 <[, define a variant of Demazure operator D;: R(T) - R(T) by
Di(eM) =z met = %, for any character e* of T.
Recall that sy = sp and ag = —6. Observe that
D;(ab) = (D;a) -b+ (s;a) - D;(b), for a,be R(T). (26)

Lemma 5.5. For any i; € {0,1,...,1}, as elements of Qw (cf. Definition ,

(inm) - (6)= % (Dil"'l:)ijl ...Dijp...Din) () 21,2,

1<j1<ja<<gp<n

where ﬁj means to replace the operator D; by the Weyl group action of s;.

Proof. For n =1, the lemma follows from the identity . We prove the lemma by induction assuming
it to be true for n and prove it for n + 1. So, take ig € {0,1,...,1}. Then,

(zig 2iy2i,,) (e’\5e) = Zy- (z“z% . (e)‘ée))

Zig‘ Z (Dil-“Dijl“.‘Di_jp.“Din)(e)\).zijl.“zijp

1<j1<<jp<n

Z [(Dio Dz‘l"'bih ...D%...Din) (6/\) ) (Zijl "'Zz",-p)

1<j1<<jp<n

+ (151'0 Dil"'éz‘h’”DiJP'“Din) (6/\) . (Zig 'Zz‘jl"'zijp)]v

by the identity . This completes the induction and hence proves the lemma. O
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Definition 5.6. For any x € W, similar to the sheaf ¥ (w € W'), define the sheaf
("= Ox. (-0X7),

where X* := B-zB/B c X := G/B , X* = X*\ (B zB/B) and B~ > T is the opposite Borel subgroup
of G. Consider its class [(*] € KI (X) = KX (X).
Recall (see, e.g., [KK, Theorem 4.4]) the K9 (x)-algebra isomorphism

©: R(T) 2 R(T) » K7(X), e*@e et Ly (-p),

for e*, e# characters of T', where £x (—u) is the line bundle over X associated to the principal B-bundle
G — X via the character e of B and the domain of ¢ acquires the K% () = R(T)-module structure
via its multiplication on the first factor.

The isomorphism ¢ allows us to view ¢* as an element ¢* € R(T) R%@g) R(T).

For any element v = ¥, a; ® b; € R(T') E®G) R(T), we define
R

|Ol| = Zajbj € R(T)
J

Of course, it is well-defined.

Lemma 5.7. For any x € W,

Proof. By definition -
I¢*1={¢", 0%, ), (27)

where X, := BuB/B and (,): KI(X)® KI'(X) - R(T) is defined similarly as in Definition by
setting '
([S1.[F]) = X (-1)'xr (X, Tor?> (S, F)),

for T-equivariant coherent sheaves S and F over X. By [CK, Proposition 3.8|, for z,y € W,

(¢”, O)gy) =0,,y; in particular, (¢, (95(6) =0ze- (28)
Combining the equations and , we get the lemma. O

Definition 5.8. For any 0 <i <[, we define a certain left Demazure operator:
D;: R(T)®p(c) R(T) - R(T) ®pc) R(T), Dj(a®b)=(D;a)®b, for a,be R(T).

Since D; (ab) = (D;a) b, for a € R(T') and b € R(G), D} is well-defined.
A slight variant of these operators also appear in [MNS, §5.2].

The following is one of our main results of the paper obtained by using Propositions [£.3] and [5.2] and
Lemma 5.5

Theorem 5.9. Toke ue W, ve W' and take a reduced decomposition uw = s;, ...s;, (0<i;<l). Then,
under the modified convolution product (cf. Deﬁm’tion@)

(Oxz]oOx,]= Y ¥ |DiDi, Dl D) (EF)

zeW 1<j1<+<jp<n

[Ox-

i, keekS, X—(E*’U],
*j1 “ip

where 153 means to replace the operator D’ by the Weyl group action on R(T) ®g(qy R(T') acting only
on the first factor, = is the Demazure product in W (cf. Deﬁm’tion and for w e W, w denotes the
corresponding minimal representative in wW .
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Proof. By the identity (28), we get for any line bundle £ over X,

(€)= (2.0 |0g | enT (). (29)
Write
[¢*] = zwa;‘ [£Y] € K§ (X)), for af € R(T), (30)

where [£Y] is as defined in Definition Thus, by the definition of the product ® (cf. (21))),

[Oxs]0l0x] = % e(e)[0xs] o (£,,¢)7m (05, 8O, ). by

z,yeW
- % c(e)[0x]' 6 [0x,..]. by (D) and
z,yeW

Proposition 3] since X, = X5
- Y ¥ e(cy)(ph...f)% ...lA)ijp...Din)(aZ)

1<j1<<jpsn x,yeW

10x., ..., 10'[Ozz], by Proposition [5.2] and Lemma [5.5
J1 Yip

_ D e(cy)(Dil...ﬁih...f)ij ...Din)(a;)]

P
1<ji<<jpsn xeW | yeW

(Ox___ ], by Proposition
“31 Yip
= Z Z D;IZA):JID;] D;n(gz) .[Oxm]’ by '
xeW 1<j1<<jp<n P ‘i1 Yip
This proves the Theorem. O

Remark 5.10. For u,v € W, as in Definition 4.8

(r*[0x,]) ©[0x,]= [Oxz, |0 [0x,].

Thus, the above Theorem [5.9| gives an expression for [Ox,]® [Ox, ] for the (modified) convolution
product © in KI'(X) replacing u by uw,.

Recall the isomorphism ¢ : R(T) ® gy R(T) - K9.(X) from Definition
Lemma 5.11. Forz e W and 1<i<l,

(¢)

I 3 e* ("], if six>x
Sz{[( ]} - { [Cm]*’(l—@ai)[gsim], Zf 8,7 < T

(b)
A e {[C’”], if s>

-[¢%"], if siz<uw.

Proof. (a) Observe first that, for any y € W,

(s11¢"1.5i10x, 1) = i ([¢"], [0, 1) = 82y, by identity 28). (31)
We first take s;2 > 2. Then, by [MNS, Proposition 5.5],

):{ 0, if s;y<y

<eai [¢*].5i[Ox,] Oy, if s;y>y.

Y

20



This proves (a) in the case s;z >z using equation (31)).
Now, take s;x < x. Then,

T _ g ST / . _ 0, if Sy >y
() a-eafe o) -{ § T
This proves (a) in the case s;z < z again using equation (31).
(b) Since D} = —L (Id -s!), part (a) proves (b). O

1-e%i

Definition 5.12. Define an involution
t: R(T)®rq) R(T) - R(T) ®pe) R(T), a®brb®a, for a,be R(T).

Via the isomorphism ¢ of Definition we identify any element of K%(X) by an element of
R(T) ®p(cy R(T). Thus, for any class n € K.(X), we have the transposed class n' := t(n) € K9(X)
under the isomorphism ¢. In fact, the same definition as that of ¢ realizes n' ¢ K> (X B ) compatible
with its restriction to X < ), where ) is as in the proof of Lemma Viewed 7' as an element of
K. (37), we write it as ;. We record this as an R(T)-algebra homomorphism:

Ky (X) — K7 (37), 1 g
In particular, we have (for any xz € W),
[T € K7.(9)- (32)

Let Bc P; (1<4<1!) be the minimal parabolic subgroup of G containing s;. Consider the projection
p; : X > G/P;. Recall the Demazure operator

Di: Ky (X) » Kp(X), e p; (i)

Under the identification ¢, we can think of the Demazure operators acting on R(T") ® gy R(T'). Then,

— . (1)
D; (a®b)=a® (W), for a,be R(T).
— eal
Thus,
D; (a®b)=(1®e”) - (D! (a®e™b)), (33)
where p is the half sum of positive roots of G and
D! (a®b)=a® (D;b) (cf. Definition [5.4). (34)

Recall that {e@. i= % }ateW is the Steinberg basis of R(T') over R(G) (cf. Definition . Thus, for
any y € W, we can write as elements of R(T) ® ray R(T):

[¢Y] = Z rY®e, = Z ex ®qY.

zeW xeW

Lemma 5.13. For any x,y e W,
rd = Z CY(2)F,e andg?= Z (z~§y(z_1))FZ7x,

zeW zeW
where F is the inverse of the matriz E = (Eyy =y -ez), o and ¢Y(2) € R(T) is the localization of ¢¥
at z. By [St, §2], det E + 0.
In particular, as elements of R(T') ® gy R(T),
[¢"]" = (1)) (Lo e™) - [¢"]
= (1)) () [¢")
= (1)) (e @ 1) [¢"°]. (35)
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Proof. We fix y € W and drop the superscript y in the above. Let ¢ be the row matrix ¢, = ¢¥(z), for
x € W and let 7 be the row matrix 7, = r¥. Then, 7- E = (. We have used here that the localization of
the line bundle £(\) at x is e™**. Let ¢ be the row vector ¢, = ¢Y. Then, ¢- E = ¢, where  is the row
matrix ¢ = z-¢Y(z™!). Thus,

7=C-F and g=(-F.

This proves the first part of the lemma.
To prove (35)), observe that (cf. [KK, Proposition 2.22])

0, forz<w,
Cwo(x):{ [] 1-e), foraz=uw,, (36)

aeR*

where R* is the set of positive roots of G. (Note that e*o"° from loc. cit. equals (%o (w,).) Observe
that, by definition,

" = Ow,y- (37)

Now, follows from and the first part of the lemma. To prove the equality (1® e 2*)-[¢"] =

(eP®e?)-[("] = (e* ®1)[(™] as in onsider their localization since K7(X) —» Kr(X7T) is

injective (cf. [KK, Theorem 3.13]), and use (36]). O

Proposition 5.14. For any x € W, take a reduced decomposition (s;, ...s;, ) T =w,. Then, as elements
of R(T) ® r(cy R(T),

(@) [T = () (¢ 81)- (DY, o0 DL ([¢™])
(b) = (D) (L @e ) (Dy, 00Dy, ([¢M]))
() = (-1)"@ (eP @ e7P) [O ]

where X* = B-27'B/B c X as before and the operators ©; an D;' are defined in Definition .
Proof. (a) Observe first that for any [¢] € K% (X),

(D¢ = Df ([eT) - (38)
By Lemma (b),
(Di, 00D, )[¢"] = (-1)" [¢"].
Taking the transpose, we get
(D, 00D ) [¢™])" = (-1)" [¢*]". (39)
By equation ,
((Di, o0 D},) [¢*1)" = (DY, o0 DIf) ([¢*1').
Thus, by equation ,
(D"[¢*) = (DY oo D) ([¢"])
(1)) (D} o0 D) (e @1) - [¢*]), by @)
(~1)" ) (e* @ 1) (D! o0 DI) ([¢*]).

This proves (a).
b) By (33),

Di(a)=(1®e”) D/ (1®e”)-a), for any o€ R(T) ®(cy R(T).
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Further, (1®e”)-[¢*]=(e”®1)-[("“] (see the proof of (35)). Thus, (b) follows from (a).
(c) By the (b)-part,

[¢")' (-1 (L @e)- (Dy, 00Dy, ([¢*]))
_ (_1)e(w) (ep®e—p).(@in 0-0®y ([O{wo}]))
= (D" (eP@eP)- [Ou.x 1, by the definition of D,
= (1) (eP@e ) [Ogut]
This proves (c), completing the proof of the proposition. O

For any uw e W,v e W' and x € W, consider
Xuwww) =X, xB X; xBXx,

together with the standard product map g, : X(y 0.y > & and the standard projection 7, : Xy z,0) =
Xf7 where X/ is the inverse image of Xf in G under G —» ) := XB, Xm c X - Y and Xg’c is to be
thought of as its inverse image in G. Observe that X(, . .) is a projective variety and m, is a fibration
(in particular, a flat morphism). Thus, the pull-back 7} is well-defined. Also, we have the standard
pull-back map

In particular, u (§") is well-defined for any w e W’'. Since X, , . is a projective variety, both p,1 and
7 are well-defined.
We give another expression for the modified convolution product ® in the following:

Theorem 5.15. ForueW andve W,

[Oxs]0[0x,]= % 3 (([¢°Na) o » mariin€”) O, 1,
|
weW' zeW “
where [¢*]Lg is as in 32).
Proof. By the definition of ® as in ,
[Ox]0[0x,]= ¥ e(£)[Oxz] o' (£,80x, )

yeW

I T\ — B
- ¥ ee)[ox]e (L, ¢ (0g, BOx,)
z,yeW
by [CK, Proposition 3.8]
= > e(LY) [OXE] o' (L,,(")Ox__, by Proposition [£:3] (40)

zeW yeW

Write
[¢"]= Zai ®b; € R(T) ®R(@) R(T).

Then, we have

(£0:C7) = Y ai Ly a(b).

where o : R(T) - K2(X) is the ring isomorphism induced by e* = Lx (-\).
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Thus, the expression becomes

> > (L) (Ly, (b)) [Oxs] 0 0;Ox .,

zeW ¢ yeW

since ©' is R(G)-linear in the second variable

= Z sz [OXE]@, a;Ox__

Txv
xeW 1

S ({9 I et

zeW

].

Thus, from , we get

[Oxs]e(0x,]= ¥ (1)), )@ [Ox].
Hence, by Theorem

[Ox5]©[Ox,]

> (L)1 ) © [0 1,€)Ox, ]

weW, xeW

Y (7R Ta)1s) ) €O,

weW, xeW

WZ Y (([Cm]iﬂ)lxg ,Wz!/i;fw> [Ox,], by the next lemma.
weW, ze

This proves the theorem. O

Lemma 5.16. For any morphism of projective varieties f: X - Y and locally free sheaf F on'Y and a
coherent sheaf S on X,

X (F @ fiS)=(F, AiS)=(f"(F),S).
Proof. Consider €:Y — %. Then,

(F7(F),S)=x(f"(F)es)

afi(f*(F)®S)
e (F® fi(S)), by the Projection Formula

X(Fe fi(S)).

O

Let QY ={qe Q" :a(qg) <0, for all the positive roots e of G}, where Q" is the coroot lattice of G.
We write such a ¢ as ¢ <0. Also, 74 € W denotes the translation by «.

Lemma 5.17. (a) For ¢<0, 7, e W' .

(b) For ¢ <0 and x e Wy , l(x71y) = £(7y) = £(x), where W, ¢ W is the stabilizer of q in W and W,
is the set of smallest coset representatives in W [W,.

(c) For q<0 and x e W, , x7, e W'. Conversely, any element of W' can be written as x-7, for some
q<0 and x e Wy.

Proof. Recall that for any g € Q¥ and x € W,

e<mq>=( 5 |a<q>+1|)+ S (o) (41)

aeRTNz-1R- aeRT*Nz-1R*

(cf. [IM]), where R is the set of positive roots of G and R~ := -R"*.
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(a) For ¢ < 0 and any simple reflection s;, 1 <i <1,

E(Tq'si) = K(SiT—q)
li(g) =1/ > a(g), by (1)

aeR*\{a;}
= 1- 3 a(g)
aeR*
= U(ry) +1.

This proves (a).

(b)
(xTy) = - Z (a(g)+1) - Z alq) + Z 1, by . (42)

acR*tNz=1R~: acRtNz-1R* acRtnz~1R~:
a(q)#0 a(q)=0

We assert that there does not exist any o € R* nz 'R~ such that a(q) = 0. This follows since a(q) =
0 < sqq=q < sq € W,. If za€ R, then x5, <2 by [Ku-1, Lemma 1.3.13]. This contradicts the choice
of x € W,. Thus, by ,

C(x7y) =L (74) — £(z), proving (b).

(c) We first prove that for ¢ <0 and x € W, z7, e W'.
Take a simple reflection s; € W. If x74s; < 274, then

C(xTys;) =L(xmy) -1 =L(74) —€(z) -1, by (b).

This gives
O(1gsi) =4 (ac_l -qusi) < E(m_l) +0(xTym;) =4 (1) - 1.

This contradicts (a), proving that z7, € W'.
For the converse, take any element w € YW and write it as w = y - 74 = Yy7p.q/, for 2,y € W and ¢’ <0.
Thus,

-1 -1 /
w=yrTyx =Ty Tex, for x1 € Wy, and y; € Wy

= zqurylel. (43)
Since 17, € W’ by the first part of (c), and w € W’ (by assumption), we get w = z17 by (43). This
completes the proof of (c). O
Lemma 5.18. ~
Y ("=1®1.

zeW
Proof. For any y € W, by [CK, Proposition 3.8],

zeW
Also,

(p(1®1), O)?y) =1, where ¢ is as in Definition [5.6
Thus, the lemma, follows. O

A slightly weaker version of the following result is obtained by Kato [Ka-1, Theorem 1.7] by a different
method, where he assumed that ¢ < 0.
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Proposition 5.19. For any ue W and q € QY,

[0xs]e[0x,,]=[Oxrr ] o
In particular, for ue W' and q € QY

(p>e [OXu]) © [OXTQ] = [Ox,qu] . (45)
Observe that u-7, € W' (as shown in the proof below).

Proof. Observe first that for any x € W,
T * Ty =Tq (46)

To prove this, write = 2’2" with 2" € W, and 2" ¢ W,. Thus,
TxTg=a'xx"x1, = ' %(T-714), for some T e W,
= x'x7y
= 74, by Lemma b).
Take a reduced decomposition u = s;, ...s;, € W. By Theorem and identity , we get

(D;1 o...o[);jl o...oﬁgjp o...oD;n)( Z Em)

zeW

[Oxs]e[Ox,] = X

1<j1<<jp<n

[Oxm]
1 Jp
[Ox~]; by Lemmal[5.18

UkT,

This proves ([{4). By (44), we get for ue W',

(»'[0x. D)0 [0x,,]

URWoRTq ]

[OXW:L by '

[Ox

We claim that
U(u-7q) = £(u) +€(14) and hence u * 7, = u-74. (47)

To prove this, by Lemma (c), write
u=1x-7q, for some ¢’ <0 and x e Wy, (48)
Thus,
Clury) = L(x-Tysq)
= {(Ty4+q) —¥(z), by Lemma (b)

= U(ry)+l(1g)—L(z), by
= ((74) +{(u), by Lemma[5.17] (b).

This proves . Thus,

TTq'+q> DY
TTq+q, by Lemmal[5.17 (c).

= U'Tq.

Thus, by (47), (p*[Ox,]) ® [(’)XTJ = [Oqu]a proving (45). O

Uk Tqg=U-Tq

26



For any u,v € W', recall from the identity (identifying K& (X) as an R(T)-submodule of K ())
under p* : KI'(X) = KI()))

[Ox,]0[0x,] = ZV:V,P% [Ox, ] (*)

Corollary 5.20. For any q1,q2 <0 and u,v,w e W',

w WTqy +qz
pu v pUqu 1)Tq2

Proof. Multiply (*) by [(’)Tq] and use the associativity and the commutativity of ® (cf. Corollary }
and Theorem [5.19 O

6 Example: Convolution product in the case G = SLs.

We assume in this section that G = SLy(C) and freely follow the notation from Sections 4 and 5.
Lemma 6.1. (a) (‘=e’®e’, ("' =’ @’ —e @€’ , where p= S

(b) s5(C) =er ®er, s (C*) = ¢+ (1-€™) (" .

(0) D (€)= ~e20G", DY (C) = e

(@) D} (€)=, D4 () = ¢
Proof. To prove (a), pair the expressions with O %, and Oy and use the result (Cm,('))o(y> = 0py (cf.

)

[CE, Proposition 3.8]). To prove (b) and (c), recall that sg = sla1 =5, and ag = 6. O

Remark 6.2. For any simple Lie algebra g,
Cc=eP®e” and Dy(C%) = (e +629+-~~+e(hv_1)9)§e>
where hY is the dual Coxeter number of g and 6 is the highest root of g.

For any n >0, let 7,, := ... 808150 (n-factors). Then, 7,, e W’ and 79, = Tonay - Let X, = X7 . We

use Theorem [5 m and Lemma E to prove the following. It is obtained in [LLMS Identlty 17] and also
in [Ka-1, §2.4] by different methods. (We thank Syu Kato for pointing out these references.)

Proposition 6.3. For any n,m >0 , under the (modified) convolution product ® in KI'(X),
(a’) [On] © [O2m] = [On+2m]

(0) [O2n41] © [O2m+1] = ¥ [Oans2m2] + (1 — %) [O2pi2mas],
where O,, denotes Ox,, .

Proof. We first calculate for v = 75, (denoting O, = Ox,)

[01]0[0m] = [Oxz, |0[0n,.]

5051 (C°+ C°)| [Ospsynram ] + DGt (€6 +C%) | [Osymn ]
+[s6D7 (C° + )| [Osgaran]

+ |D6D1 (69 +( )| [0:,..], by Theorem [5.9]

= [Ospxrsn], by Lemma a), since (¢ + (' = e @ €.

Thus,
[01] @ [O2mm] = [O2m+1] . (49)
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We next calculate

[01]0[Oma] = [Oxz . |©[Omi]

= DDy (C)| [O2mir] + DG DY (C) [ [Osy 47211
+ |D6$’1 (Ee + C_Sl )| [051 *sz+1] + ’56D1(56)| [Oso*sz+1]
+ |S(,)Di (681 )| [030*81 *7'2m+1:|
+ 565,1 (C_e + C_Sl)| [080*81*7’2m+1] ’ by Theorem @

= _€2p [0277L+1:| + 62[) [02m+2] + €2p [027n+1]
—€2p [02m+3:| + [O2m+3] s by Lemmal[6.1].

Thus,
[Ol] © [02"“'1] = €2p [02m+2] + (1 - €2p) [02m+3] . (50)

Similar to the calculation of equation ([49), for any n > 0, writing 7, - 1 = s, ... s;,,, with s;, € {0,1}
and s;,,, = s1 , we get

[0.]0[0wm] = [Oxs |0[0m,,]

Tn,s1
1<j1 < <gp<n+1

[OXW
, in

* T ]
i1 2m

Dj o OD’Ejl e oﬁi"jp oo Dj (56 +C_Sl)

, by Theorem [5.9]

Thus, o
(0] ©[O2m] = [Ont2m], since ¢+ (°* = e ®el. (51)
From equation (51)), we get (a).
To prove (b), from (a) we get,

[O241] @ [O2pm41] ([01] ©[O02,]) © [O2ma41]
[O1] ® [O2pn+2m+1], from the associativity

and commutativity of ® as in Corollary
= € [Oansamsa] + (1 - €*) [O2ns2ms3], by (B0).
This proves (b). O

7 Quantum product in equivariant K-theory of flag varieties ver-
sus Portryagin product in the loop group

1
Definition 7.1. Let QY := & Zyocy), where {ay,...,a)} are the simple coroots of G. Consider the

2 7

formal power series ring Z[[QY]] in the variables ¢; = ¢® . For any = ¥, n;e, n; > 0, we denote
¢’ =Tlq".
Additively, T-equivariant quantum K-theory of X = G/B is defined as

QK7 (X) = K7 (X)[[a1,---, ]
Thus, QK7(X) has a K%.(*)[[q1, - -,q]]-basis given by the structure sheaves {{O0*] = [OXT 1}eew,

o

where (as earlier) X, ¢ X is the Schubert variety Bxw,B/B c X. It acquires a ring structure given by
Givental [Gi] and Lee [Le]. We denote the product structure by * called the quantum product. In this
product, [O¢]-¢" is the identity. Moreover, {qﬁ = [Oe]qﬁ}ﬂEQv forms a multiplicative system. Thus, we

can localize QK7 (X) with respect to this multiplicative system to be denoted QK1 (X )ioc.

28



Similarly, by Theorem [5.19| and Lemma [5.17| (b), {[OXTQ]}(IE o forms a multiplicative system in
<0

(KT (X),0), where

QY ={qe@": a;(q) <0, for all the simple roots a; of G} .

Let K¢ (X)), denote the localization of K (X) under the modified convolution product ® with respect

to the above multiplicative system.

We recall the following result due to Kato [Ka-1, Corollary 4.21], which was conjectured by [LLMS].

Theorem 7.2. There exists an R(T)-algebra embedding
11[} : Kg (X)loc e QKT (X)loc ’
such that, for any B,v€ QY and x e W,
v ([0x..,]0[0x, 1) = ¢"7[0"].
Observe that by Lemma (c), xTg e W'.

As a corollary of Theorem we get the following.

Corollary 7.3. For x,y e W and (1,52 € QY , under the quantum product

[07]+[0]= Y pif yreyd” PR [07] € QK1 (X),

£<0, zeWLg

where p;:’él s, are the structure constants for the modified convolution product © in Kg (X) asin .

Proof. By Theorem 7.2 (abbreviating Ox, by Oy)

0 ((0er, 1010, T 00,1, ] 0[O,

On the other hand, taking any fixed ¢ < 0,

6 (([Oars, ]0[07,] ) 0 ([0, ] @
=1 ([mel] © [wa ] [ Tﬁ1+ﬂ2:|
= /¢( Z p;:fﬁ YT 8o [OZTB] © [OTﬁﬁﬁz] )’ by Lemma C)

B<0, ZEW’

=0 Y, [0:,]0[05]0[05] 0[05,,17)
£<0, zeW’

-1

[0-,,17)

=9 ) p‘i:ﬁl YT8y [OZ"'B+5] © [OT6+51+52 ]_1)’ by Theorem [5.19]

B<0, zeW’

— ]
- Z Dz, ,y7s,
B<0, zEW[’j

q5+5—5—/31—,82 [OZ] )

Comparing the equations and , we get

[0°]1+[0%]= ¥ pits wme, @2 [O%].
£<0, zeW’

)) = [07] % [0"].

) by Theorem [5.19] and Corollary [d.11]

(52)

This proves the Corollary since QKr(X) < QKr(X)oe (cf. [Ka-1, Proof of Theorem 4.17 and

§1.7)).
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Remark 7.4. Observe that from the above corollary, for 51,82 <0 and 8 <0 with z € Wé, the structure
constants pfc:’zl yrs, only depend on z,y, z and - 1 - B2. In particular,

ZT3 _ L RTB+51+69
prgl YTy — p$7—61+61 YYTBo+89 0 for 617 52 <0.

This is compatible with Corollary
Definition 7.5. For x,y € W, write the quantum product in QK7 (X):

[07]«[0"]= ¥ dyyd"[O7].

zeW, neQY

As a consequence of Corollary Conjecture is equivalent to the following conjecture on the
quantum product structure constants in QK7 (X).

Conjecture 7.6. For any x,y,z€ W and neQY,
(1) @HDAEE g2 e 7, [(e - 1),..., (™ - 1)].
Proposition 7.7. Conjecture[{.10 is equivalent to the above conjecture 7.0

Proof. We first show that Conjecture [£.10] implies Conjecture [7.6}
Fix any x,y,z € W and 7 € QY. Now, chose any /1,82 € QYy and 8 =1+ 1 + 52 such that 8 € QY.
By Corollary
z, _ ZT,
dx,z = pz'rgl YTBy * (54)

Observe further that ¢(73) is even for any 5 < 0 (cf. identity ) Thus, Conjecture follows from
that of Conjecture [4.10
Conversely, assume Conjecture Then, for any z,y,z € W and 8,01, 52 € QY such that § -

(81 + B2) € QY, we get by
(~1) o) ) teme) )20 € T [(e™ = 1), (e = 1)]. (55)

Take any u,v,w € W’ and write (cf. Lemma €)) u=aTy,, v=yry, and w = 27, where v,71,72 <0
5.20

and x e W ,ye W, ,zeW.. By Corollary

w . ETy+B1+B8y v
DPu,v = Pty 4py,§Tg 4800 for any Sy, B2 € Q<0~ (56)

By Corollary [7.3]
[O7] + [OY] = par 1722 q"~172) [O%] + other terms.

T PXTy 1 4815,YTy2+B2

In particular, if
Par 1t #£0, then - (y1+72)eQY. (57)

TTy1 481 Y Trg+82
Thus, if non-zero, by the identities and ,
P = Paryabs im0y a0d Y = (71 +72) € QY. (58)
Hence, by the identities and ,
(-1) I e (e = 1) ..., (e = 1)].

This proves that Conjecture implies Conjecture O

The following example is given in [BM-2, §5.5].
Example 7.8. For G = SLy(C), we get for QKr(P) (using C’orollary and Theorem ,

[0%1] % [0%1] = €2t - q°T[O°] + (1 - 1) - °[O*].
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Remark 7.9. As proved by Kato [Ka-3|, for any standard parabolic subgroup P of G, there exists a
surjective morphism of commutative R(T')-algebras:

QK1r(G/B) » QKr(G/P)

which takes the Schubert basis {{O*]} . of QK7 (G/B) to the Schubert basis or zero of QK7 (G/P).
Thus, the quantum multiplication structure constants for G/P can be read off from that of G/B.

Remark 7.10. We list some of the known positivity results or conjectures related to QK (X).

(a) Non-equivariant analogue of Conjecture for QK (X) (for any X = G/B) is made by Lenart-
Maeno [LM, Conjecture 7.5]. There is an error in the sign of their conjecture, which they subsequently
fixed (as informed to me by C. Lenart). It conforms to our more general T-equivariant conjecture

(Conjecture [7.6).
(b) Buch-Mihalcea [BM-1] conjectured the QKr positivity for Grassmannians.

(¢) Lam-Schilling-Shimozono formulated an analogue of Conjecture albeit for the structure sheaf
basis {Oxw }wen of K*P(X) (non-equivariant case) in terms of the multiplicative structure constants of
a basis of the nil-Hecke algebra (cf. [LSS, Conjecture 6.7]). They also have formulated several conjectures
on affine stable Grothendieck polynomials and K-theoretic k-Schur functions (cf. [LSS, Conjectures 7.20
and 7.21]). Parts of their Conjectures 7.20 and 7.21 were subsequently proved by Baldwin-Kumar [BK].

(d) Li-Mihalcea [LiM] have proved an alternating sign behavior for the structure constants associated
to line degrees corresponding to some fundamental weights on any G/P.

(e) Buch-Chaput-Mihalcea-Perrin [BCMP-1] have proved an analogue of the Chevalley formula with
alternating signs for cominuscule flag varieties. They have further proved the non-equivariant analogue
of Conjecture for minuscule flag varieties as well as quadric hyper surfaces (cf. [BCMP-2]).

(f) Lenart-Naito-Sagaki |[LNS| have proved a cancellation free Chevalley formula with alternating
signs for QKr(G/B). They also have some similar Chevalley formula for Grassmannians in type A and
C and some two-step flag manifolds. Also see [BCMP-1] and [KLNS].

(g) By a result due to Xu [Xu], Conjecture is true for the two-step flag variety of type A.

(h) A positivity result is proved for the symplectic Grassmannian quantum K-theory QK (IG(2,2n))
by Benedetti-Perrin-Xu [BPX].
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