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Abstract Let g be a symmetrizable Kac-Moody Lie algebra with the standard Cartan
subalgebra h and the Weyl group W . Let P+ be the set of dominant integral weights.
For λ ∈ P+, let L(λ) be the integrable, highest weight (irreducible) representation of
g with highest weight λ. For a positive integer s, define the saturated tensor semigroup
as

�s := {(λ1, . . . , λs, μ) ∈ Ps+1+ : ∃ N ≥ 1 with L(Nμ) ⊂ L(Nλ1)⊗ · · · ⊗ L(Nλs)}.

The aim of this paper is to begin a systematic study of �s in the infinite dimensional
symmetrizable Kac-Moody case. In this paper, we produce a set of necessary inequal-
ities satisfied by �s . These inequalities are indexed by products in H∗(Gmin/B;Z)
for B the standard Borel subgroup, where Gmin is the ‘minimal’ Kac-Moody group
with Lie algebra g. The proof relies on the Kac-Moody analogue of the Borel-Weil
theorem and Geometric Invariant Theory (specifically the Hilbert-Mumford index).
In the case that g is affine of rank 2, we show that these inequalities are necessary and
sufficient. We further prove that any integer d > 0 is a saturation factor for A(1)1 and

4 is a saturation factor for A(2)2 .
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902 M. Brown, S. Kumar

1 Introduction

Let g be a symmetrizable Kac–Moody Lie algebra with the standard Cartan subalgebra
h. Let P+ ⊂ h∗ be the set of dominant integral weights. For λ ∈ P+, let L(λ) denote
the irreducible, integrable, highest weight representation of g with highest weight λ.
In this way, P+ parameterizes all the integrable, highest weight g-modules. Moreover,
the tensor product of integrable, highest weight g-modules decomposes as a (possibly
infinite) direct sum of irreducibles.

For a positive integer s, define the saturated tensor semigroup as

Γs :=
{
(λ1, . . . , λs, μ) ∈ Ps+1+

∣∣∣∣ L(Nμ) ⊂ L(Nλ1)⊗ · · · ⊗ L(Nλs)

for some N > 0

}
.

In the case that g is a semisimple complex Lie algebra, Γs is given by an explicit set
of inequalities coming from the products in the cohomology ring of the flag varieties
for the corresponding algebraic group.

The aim of this paper is to begin a systematic study of Γs in the infinite dimensional
symmetrizable Kac–Moody case. Specifically, we produce a set of necessary inequal-
ities satisfied by Γs , which we describe now. Let X = Gmin/B be the standard full
Kac–Moody flag variety associated to g (cf. [13, §7.1]), where Gmin is the ‘minimal’
Kac–Moody group as in [13, §7.4] with Lie algebra g, and B is the standard Borel
subgroup of Gmin. For w in the Weyl group W , let Xw = BwB/B ⊂ X be the cor-
responding Schubert variety. Let {εw}w∈W ⊂ H∗(X,Z) be the (Schubert) basis dual
(with respect to the standard pairing) to the basis of the singular homology of X given
by the fundamental classes of Xw. The following result is our first main theorem valid
for any symmetrizable g (cf. Theorem 3.2).

Theorem 1.1 Let (λ1, . . . , λs, μ) ∈ Γs . Then, for any u1, . . . , us, v ∈ W such that
nvu1,...,us

�= 0, where

εu1 . . . εus =
∑
w

nwu1,...,us
εw,

we have

⎛
⎝ s∑

j=1

λ j (u j xi )

⎞
⎠− μ(vxi ) ≥ 0, for any xi ,

where xi ∈ h is dual to the simple roots of g.

The proof of the theorem relies on the Kac–Moody analogue of the Borel–Weil theorem
and the Geometric Invariant Theory (specifically the Hilbert–Mumford index). We
conjecture that the above inequalities are sufficient as well to describe Γs . In fact, we
conjecture a much sharper result, where many fewer inequalities suffice to describe
the semigroup Γs . To explain our conjecture, we need some more notation.
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A study of saturated tensor cone for symmetrizable Kac–Moody algebras 903

Let P ⊃ B be a (standard) parabolic subgroup and let X P := Gmin/P be the
corresponding partial flag variety. Let WP be the Weyl group of P (which is, by
definition, the Weyl group of the Levi subgroup L of P) and let W P be the set of
minimal length coset representatives of cosets in W/WP . The projection map X →
X P induces an injective homomorphism H∗(X P ,Z) → H∗(X,Z) and H∗(X P ,Z)

has the Schubert basis {εwP }w∈W P such that εwP goes to εw for anyw ∈ W P . As defined
by Belkale–Kumar [1, §6] in the finite dimensional case (and extended here in Sect. 7
for any symmetrizable Kac–Moody case), there is a new deformed product �0 in
H∗(X P ,Z), which is commutative and associative. Now, we are ready to state our
conjecture (see Conjecture 2 in Sec. 7).

Conjecture 1 Let g be any indecomposable symmetrizable Kac–Moody Lie algebra
and let (λ1, . . . , λs, μ) ∈ Ps+1+ . Assume further that none of λ j is W -invariant and
μ−∑s

j=1 λ j ∈ Q, where Q is the root lattice of G. Then, the following are equivalent:

(a) (λ1, . . . , λs, μ) ∈ Γs .
(b) For every standard maximal parabolic subgroup P in Gmin and every choice of

s + 1-tuples (w1, . . . , ws, v) ∈ (W P )s+1 such that εvP occurs with coefficient 1
in the deformed product

ε
w1
P �0 · · · �0 ε

ws
P ∈ (

H∗(X P ,Z),�0
)
,

the following inequality holds:

⎛
⎝ s∑

j=1

λ j (w j xP )

⎞
⎠− μ(vxP ) ≥ 0, (I P

(w1,...,ws ,v)
)

where αiP is the (unique) simple root not in the Levi of P and xP := xiP .

This conjecture is motivated from its validity in the finite case due to Belkale–
Kumar [1, Theorem 22]. (For a survey of these results in the finite case, see [15].) So
far, the only evidence of its validity in the infinite dimensional case is shown for s = 2
and g of types A(1)1 and A(2)2 (cf. Theorems 7.3 and 8.6). In these cases, we explicitly
determine Γ2 and thereby show the validity of the conjecture.

A positive integer do is called a saturation factor for g if for any Λ, Λ′, Λ′′ ∈ P+
such that Λ−Λ′ −Λ′′ ∈ Q and L(NΛ) is a submodule of L(NΛ′)⊗ L(NΛ′′), for
some N ∈ Z>0, then L(doΛ) is a submodule of L(doΛ

′)⊗ L(doΛ
′′).

We prove the following result on saturation factors (cf. Corollaries 6.3 and 8.8).

Theorem 1.2 For A(1)1 , any integer do > 1 is a saturation factor. For A(2)2 , 4 is a
saturation factor.

The proof in these affine rank-2 cases makes use of basic representation theory
of the Virasoro algebra (in particular, Lemma 4.1). Let δ be the smallest positive
imaginary root of g. To determine the saturated tensor semigroup for s = 2, we show
that it is enough to know the components of L(λ1)⊗ L(λ2)which are δ-maximal, i.e.,
the components L(μ) ⊂ L(λ1) ⊗ L(λ2) such that L(μ + nδ) � L(λ1) ⊗ L(λ2) for
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904 M. Brown, S. Kumar

any n > 0. Let mμ
λ1,λ2

be the multiplicity of L(μ) in L(λ1)⊗ L(λ2). If L(μ) is a δ-

maximal component of L(λ1)⊗L(λ2), then
∑

n∈Z≤0
L(μ+nδ)⊕mμ+nδ

λ1,λ2 is a unitarizable
coset module for the Virasoro algebra arising from the Sugawara construction for
the diagonal embedding g ↪→ g ⊕ g. Proposition 5.5 for A(1)1 (and the analogous

Proposition 8.2 for A(2)2 ) determining the maximal δ-components plays a crucial role
in the proofs.

2 Notation

We take the base field to be the field of complex numbers C. By a variety, we mean
an algebraic variety over C, which is reduced but not necessarily irreducible.

Let G be any symmetrizable Kac–Moody group over C completed along the nega-
tive roots (as opposed to completed along the positive roots as in [13, Chapter 6]) and
Gmin ⊂ G be the ‘minimal’ Kac–Moody group as in [13, §7.4]. Let B be the standard
(positive) Borel subgroup, B− the standard negative Borel subgroup, H = B ∩ B−
the standard maximal torus and W the Weyl group (cf. [13, Chapter 6]). Let U (resp.
U−) be the unipotent radical [B, B] (resp. [B−, B−]) of B (resp. B−). Let

X̄ = G/B

be the ‘thick’ flag variety which contains the standard Kac–Moody flag variety

X = Gmin/B.

If G is not of finite type, X̄ is an infinite dimensional non quasi-compact scheme (cf.
[7, §4]) and X is an ind-projective variety (cf. [13, §7.1]). The group Gmin acts on X̄
and X .

More generally, for any standard parabolic subgroup Gmin ⊃ P ⊃ B, define the
partial flag variety

X P = Gmin/P,

and

X̄ P = G/P.

Recall that if WP is the Weyl group of P (which is, by definition, the Weyl Group
WL of its Levi subgroup L), then in each coset of W/WP we have a unique member
w of minimal length. Let W P be the set of the minimal length representatives in the
cosets of W/WP .

For any w ∈ W P , define the Schubert cell:

C P
w := BwP/P ⊂ X P
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A study of saturated tensor cone for symmetrizable Kac–Moody algebras 905

endowed with the reduced subscheme structure. Then, it is a locally closed subvariety
of the ind-variety X P isomorphic with the affine space A

�(w), �(w) being the length
ofw (cf. [13, §7.1]). Its closure is denoted by X P

w , which is an irreducible (projective)
subvariety of X P of dimension �(w). We denote the point wP ∈ C P

w by ẇ. We
abbreviate C B

w, X B
w by Cw, Xw respectively.

Similarly, define the opposite Schubert cell

Cw
P := B−wP/P ⊂ X̄ P ,

and the opposite Schubert variety

XwP := Cw
P ⊂ X̄ P ,

both endowed with the reduced subscheme structures. Then, XwP is a finite codimen-
sional irreducible subscheme of X̄ P (cf. [13, Section 7.1] and [7, §4]). As above, we
abbreviate Cw

B , XwB by Cw, Xw respectively.
For any integral weight λ (i.e., any character eλ of H ), we have a Gmin-equivariant

line bundle LB(λ) on X associated to the character e−λ of H . Similarly, we have a
G-equivariant line bundle LB−(λ) on X− := G/B− associated to the character eλ of
H .

By the Bruhat decomposition

X P = �w∈W P C P
w ,

the singular homology H∗(X P ,Z) of X P with integral coefficients has a basis
{μ(X P

w)}w∈W P , where μ(X P
w) ∈ H2�(w)(X P ,Z) denotes the fundamental class of

X P
w . Let {εwP }w∈W P be the dual basis of the singular cohomology H∗(X P ,Z) under

the standard pairing of cohomology with homology, i.e.,

εu
P (μ(X

P
v )) = δu,v, for any u, v ∈ W P .

Thus, εwP ∈ H2�(w)(X P ,Z). If P = B, we abbreviate εu
P by εu .

Let Δ = {α1, . . . , αr } ⊂ h∗ be the set of simple roots, {α∨1 , . . . , α∨r } ⊂ h the set
of simple coroots and {s1, . . . , sr } ⊂ W the corresponding simple reflections, where
h := Lie H . Let ρ ∈ X (H) be any weight satisfying

ρ(α∨i ) = 1, for all 1 ≤ i ≤ r,

where X (H) is the character group of H (identified as a subgroup of h∗ via the
derivative). When G is a finite dimensional semisimple group, ρ is unique, but for a
general Kac–Moody group G, it may not be unique.

Choose elements xi ∈ h such that

α j (xi ) = δi, j , for any 1 ≤ i, j ≤ r. (1)

Observe that xi may not be unique.
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906 M. Brown, S. Kumar

Define the set of dominant integral weights

P+ := {λ ∈ X (H) : λ(α∨i ) ∈ Z+ ∀ 1 ≤ i ≤ r},

and the set of dominant integral regular weights

P++ := {λ ∈ X (H) : λ(α∨i ) ∈ Z≥1 ∀ 1 ≤ i ≤ r},

where Z+ is the set of non-negative integers. The integrable highest weight (irre-
ducible) modules of Gmin are parameterized by P+. For λ ∈ P+, let L(λ) be
the corresponding integrable highest weight (irreducible) G-module with highest
weight λ.

3 Necessary inequalities for the saturated tensor semigroup

Fix a positive integer s and define the saturated tensor semigroup Γs = Γs(G):

Γs :=
{
(λ1, . . . , λs, μ) ∈ Ps+1+

∣∣∣∣ L(Nμ) ⊂ L(Nλ1)⊗ · · · ⊗ L(Nλs)

for some N > 0

}
.

It is indeed a semigroup by the analogue of the Borel–Weil theorem for the Kac–
Moody case [see the identity (2) in the proof of Theorem 3.2]. We give a certain
set of inequalities satisfied by Γs . But, we first recall some basic results about the
Hilbert–Mumford index.

Definition Let S be any (not necessarily reductive) algebraic group acting on a (not
necessarily projective) variety X and let L be an S-equivariant line bundle on X.
Let O(S) be the set of all one parameter subgroups (for short OPS) in S. Take any
x ∈ X and δ ∈ O(S) such that the limit limt→0 δ(t)x exists in X (i.e., the morphism
δx : Gm → X given by t �→ δ(t)x extends to a morphism δ̃x : A

1 → X). Then,
following Mumford, define a number μL(x, δ) as follows: Let xo ∈ X be the point
δ̃x (0). Since xo is Gm-invariant via δ, the fiber of L over xo is a Gm-module; in
particular, it is given by a character of Gm. This integer is defined as μL(x, δ).

We record the following standard properties of μL(x, δ) (cf. [16, Chap. 2, §1]):

Proposition 3.1 For any x ∈ X and δ ∈ O(S) such that limt→0 δ(t)x exists in X, we
have the following (for any S-equivariant line bundles L,L1,L2):

(a) μL1⊗L2(x, δ) = μL1(x, δ)+ μL2(x, δ).
(b) If there exists σ ∈ H0(X,L)S such that σ(x) �= 0, then μL(x, δ) ≥ 0.
(c) If μL(x, δ) = 0, then any element of H0(X,L)S which does not vanish at x does

not vanish at limt→0 δ(t)x as well.
(d) For any S-variety X

′ together with an S-equivariant morphism f : X
′ → X

and any x ′ ∈ X
′ such that limt→0 δ(t)x ′ exists in X

′, we have μ f ∗L(x ′, δ) =
μL( f (x ′), δ).
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A study of saturated tensor cone for symmetrizable Kac–Moody algebras 907

(e) (Hilbert–Mumford criterion) Assume that X is projective, S is connected and
reductive and L is ample. Then, x ∈ X is semistable (with respect to L) if and
only if μL(x, δ) ≥ 0, for all δ ∈ O(S).

In particular, if x ∈ X is semistable and δ-fixed, then μL(x, δ) = 0.

The following theorem is one of our main results giving a collection of necessary
inequalities defining the semigroup Γs .

Theorem 3.2 Let G be any symmetrizable Kac–Moody group and let (λ1, . . . , λs, μ)

∈ Γs . Then, for any u1, . . . , us, v ∈ W such that nvu1,...,us
�= 0, where

εu1 · · · εus =
∑
w

nwu1,...,us
εw ∈ H∗(X,Z),

we have
⎛
⎝ s∑

j=1

λ j (u j xi )

⎞
⎠− μ(vxi ) ≥ 0, for any xi ,

where xi is defined by the equation (1).

Proof Let

Z := {
(ḡ1, . . . , ḡs) ∈ (X−)s : g1 Xu1 ∩ · · · ∩ gs Xus ∩ Xv �= ∅

}
,

where X− := G/B− and ḡ j = g j B−. Then, Z contains a nonempty open set by
Proposition 3.5. (In fact, by Proposition 3.5, Z = (X−)s , but we do not need this
stronger result.)

Take a nonzero σ ∈ H0
(
(X−)s × X,LN

)Gmin

, where

L := LB−(λ1)� · · ·� LB−(λs)� LB(μ).

Such a nonzero σ exists, for some N > 0, since by [13, Corollary 8.3.12(a) and
Lemma 8.3.9],

H0
(
(X−)s × X,LN

)Gmin

� HomGmin
(
L(Nλ1)

∨ ⊗ · · · ⊗ L(Nλs)
∨ ⊗ L(Nμ),C

)
� HomGmin

(
L(Nμ), [L(Nλ1)

∨ ⊗ · · · ⊗ L(Nλs)
∨]∗)

� HomGmin
(
L(Nμ), [L(Nλ1)

∨ ⊗ · · · ⊗ L(Nλs)
∨]∨)

� HomGmin (L(Nμ), L(Nλ1)⊗ · · · ⊗ L(Nλs))

�= 0, (2)

since (λ1, . . . , λs, μ) ∈ Γs , where, for a Gmin-module M , M∨ denotes the direct sum
of the H -weight spaces of the full dual module M∗.

Pick (ḡ1, . . . , ḡs) ∈ Z such that σ(ḡ1, . . . , ḡs, 1̄) �= 0, where 1̄ = 1.B. Since
(ḡ1, . . . , ḡs) ∈ Z , there exists u′1 ≥ u1, . . . , u′s ≥ us and v′ ≤ v such that
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908 M. Brown, S. Kumar

g1Cu′1∩· · ·∩gsCu′s∩Cv′ is nonempty (cf. [13, Proposition 7.1.15] and [7, Proposition
4.5.11]). Now, pick g ∈ Gmin such that

gB ∈ g1Cu′1 ∩ · · · ∩ gsCu′s ∩ Cv′ . (3)

By Proposition 3.1, for any δ ∈ O(Gmin),μL(x̄, δ(t)) ≥ 0, where x̄ = (ḡ1, . . . , ḡs, 1̄)
(since σ(x̄) �= 0). By the following Lemma 3.3, applied to the OPS δ(t) = gt xi g−1,
we get

⎛
⎝ s∑

j=1

λ j (u
′
j xi )

⎞
⎠− μ(v′xi ) ≥ 0. (4)

But, by [13, Lemma 8.3.3],

(u′j )−1λ j ≤ u−1
j (λ j ).

Thus,

λ j (u
′
j xi ) ≤ λ j (u j xi ).

Similarly,

μ(v′xi ) ≥ μ(vxi ).

Thus, from (4), we get

⎛
⎝ s∑

j=1

λ j (u j xi )

⎞
⎠− μ(vxi ) ≥ 0.

This proves the theorem. ��
Lemma 3.3 Let g ∈ Gmin be as in the equation (3). Consider the one parameter
subgroup δ(t) = gt xi g−1 ∈ O(Gmin). Then,

(a) μLB− (λ j )(g j B−, δ(t)) = λ j (u′j xi ).

(b) μLB (μ)(1 · B, δ(t)) = −μ(v′xi ).

Proof (a) μLB− (λ j )(g j B−, δ(t)) = μLB− (λ j )(g−1g j B−, t xi ).
By assumption, g−1

j g ∈ U−u′j B. Write

g−1
j g = b−j u′j p j , for some b−j ∈ U−, p j ∈ B.

Thus,

1 = g−1g j b
−
j u′j p j .
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Let

b j (t) = b−j u′j t−xi (u′j )−1(b−j )
−1 ∈ B−.

Then,

t xi g−1g j b j (t) = t xi p−1
j t−xi (u′j )−1(b−j )

−1. (5)

Consider the Gm-invariant section (via t xi ) of LB−(λ j ):

σ̂ (t) =
(

t xi g−1g j , 1
)

mod B−

=
(

t xi g−1g j b j (t), λ j (b j (t)
−1)

)
mod B−.

Clearly, limitt→0 t xi g−1g j b j (t) exists in G by (5).
Now,

λ j

(
b j (t)

−1
)
= λ j

(
b−j u′j t xi (u′j )−1(b−j )

−1
)

= λ j

(
tu′j xi

)
.

This gives

μLB− (λ j )(g j B−, δ(t)) = λ j (u
′
j (xi )).

This proves the (a) part of the lemma.

(b) μLB (μ)(1 · B, δ(t)) = μLB (μ)(g−1 B, t xi ). By assumption,

g ∈ Bv′ · B.

Write

g = bv′ p, for b ∈ U, p ∈ B.

Thus,

1 = g−1bv′ p.

Let

b(t) = bv′t−xi (v′)−1b−1 ∈ B.

Now,

t xi g−1b(t) = t xi p−1t−xi (v′)−1b−1.
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910 M. Brown, S. Kumar

Thus,

limitt→0 t xi g−1b(t) exists in Gmin.

Consider the Gm-invariant section (via t xi )

σ̂ (t) = (t xi g−1, 1) mod B

=
(

t xi g−1b(t), μ(b(t))
)

mod B.

Now,

μ(b(t)) = μ(bv′t−xi (v′)−1b−1)

= μ(t−v′xi ).

This gives

μLB (μ)(1 · B, δ(t)) = −μ(v′(xi )).

This proves the (b)-part and hence the lemma is proved.
Alternatively, we can use [1, Equation 13] to prove the lemma. ��

Definition For a quasi-compact scheme Y , an OY -module S is called coherent if it
is finitely presented as an OY -module and any OY -submodule of finite type admits a
finite presentation.

An OX̄ -module S is called coherent if S|V S is a coherent OV S -module for any
finite ideal S ⊂ W (where a subset S ⊂ W is called an ideal if for x ∈ S and
y ≤ x ⇒ y ∈ S), where V S is the quasi-compact open subset of X̄ defined by

V S =
⋃
w∈S

wU−B/B.

Let K 0(X̄) denote the Grothendieck group of coherent OX̄ -modules S.
Similarly, define K0(X) := limn→∞ K0(Xn), where {Xn}n≥1 is the filtration of X

giving the ind-projective variety structure (i.e., Xn =⋃
�(w)≤n Cw) and K0(Xn) is the

Grothendieck group of coherent sheaves on the projective variety Xn.
We also define

K top(X) := Invltn→∞ K top(Xn),

where K top(Xn) is the topological K -group of the projective variety Xn.
Let ∗ : K top(Xn)→ K top(Xn) be the involution induced from the operation which

takes a vector bundle to its dual. This, of course, induces the involution ∗ on K top(X).
For any w ∈ W ,

[OXw ] ∈ K0(X).
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Lemma 3.4
{[OXw ]

}
w∈W forms a basis of K0(X) as a Z-module.

Proof By [2, §5.2.14 and Theorem 5.4.17], the result follows. ��
For u ∈ W , by [8, §2], OXu is a coherent OX̄ -module. In particular, OX̄ is a coherent

OX̄ -module.
Define a pairing

〈 , 〉 : K 0(X̄)⊗ K0(X)→ Z,

〈[S], [F]〉 =
∑

i

(−1)iχ
(

Xn, T or
OX̄
i (S,F)

)
,

if S is a coherent sheaf on X̄ and F is a coherent sheaf on X supported in Xn (for
some n), where χ denotes the Euler–Poincaré characteristic. Then, as in [14, Lemma
3.4], the above pairing is well defined.

By [8, Proof of Proposition 3.4], for any u ∈ W ,

Extk
OX̄
(OXu ,OX̄ ) = 0 ∀k �= �(u). (6)

Define the sheaf

ωXu := Ext�(u)OX̄

(
OXu ,OX̄

)⊗ L(−2ρ),

which, by the analogy with the Cohen–Macaulay (for short CM) schemes of finite
type, will be called the dualizing sheaf of Xu .

Now, set the sheaf on X̄

ξu := L(ρ)ωXu

= L(−ρ)Ext�(u)OX̄
(OXu ,OX̄ ).

Then, as proved in [14, Proposition 3.5], for any u, w ∈ W ,

〈[ξu], [OXw ]〉 = δu,w. (7)

With these preliminaries, we are ready to prove the following result.

Proposition 3.5 With the notation as in the proof of Theorem 3.2, Z = (X−)s , if εv

occurs in εu1 . . . εus with nonzero coefficient.

Proof We give the proof in the case s = 2. The proof for general s is similar.
For u, v ∈ W , express

εuεv =
∑
w

�(w)=�(u)+�(v)
nwu,vε

w.
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Express the product in topological K -theory K top(X) of X = Gmin/B:

ψu
oψ

v
o =

∑
�(w)≥�(u)+�(v)

mw
u,vψ

w
o ,

where ψw := ∗τw−1
(τw being the Kostant–Kumar ‘basis’ of K top

H (X) as in [10,
Remark 3.14]) and {ψwo }w∈W is the corresponding ‘basis’ of K top(X) � Z ⊗R(H)

K top
H (X) (cf. [10, Proposition 3.25]).
Then, by [10, Proposition 2.30],

nwu,v = mw
u,v, if �(w) = �(u)+ �(v). (8)

Let Δ : X → X × X be the diagonal map. Then, by [14, Proposition 4.1] and the
identity (7), for any u, v, w ∈ W , g1, g2 ∈ Gmin,

mw
u,v = 〈[ξu � ξv], [Δ∗OXw ]〉
= 〈[ξu � ξv], [(g−1

1 , g−1
2 ) · (Δ∗OXw)]〉,

since [(g−1
1 , g−1

2 )·Δ∗OXw ] = [Δ∗OXw ] as elements of K0(X×X). Thus, Gmin being
connected,

mw
u,v = 〈[ξu � ξv], [(g−1

1 , g−1
2 ) · (Δ∗OXw)]〉

:=
∑

i

(−1)iχ(X̄ × X̄ , T or
OX̄×X̄
i

(
ξu � ξv, (g−1

1 , g−1
2 ) · (Δ∗OXw)

)
. (9)

Now, by definition, the support of ξu is contained in Xu and hence the support of
the sheaf

Si := T or
OX̄×X̄
i

(
ξu � ξv, (g−1

1 , g−1
2 ) ·Δ∗OXw

)

is contained in

Xu × Xv ∩
(
(g−1

1 , g−1
2 ) ·Δ(Xw)

)
, (10)

which is empty if

(g1 Xu) ∩ (g2 Xv) ∩ Xw = ∅. (11)

Thus, if the equation (11) is true, then the Tor sheaf Si = 0 ∀i ≥ 0. Thus, if the
equation (11) is satisfied, by the equation (9),

mw
u,v = 0.

123



A study of saturated tensor cone for symmetrizable Kac–Moody algebras 913

Now, assume that �(w) = �(u)+ �(v). Then, by the equation (8),

nwu,v = 0, if the equation (11) is satisfied.

But, since by assumption, nwu,v �= 0, we see that

(g1 Xu) ∩ (g2 Xv) ∩ Xw �= ∅, for any g1, g2 ∈ Gmin.

But since Gmin/(Gmin ∩ B−) ∼−→ X−, we get the proposition. ��

4 Tensor product decomposition for affine Kac–Moody Lie algebras

4.1 The Virasoro algebra

We recall the definition of the Virasoro algebra and its basic representation theory,
which we need. For more details, we refer to [5, Lectures 2,3] and also [3]. The
Virasoro algebra Vir has a basis {C, Ln : n ∈ Z} over C and the Lie bracket is given
by

[Lm, Ln] = (m − n)Lm+n + 1

12
(m3 − m)δm,−nC and [Vir,C] = 0.

Let Vir0 := CL0 ⊕ CC . Then, a Vir module V is said to be a highest weight
representation if there exists a Vir0-eigenvector vo ∈ V such that Lnvo = 0 for
n ∈ Z>0 and U (

⊕
n<0 CLn)vo = V . Such a V is said to have highest weight λ ∈ Vir∗0

if Xvo = λ(X)vo, for all X ∈ Vir0. (It is easy to see that such a vo is unique up to a
scalar multiple and hence λ is unique.) The irreducible highest weight representations
of Vir are in 1–1 correspondence with elements of Vir∗0 given by the highest weight.
Denote the basis of Vir∗0 dual to the basis {L0,C} of Vir0 as {h, z}. For any μ ∈ Vir∗0,
denote the μ-th weight space of V by Vμ, i.e.,

Vμ := {v ∈ V : X · v = μ(X)v ∀X ∈ Vir0}.

Define a Vir module V to be unitarizable if there exists a positive definite Hermitian
form (· , ·) on V so that (Lnv , w) = (v , L−nw) for all n ∈ Z and (Cv , w) =
(v , Cw). It is easy to see that if M is a Vir-submodule of V , then M⊥ is also a
submodule. Hence, any unitarizable representation of Vir is completely reducible.
Note that for a unitarizable highest weight Vir-representation V with highest weight
λ, if vo is a highest weight vector, then

0 ≤ (L−nvo , L−nvo)

= (Ln L−nvo , vo)

= (2nλ(L0)+ 1

12
(n3 − n)λ(C))(vo , vo) (12)

for all n > 0. Therefore, both λ(L0) and λ(C) must be nonnegative real numbers.
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Lemma 4.1 Let V be a unitarizable, highest weight (irreducible) representation of
V ir with highest weight λ.

(a) If λ(L0) �= 0, then Vλ+nh �= 0, for any n ∈ Z+.
(b) If λ(L0) = 0 and λ(C) �= 0, then Vλ+nh �= 0, for any n ∈ Z>1 and Vλ+h = 0.
(c) If λ(L0) = λ(C) = 0, then V is one dimensional.

Proof If λ(L0) �= 0, then by the equation (12) (since both of λ(L0) and λ(C) ∈ R+),
L−nvo �= 0, for any n ∈ Z+.

If λ(L0) = 0 and λ(C) �= 0, then again by the equation (12), L−nvo �= 0, for any
n ∈ Z>1. Also, L−1vo = 0.

If λ(L0) = λ(C) = 0, then [by the equation (12) again], L−nvo = 0, for any
n ∈ Z≥1. This shows that V is one dimensional. ��

In the following, we recall some basic results (we need in the paper) from the
Representation Theory of affine Kac–Moody Lie algebras. For a more exhaustive
treatment, we refer to [4, Chapter 12].

4.2 Tensor product decomposition: a general method

Let g be the untwisted affine Kac–Moody Lie algebra associated to a finite dimensional

simple Lie algebra
◦
g, i.e.,

g =
(◦
g⊗ C[t, t−1]

)
⊕ Cc ⊕ Cd.

Let
◦
h be a Cartan subalgebra of

◦
g. Then,

h := ◦
h⊗ 1⊕ Cc ⊕ Cd

is the standard Cartan subalgebra of g. Let δ ∈ h∗ be the smallest positive imaginary
root of g (so that the positive imaginary roots of g are precisely {nδ, n ∈ Z≥1}). Then,
δ is given by δ|

◦
h⊕Cc

≡ 0 and δ(d) = 1. For any Λ ∈ P+, let P(Λ) be the set of

weights of L(Λ) and let Po(Λ) be the set of δ-maximal weights of L(Λ), i.e.,

Po(Λ) = {
λ ∈ h∗ : λ ∈ P(Λ) but λ+ nδ /∈ P(Λ) for any n > 0

}
.

For any λ ∈ X (H), define the δ-character of L(Λ) through λ by

cΛ,λ =
∑
n∈Z

dim L(Λ)λ+nδ enδ.

Since δ is W -invariant,

cΛ,λ = cΛ,wλ, for any w ∈ W. (13)
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Moreover, Po(Λ) is W -stable. It is obvious that

ch L(Λ) =
∑

λ∈Po(Λ)

cΛ,λeλ. (14)

By [13, Exercise 13.1.E.8], for any λ ∈ P(Λ′) and Λ′′ ∈ P+, Λ′′ + λ + ρ belongs
to the Tits cone, where the Tits cone is defined, e.g., in [13, Definition 1.4.1]. Hence,
there exists v ∈ W such that v−1(Λ′′ + λ + ρ) ∈ P+. Moreover, if Λ′′ + λ + ρ
has nontrivial W -isotropy, then its isotropy group must contain a reflection (cf. [13,
Proposition 1.4.2(a)]). Thus, for such a λ ∈ P(Λ′), i.e., if Λ′′ + λ+ ρ has nontrivial
W -isotropy,

∑
w∈W

ε(w)ew(Λ
′′+λ+ρ) = 0. (15)

Define

P̄+ := {Λ ∈ P+ : Λ(d) = 0}.

For any m ∈ Z+, let

P(m)+ := {Λ ∈ P+ : Λ(c) = m},

and let

P̄(m)+ := P̄+ ∩ P(m)+ .

Then, P̄(m)+ provides a set of representatives in P(m)+ mod (P+ ∩ Cδ).
For any Λ,Λ′,Λ′′ ∈ P+, define

TΛ
′,Λ′′

Λ = {λ ∈ Po(Λ′) : ∃vΛ,Λ′′,λ ∈ W and SΛ,Λ′′,λ ∈ Z with

λ+Λ′′ + ρ = vΛ,Λ′′,λ(Λ+ ρ)+ SΛ,Λ′′,λδ}.

Observe that sinceΛ+ ρ + nδ ∈ P++ for any n ∈ Z, such a vΛ,Λ′′,λ and SΛ,Λ′′,λ are
unique by [13, Proposition 1.4.2 (a), (b)] (if they exist). Also, observe that

TΛ
′,Λ′′

Λ = ∅, unlessΛ(c) = Λ′(c)+Λ′′(c) and Λ′ +Λ′′ −Λ ∈ Q, (16)

where Q is the root lattice of g.

Proposition 4.2 For any Λ′ and Λ′′ ∈ P+,

ch
(
L(Λ′)⊗ L(Λ′′)

) = ∑
Λ∈P̄(m)+

ch L(Λ)
∑

λ∈TΛ
′,Λ′′

Λ

ε(vΛ,Λ′′,λ)cΛ′,λeSΛ,Λ′′,λδ,

where m := Λ′(c)+Λ′′(c).
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Moreover,
∑
λ∈TΛ

′,Λ′′
Λ

ε(vΛ,Λ′′,λ)cΛ′,λeSΛ,Λ′′,λδ is the ‘shifted’ character of a unitary

representation (though, in general, not irreducible) of the Virasoro algebra Vir with
central charge

dim
◦
g ·

(
m′

m′ + g
+ m′′

m′′ + g
− m

m + g

)
,

where m′ := Λ′(c),m′′ := Λ′′(c) and g is the dual Coxeter number of
◦
g.

In fact, the multiplicity space

M(Λ;Λ′,Λ′′) := Homg′
(
L(Λ′)⊗ L(Λ′′), L(Λ)

)

is a representation of the Virasoro algebra (cf. [5, Proposition 10.3]), where g′ is the
derived subalgebra of g.

Proof By the Weyl–Kac character formula (cf. [13, Theorem 2.2.1 and Corollary
3.2.10]) and the identity (14), for any Λ′,Λ′′ ∈ P+,

(∑
w∈W

ε(w)ewρ
)
· ch L(Λ′) · ch L(Λ′′)

=
⎛
⎝ ∑
λ∈Po(Λ′)

cΛ′,λeλ

⎞
⎠ ·

(∑
w∈W

ε(w)ew(Λ
′′+ρ)

)

=
∑

λ∈Po(Λ′)
cΛ′,λ

∑
w∈W

ε(w)ew(Λ
′′+λ+ρ), by (13)

=
∑

Λ∈P̄(m)+

∑
λ∈TΛ

′,Λ′′
Λ

cΛ′,λ
∑
w∈W

ε(w)ew(vΛ,Λ′′,λ(Λ+ρ))+SΛ,Λ′′,λδ, by (15)

=
∑

Λ∈P̄(m)+

∑
λ∈TΛ

′,Λ′′
Λ

cΛ′,λ
∑
w∈W

ε(w)ε(vΛ,Λ′′,λ)e
w(Λ+ρ)eSΛ,Λ′′,λδ

=
∑

Λ∈P̄(m)+

∑
w∈W

ε(w)ew(Λ+ρ)
∑

λ∈TΛ
′,Λ′′

Λ

ε(vΛ,Λ′′,λ)cΛ′,λeSΛ,Λ′′,λδ.

Thus,

ch
(
L(Λ′)⊗ L(Λ′′)

) = ∑
Λ∈P̄(m)+

ch L(Λ)
∑

λ∈TΛ
′,Λ′′

Λ

ε(vΛ,Λ′′,λ)cΛ′,λeSΛ,Λ′′,λδ.

To prove the second part of the proposition, use [5, Proposition 10.3]. This proves
the proposition. ��
Remark 4.3 For an affine Kac–Moody Lie algebra g, if we consider the tensor product
decomposition of L(Λ′) ⊗ L(Λ′′) with respect to the derived subalgebra g′ (i.e.,
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without the d-action), then the components L(Λ) are precisely of the form Λ ∈
(Λ′ +Λ′′ + ◦

Q)∩ P+, where
◦
Q is the root lattice of

◦
g (cf. [6]). Thus, the determination

of the tensor semigroup and the saturated tensor semigroup is fairly easy for g′.

Let θ =∑�
i=1 hiαi be the highest root of

◦
g (with respect to a choice of the positive

roots), written as a linear combination of the simple roots {α1, . . . , α�} of
◦
g. Let

S :=
{

�∑
i=0

niαi : ni ∈ Z+ for any i and 0 ≤ ni < hi for some 0 ≤ i ≤ �
}
,

where h0 := 1.

Proposition 4.4 Let g be an untwisted affine Kac–Moody Lie algebra as above. Then,
for any integer Λ ∈ P+ with Λ(c) > 0,

Po(Λ)+ = S(Λ) ∩ P+,

where Po(Λ)+ := Po(Λ) ∩ P+ and S(Λ) = {Λ− β : β ∈ S}.
Proof Take λ ∈ S(Λ). Then, for any integer n ≥ 1,

Λ− (λ+ nδ) =
(

�∑
i=0

niαi

)
− nδ = (n0 − n)α0 +

�∑
i=1

(ni − nhi )αi ,

since α0 := δ − θ . Now, the coefficient of some αi in the above sum is negative, for
any positive n, since λ ∈ S(Λ). Thus, λ+ nδ could not be a weight of L(Λ) for any
positive n. Therefore, if λ ∈ P(Λ) ∩ S(Λ), then it is δ-maximal.

By [4, Proposition 12.5(a)], if Λ(c) �= 0, then S(Λ) ∩ P+ ⊂ P(Λ). Therefore,
S(Λ) ∩ P+ ⊂ Po(Λ)+.

Conversely, take λ ∈ Po(Λ)+. Then, λ ∈ P(Λ) ∩ P+ and λ+ δ /∈ P(Λ). Express
λ = Λ− n0α0 −∑�

i=1 niαi , for some ni ∈ Z+. Then,

λ+ δ = Λ− (n0 − 1)α0 −
�∑

i=1

(ni − hi )αi .

Again applying [4, Proposition 12.5(a)], λ+ δ /∈ P(Λ) if and only if λ+ δ �≤ Λ, i.e.,
for some 0 ≤ i ≤ �, ni < hi . Thus, λ ∈ S(Λ). This proves the proposition. ��

5 A(1)
1 Case

In this section, we consider g = ŝl2 =
(⊕

n∈Z
sl2 ⊗ tn

) ⊕ Cc ⊕ Cd. In this case
h∗ = Cα ⊕ Cδ ⊕ CΛ0, where α is the simple root of sl2 and Λ0|

◦
h⊕Cd

≡ 0 and

Λ0(c) = 1. Then, Λ0 is a zeroeth fundamental weight. The simple roots of ŝl2 are
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918 M. Brown, S. Kumar

α0 := δ − α and α1 := α. The simple coroots are α∨0 := c − α∨ and α∨1 := α∨. It is

easy to see that an element of h∗ of the form mΛ0 + j
2α belongs to P+ if and only if

m, j ∈ Z+ and m ≥ j .
Specializing Proposition 4.4 to the case of g = ŝl2, we get the following.

Corollary 5.1 For g = ŝl2 and Λ = mΛ0 + j
2α ∈ P+,

Po(Λ)+ =
{
Λ− kα, Λ− l(δ − α)

∣∣∣∣ k, l ∈ Z+ and
k ≤ j

2 , l ≤ m− j
2

}
. (17)

Proof The corollary follows from Proposition 4.4 since m1Λ0+ m2
2 α+m3δ belongs

to P+ if and only if m1,m2 ∈ Z+ and m1 ≥ m2. ��

Let π be the projection h∗ = CΛ0 ⊕ Cα ⊕ Cδ→ CΛ0 ⊕ Cα.

Lemma 5.2 Let g = ŝl2. For Λ = mΛ0 + j
2α ∈ P+ (i.e., m, j ∈ Z+ and m ≥ j )

such that m > 0,

π(Po(Λ)) = {Λ+ kα : k ∈ Z}. (18)

Moreover, for any k ∈ Z, let nk be the unique integer such thatΛ+kα+nkδ ∈ Po(Λ).
Then, writing k = qm + r, 0 ≤ r < m, we have:

nk = nr − q(k + r + j). (19)

Proof The assertion (18) follows from the identity (17) together with the action of the

affine Weyl group W � ◦
W × (Zα∨) on h∗, where

◦
W is the Weyl group of sl2 and

Zα∨ acts on h∗ via:

Tnα∨(μ) = μ+ nμ(c)α − [nμ(α∨)+ n2μ(c)]δ, for n ∈ Z, μ ∈ h∗. (20)

Since Po(Λ) is W -stable, the identity (19) can be established from the action of the
affine Weyl group element T−qα∨ on Λ+ kα + nkδ. ��

The value of nr for 0 ≤ r < m can be determined from the identity (17) by applying
Tα∨ , Tα∨ · s1 to Λ − kα and applying 1, Tα∨ · s1 to Λ − l(δ − α), where s1 is the

nontrivial element of
◦

W . We record the result in the following lemma.

Lemma 5.3 With the notation as in the above lemma, the value of nr for any integer
0 ≤ r < m is given by

nr =
{
−r , for 0 ≤ r ≤ m − j

m − j − 2r for m − j ≤ r < m.

123



A study of saturated tensor cone for symmetrizable Kac–Moody algebras 919

Lemma 5.4 Take the following elements in P+:

Λ = mΛ0 + j

2
α, Λ′ = m′Λ0 + j ′

2
α, Λ′′ = m′′Λ0 + j ′′

2
α,

where m := m′ + m′′ and we assume that m′ > 0. Then,

π
(

TΛ
′,Λ′′

Λ

)
=
{
Λ′ + kα

∣∣∣∣ k ∈ Z,
k ≡ 1

2

(
j − j ′ − j ′′

)
mod M or

k ≡ − 1
2

(
j + j ′ + j ′′

)− 1 mod M

}
,

where M := m + 2. In particular, by the equation (16), TΛ
′,Λ′′

Λ is nonempty if and

only if j− j ′− j ′′
2 ∈ Z.

Moreover, for λ = Λ′ + kα + nkδ ∈ TΛ
′,Λ′′

Λ ,

vΛ,Λ′′, λ =

⎧⎪⎨
⎪⎩

Tk− 1
2 ( j− j ′− j ′′)

M α∨
, if k ≡ 1

2

(
j − j ′ − j ′′

)
mod M

s1T
− k+ 1

2 ( j+ j ′+ j ′′)+1
M α∨

, if k ≡ − 1
2

(
j + j ′ + j ′′

)− 1 mod M,

where Tnα∨ is defined by the equation (20). Further,

SΛ,Λ′′,λ = nk +
(
k − 1

2

(
j − j ′ − j ′′

)) (
k + 1

2

(
j + j ′ + j ′′

)+ 1
)

M
.

Proof Follows from the fact that W = ◦
W �Zα∨ and that ρ = 2Λ0 + 1

2α. ��

We have the following very crucial result.

Proposition 5.5 Fix Λ,Λ′ and Λ′′ as in Lemma 5.4 and assume that j− j ′− j ′′
2 ∈ Z

and both of m′,m′′ > 0. Then, the maximum of

{
SΛ,Λ′′,λ : λ ∈ TΛ

′,Λ′′
Λ and ε(vΛ,Λ′′,λ) = 1

}

is achieved precisely when π(λ) = Λ′ + 1
2

(
j − j ′ − j ′′

)
α.

Proof By Lemma 5.4 and the explicit description of the length function of Tnα∨ (cf.
[13, Exercise 13.1.E.3]),

π{λ ∈ TΛ
′,Λ′′

Λ : ε(vΛ,Λ′′,λ) = 1} = {Λ′ + klα : l ∈ Z},

where M := m + 2 and kl := j− j ′− j ′′
2 + l M . Take λ = Λ′ + klα ∈ π

(
TΛ

′,Λ′′
Λ

)
for

l ∈ Z. Write kl = qlm′ + rl for ql ∈ Z and 0 ≤ rl < m′. Then, by Lemmas 5.2, 5.3
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and 5.4, for λ = Λ′ + klα (setting J := j− j ′− j ′′
2 ),

SΛ,Λ′′,λ = nrl −
(J + j ′ + l M + rl)(J + l M − rl)

m′
+ l(l M + 1+ j)

= l2 M

(
1− M

m′

)
+ l

(
1+ j − M( j − j ′′)

m′

)
− ( j − j ′′)2 − j ′2

4m′

+ r2
l

m′
+ rl j ′

m′
+ nrl

= l2 M

(
1− M

m′

)
+ l

(
1+ j − M

m′
( j − j ′′)

)
− ( j − j ′′)2 − j ′2

4m′
+p(kl),

where

p(kl) := r2
l

m′
+ rl

m′
j ′ + nkl .

Let P = Pm′, j ′ : R → R be the following function:

P(s) :=

⎧⎪⎨
⎪⎩
(s−m′

2 k)2

m′ − ( j ′)2
4m′ , if

∣∣∣s − m′
2 k

∣∣∣ ≤ j ′
2 for some k ∈ 2Z

(s−m′
2 k)2

m′ − (m′− j ′)2
4m′ , if

∣∣∣s − m′
2 k

∣∣∣ ≤ m′− j ′
2 for some k ∈ 2Z+ 1.

Let ks ∈ Z be such a k. (Of course, ks depends upon m′ and j ′.)

Claim P(s) = p
(

s − j ′
2

)
for s ∈ j ′

2 + Z.

Proof Clearly, both of P and p are periodic with period m′. So, it is enough to show
that P(s) = p(s − j ′

2 ), for s − j ′
2 equal to any of the integral points of the interval

[− j ′,m′ − j ′]. By Lemma 5.3 and the identity (19), for any integer − j ′ ≤ r ≤ 0,

p(r) = 1

m′
r(r + j ′),

and for any integer 0 ≤ r ≤ m′ − j ′,

p(r) = r(r + j ′)
m′

− r.

From this, the claim follows immediately. ��
Fix m′ > 0. Let

I :=
{
(t, j ′,m′′, j ′′, j) ∈ R

5
∣∣∣∣ 0 ≤ j ′ ≤ m′, 1 ≤ m′′,

0 ≤ j ′′ ≤ m′′, 0 ≤ j ≤ m′ + m′′
}
.
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Define F : I → R by

F : (t, j ′,m′′, j ′′, j) �→ t2 M

(
1− M

m′

)
+ t

[
j

(
1− M

m′

)
+ 1+ M

m′
j ′′
]

+ ( j ′)2 − ( j − j ′′)2

4m′
+ P

(
1

2

(
j − j ′′

)+ t M

)
.

Thus, F is a continuous, piecewise smooth function with failure of differentiability
along the set

{
(t, j ′,m′′, j ′′, j) ∈ I : 1

2
( j ± j ′ − j ′′)+ t M ∈ m′Z

}
.

Claim LetΔ(t) = Δ(t, j ′,m′′, j ′′, j) := F(t+1, j ′,m′′, j ′′, j)−F(t, j ′,m′′, j ′′, j).
Then, on I ,

a. Δ is a nonincreasing function of t
b. Δ is increasing with respect to j ′′
c. Δ is nonincreasing in j
d. Δ(0) is decreasing in m′′
e. Δ(−1) is nondecreasing in m′′.

Proof We compute and give bounds for the partial derivatives ofΔ, where they exist.

Δ(t) = 2t M

(
1− M

m′

)
+
(
( j + M)

(
1− M

m′

)
+ 1+ M

m′
j ′′
)

+P

(
t M + M + 1

2
( j − j ′′)

)
− P

(
t M + 1

2
( j − j ′′)

)
.

Hence,

∂tΔ(t) = 2M

(
1− M

m′

)
+ M · P ′

(
t M + M + 1

2
( j − j ′′)

)

−M · P ′
(

t M + 1

2
( j − j ′′)

)

= 2M

(
1− M

m′

)
+ 2

M

m′

(
M − m′

2
k1 + m′

2
k0

)

= 2M

(
1− k1 − k0

2

)
,

where k1 := k(t+1)M+ 1
2 ( j− j ′′) and k0 := kt M+ 1

2 ( j− j ′′). Since 2 ≤ k1 − k0, we see that
∂tΔ ≤ 0, wherever ∂tΔ exists. Since Δ is continuous everywhere and differentiable
on all but a discrete set, Δ is nonincreasing in t .

∂ j ′′Δ(t) = M

m′
− 1

2

[
P ′

(
t M + M + 1

2
( j − j ′′)

)
− P ′

(
t M + 1

2
( j − j ′′)

)]
.
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Now, |P ′| ≤ 1, so M
m′ + 1 ≥ ∂ j ′′Δ ≥ M

m′ − 1 = m′′+2
m′ > 0.

For (c):

∂ jΔ(t) = 1− M

m′
+ 1

2

[
P ′

(
t M + M + 1

2
( j − j ′′)

)
− P ′

(
t M + 1

2
( j − j ′′)

)]

= 1− M

m′
+ 1

m′

(
M − m′

2
k1 + m′

2
k0

)

= 1− k1 − k0

2
≤ 0.

(d) and (e) follow from the following calculation:

∂m′′Δ = 2t

(
1− 2

M

m′

)
+
(

1− 2
M

m′
+ 1

m′
( j ′′ − j)

)

+(t + 1)P ′
(

t M + M + 1

2
( j − j ′′)

)

−t P ′
(

t M + 1

2
( j − j ′′)

)
.

Hence,

∂m′′Δ(0) = 1− 2
M

m′
+ 1

m′
( j ′′ − j)+ P ′

(
M + 1

2
( j − j ′′)

)

≤ 1− 2
M

m′
+ m′′

m′
+ 1

= −m′′ − 4

m′
< 0,

and

∂m′′Δ(−1) = −2

(
1− 2

M

m′

)
+
(

1− 2
M

m′
+ 1

m′
( j ′′ − j)

)

+P ′
(
−M + 1

2
( j − j ′′)

)

= −1+ 2
M

m′
+ 1

m′
( j ′′ − j)+ P ′

(
−M + 1

2
( j − j ′′)

)

= −1+ 2
M

m′
+ 1

m′
( j ′′ − j)− 2

M

m′
+ 1

m′
( j − j ′′)− k0

= −1− k0.

Note that k0 ≤ −1 since − ( j− j ′′)
2 − M < −m′

2 . Thus, ∂m′′Δ(−1) ≥ 0. ��
Claim The maximum of F = F(−, j ′,m′′, j ′′, j) : Z → R occurs at 0.
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Proof We show that Δ(−1) > 0 > Δ(0). Since Δ is nonincreasing in t , it would
follow that F(0) > F(t) for all t ∈ Z�=0.

Let us begin with Δ(−1). By the previous Claim e, Δ(−1) is as small as possible
when m′′ = 1, j ′′ = 0, and j = m′ + 1. So, let us compute with these values:

Δ(−1) ≥ 6

m′
+ 1+ P

(
1

2
m′ + 1

2

)
− P

(
−2− 1

2
m′ − 1

2

)

= 6

m′
+ 1+

( 1
2 m′ + 1

2 − 1
2 m′k1

)2

m′
−

(
2+ 1

2 m′ + 1
2 + 1

2 m′k0
)2

m′

+

⎧⎪⎨
⎪⎩

m′
4 − j ′

2 if k0 odd, k1 even

0 if k1 − k0 even
j ′
2 − m′

4 if k1 odd, k0 even.

Note that for m′ ≥ 5, the possible values of (k1, k0) are (1,−1); (1,−2); or (2,−2).
So, the result, that Δ(−1) > 0, is established by considering such pairs directly and
by cases for smaller m′.

For Δ(0), we take m′′ = 1, j ′′ = 1, and j = 0.

Δ(0) =
(−3(3+ m′)

m′
+ 1+ 3+ m′

m′

)
+ P

(
1

2
+ 2+ m′

)
− P

(
−1

2

)

= 1− 2(3+ m′)
m′

+ P

(
1

2
+ 2+ m′

)
− P

(
−1

2

)

= 1− 2(3+ m′)
m′

+
( 1

2 + 2+ m′ − 1
2 m′k1

)2

m′
−

( 1
2 + 1

2 m′k0
)2

m′

+

⎧⎪⎨
⎪⎩

m′
4 − j ′

2 if k0 odd, k1 even

0 if k1 − k0 even
j ′
2 − m′

4 if k1 odd, k0 even.

For m′ ≥ 5, the possible values of (k1, k0) are (3,−1); (3, 0); or (2, 0). So, again the
result, that Δ(0) < 0, is established by considering such pairs directly and by cases
for smaller m′.

This completes the proof of the proposition. ��
Remark 5.6 We have shown that F(l, j ′,m′′, j ′′, j) = SΛ,Λ′′,λ for integral values

of l. If l is not an integer, then λl := Λ′ + (l M + J )α may not be in π(TΛ
′,Λ′′

Λ ),

in which case SΛ,Λ′′,λl is not defined. On the other hand, if λl ∈ π(TΛ
′,Λ′′

Λ ), we
note that the equality F(l, j ′,m′′, j ′′, j) = SΛ,Λ′′,λl holds, as can be seen by letting
kl = l M − 1

2 ( j + j ′ + j ′′)− 1 in the above proof.

Now, let us apply the same analysis to the case that ε(vΛ,Λ′′,λ) = −1. By Lemma
5.4, this corresponds to kl = − 1

2

(
j + j ′ + j ′′

)− 1+ l M . For π(λ) = Λ′ + klα, let
us denote the function SΛ,Λ′′,λ by GZ(l) = GZ(l, j ′,m′′, j ′′, j). Thus, GZ : Z → Z.
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Lemma 5.7 Define the function G = G(−, j ′,m′′, j ′′, j) : R → R by

G
(
t, j ′,m′′, j ′′, j

) = F

(
t − j + 1

M
, j ′,m′′, j ′′, j

)
.

Then, G|Z = GZ.

Hence, SΛ,Λ′′,λ has a maximum when l = 0 or l = 1.

Proof By the proof of Proposition 5.5 and Remark 5.6, SΛ,Λ′′,λ+( j+1)α = F(l), for
λ = Λ′ + klα. Since λ = Λ′ + (− 1

2

(
j + j ′ + j ′′

)− 1+ l M
)
α, by Proposition 5.5,

SΛ,Λ′′,λ = F
(

l − j+1
M

)
. This proves the lemma. ��

Lemma 5.8 Suppose

λ1 := Λ′ −
(

1

2

(
j + j ′ + j ′′

)+ 1

)
α + n1δ

and

λ2 := Λ′ + 1

2

(
j − j ′ − j ′′

)
α + n2δ

are δ-maximal weights of L(Λ′). Then n1 = n2 is possible only if n1 = n2 = 0 and
in this case

(∗) 1

2

(
j + j ′′

)+ 1 ≤ j ′

2
.

Conversely,�′ −� α ∈ Po(�′) for any 0 ≤ � ≤ j ′. In particular, under the condition
(∗), λ1, λ2 ∈ Po(�′) with n1 = n2 = 0.

Proof Fix an integer n and consider the set Pn = {ν ∈ P(Λ′) : Λ′−ν = kα + nδ, k ∈
Z}. We give a description of Pn ∩ Po(Λ′). Clearly, Pn = {λ, λ−α, . . . , λ−〈λ, α∨〉α}
for someλ = λn and that thisλ is uniquely determined by n (cf. [13, Exercise 2.3.E.2]).
Suppose that some μ ∈ Pn is not δ-maximal, then none of {μ, . . . , μ − 〈μ, α∨〉α}
are δ-maximal, since if μ + kδ ∈ P(Λ′), then the whole string {μ + kδ, . . . , μ +
kδ − 〈μ, α∨〉α} ⊂ P(Λ′). In particular, if λ − α is δ-maximal, then so is λ. Hence,
gδ−αL(Λ′)λ = 0 and gαL(Λ′)λ = 0. Therefore, λ is the highest weight Λ′. Thus,
Pn ∩ Po(Λ′) is either empty, or λ = Λ′ (in the case that n = 0), or the set {λ, s1λ}.

The last case, i.e., Pn ∩ Po(�′) = {λ, s1λ} (for n = −n1 = −n2) is not possible
under the assumption of the lemma, since this would force j ′′ = −1 or j = −1, which
is a contradiction since j, j ′′ ∈ Z+. Thus, we get n1 = n2 = 0 and {λ1, λ2} ⊂ P0.
From this it is easy to see that (∗) is satisfied. By Corollary 5.1, �′ − kα ∈ Po(�′),
for any 0 ≤ k ≤ j ′

2 . Applying s1 to this, we get the converse statement. ��
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From Lemma 5.7 and the definition of F , it is easy to see that

G
(
t, j ′,m′′, j ′′, j

) = G
(
1− t,m′ − j ′,m′′,m′′ − j ′′,m′ + m′′ − j

)
+1

2
( j ′ + j ′′ − j), (21)

for any t ∈ R. Hence, if the maximum of GZ occurs at 1, it is equal to

G
(
0,m′ − j ′,m′′,m′′ − j ′′,m′ + m′′ − j

)+ 1

2
( j ′ + j ′′ − j). (22)

We also record the following identity, which is easy to prove from the definition of F .

F
(
0, j ′,m′′, j ′′, j

) = F
(
0,m′ − j ′,m′′,m′′ − j ′′,m′ + m′′ − j

)
+1

2
( j ′ + j ′′ − j). (23)

As a corollary of Proposition 5.5 and Lemmas 5.7 and 5.8, we get the following
‘Non-Cancellation Lemma’.

Corollary 5.9 Let Λ,Λ′,Λ′′ be as in Proposition 5.5 and let

μ
Λ′,Λ′′
Λ := max

{
SΛ,Λ′′,λ : λ ∈ TΛ

′,Λ′′
Λ and ε(vΛ,Λ′′,λ) = 1

}
,

μ̄
Λ′,Λ′′
Λ := max

{
SΛ,Λ′′,λ : λ ∈ TΛ

′,Λ′′
Λ and ε(vΛ,Λ′′,λ) = −1

}
.

Assume that μΛ
′,Λ′′

Λ = μ̄Λ′,Λ′′Λ . Then,

μ
Λ′′,Λ′
Λ �= μ̄Λ′′,Λ′Λ .

Proof We proceed in two cases:
Case I. Suppose the maximum μ̄

Λ′,Λ′′
Λ occurs when

π(λ) = Λ′ − ( 1
2

(
j + j ′ + j ′′

)+ 1
)
α (cf. Lemma 5.7). This means that the δ-

maximal weights of L(Λ′) through Λ′ − ( 1
2

(
j + j ′ + j ′′

) + 1)α and through
Λ′ + 1

2

(
j − j ′ − j ′′

)
α have the same δ coordinate (cf. Proposition 5.5 and Lemma

5.4). By Lemma 5.8, we know that this occurs if and only if the following condition
is satisfied:

(∗) 1

2

(
j + j ′′

)+ 1 ≤ j ′

2
.

(In this case, these two δ-maximal weights have their δ-coordinates equal to 0.)
So, for the equality μΛ

′,Λ′′
Λ = μ̄

Λ′,Λ′′
Λ in this case, the necessary and sufficient

condition is:

1

2

(
j + j ′′

)+ 1 ≤ j ′

2
. (24)
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Case II. Suppose the maximum μ̄
Λ′,Λ′′
Λ occurs when π(λ) = Λ′−( 1

2

(
j + j ′ + j ′′

)
+ 1− M)α (cf. Lemma 5.7). Then, by the identities (22) and (23), we get

G(0,m′ − j ′,m′′,m′′ − j ′′,m′ + m′′ − j)

= F(0,m′ − j ′,m′′,m′′ − j ′′,m′ + m′′ − j). (25)

So, from the case I, we get in this case II, μΛ
′,Λ′′

Λ = μ̄Λ′,Λ′′Λ if and only if

1

2

(
(m′ + m′′ − j)+ (m′′ − j ′′)

)+ 1 ≤ 1

2
(m′ − j ′). (26)

So, if either of the inequalities (24) or (26) is satisfied, then none of them can be
satisfied for the triple (Λ,Λ′,Λ′′) replaced by (Λ,Λ′′,Λ′). This proves the corollary.

��

6 Saturation factor for the A(1)
1 case

We assume that g = ŝl2 in this section.

Definition LetΛ′ ∈ P(m
′)

+ ,Λ′′ ∈ P(m
′′)

+ andΛ ∈ P(m
′+m′′)

+ . Then, we call L(Λ+nδ)
the δ-maximal component of L(Λ′)⊗ L(Λ′′) throughΛ if L(Λ+ nδ) is a submodule
of L(Λ′)⊗ L(Λ′′) but L(Λ+ mδ) is not a submodule for any m > n.

Theorem 6.1 LetΛ′,Λ′′,Λ be as in Proposition 5.5. Then, L(Λ+nδ) is a δ-maximal
component of L(Λ′)⊗L(Λ′′) if n = min(n1, n2), where n1 is such thatΛ−Λ′′+n1δ ∈
Po(Λ′) and n2 is such that Λ −Λ′ + n2δ ∈ Po(Λ′′). (Observe that, by Lemma 5.2,
n1 and n2 do exist.)

Proof This follows immediately by combining Propositions 4.2, 5.5, Corollary 5.9
and Lemma 5.4. ��
Lemma 6.2 Fix a positive integer N. LetΛ ∈ P̄+ and let λ ∈ Λ+ Q, where Q is the
root lattice Zα ⊕ Zδ of ŝl2. Then, Nλ ∈ Po(NΛ) if and only if λ ∈ Po(Λ).

Proof The validity of the lemma is clear for λ ∈ Po(Λ)+ from Corollary 5.1. But
since Po(Λ) = W · (Po(Λ)+), and the action of W on h∗ is linear, the lemma follows
for any λ ∈ Po(Λ). (Observe that P(�) ⊂ Tits cone by [13, Exercise 13.1.E.8].) ��
Definition A positive integer do is called a saturation factor for g if for anyΛ,Λ′,Λ′′ ∈
P+ such that Λ−Λ′ −Λ′′ ∈ Q and L(NΛ) is a submodule of L(NΛ′)⊗ L(NΛ′′),
for some N ∈ Z>0, then L(doΛ) is a submodule of L(doΛ

′)⊗ L(doΛ
′′).

Corollary 6.3 Any do ∈ Z>1 is a saturation factor for ŝl2.

Proof If Λ′(c) = 0 or Λ′′(c) = 0, then

L(NΛ′)⊗ L(NΛ′′) � L(N (Λ′ +Λ′′)),
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for any N ≥ 1. Thus, the corollary is clearly true in this case. So, let us assume that
both of Λ′(c) > 0 and Λ′′(c) > 0. Let L(NΛ+ nδ) be the δ-maximal component of
L(NΛ′)⊗ L(NΛ′′) through L(NΛ), for some n ≥ 0. For any Ψ ∈ P+, let Ψ̄ ∈ P̄+
be the projection π(Ψ ) defined just before Lemma 5.2. Applying Theorem 6.1 to
Λ̄′, Λ̄′′, Λ̄, and observing that

L(Ψ̄ + kδ) � L(Ψ̄ )⊗ L(kδ) (27)

and L(kδ) is one dimensional, we get that there is a δ-maximal component L(Λ+ ñδ)
of L(Λ′)⊗ L(Λ′′) through L(Λ), for some (unique) ñ ∈ Z.

Again applying Theorem 6.1 to NΛ̄′, NΛ̄′′, NΛ̄, and observing (using Lemma 6.2)
that

Po(N Ψ̄ ) ⊃ N Po(Ψ̄ ), (28)

we get that L(NΛ+Nñδ) is the δ-maximal component of L(NΛ′)⊗L(NΛ′′) through
L(NΛ). Thus, n = Nñ. In particular,

ñ ≥ 0. (29)

Let

∑
λ∈TΛ

′,Λ′′
Λ̄

ε(vΛ̄,Λ′′,λ)cΛ′,λeSΛ̄,Λ′′,λδ =
∑

k∈Z+

cke(Λ(d)+ñ−k)δ, (30)

for some ck ∈ Z+ with c0 nonzero. By Proposition 4.2, this is the character of a
unitarizable Virasoro representation with each irreducible component having the same
nonzero central charge. Thus, by Lemma 4.1, for any k > 1, we get ck �= 0. (Here we
have used that L0 = −d + p on any g-isotypical component of L(Λ′)⊗ L(Λ′′) with
highest weight inΛ+Zδ, for a number p depending only upon Λ̄,Λ′ andΛ′′, cf. [5,
Identity 10.25 in Proposition 10.3].)

By the above, L(doΛ+doñδ) is the δ-maximal component of L(doΛ
′)⊗ L(doΛ

′′)
through L(doΛ). If ñ = 0, we get that

L(doΛ) ⊂ L(doΛ
′)⊗ L(doΛ

′′).

If ñ > 0, then doñ being > 1, by the analogue of (30) for doΛ
′, doΛ

′′ and doΛ,
L(doΛ) ⊂ L(doΛ

′)⊗ L(doΛ
′′). This proves the corollary. ��

Remark 6.4 We note that L(2Λ0 − δ) is not a component of L(Λ0)⊗ L(Λ0) (cf. [4,
Exercise 12.16]). But, of course, L(2Λ0) is a δ-maximal component. By the identity
(30), we know that L(2doΛ0 − doδ) must be a component of L(doΛ0) ⊗ L(doΛ0),
for any do > 1. So do can not be taken to be 1 in Corollary 6.3.
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7 A conjecture

In this section, G is any symmetrizable Kac–Moody group. We recall the following
definition of the deformed product due to Belkale–Kumar [1]. (Even though they
gave the definition in the finite case, the same definition works in the symmetrizable
Kac–Moody case, though with only one parameter.)

Definition Let P be any standard parabolic subgroup of Gmin. Recall from Sect. 2
that {εwP }w∈W P is a basis of the singular cohomology H∗(X P ,Z). Write the standard
cup product in H∗(X P ,Z) in this basis as follows:

εu
P · εvP =

∑
w∈W P

nwu,vε
w
P , for some (unique) nwu,v ∈ Z. (31)

Introduce the indeterminate τ and define a deformed cup product � as follows:

εu
P � εvP =

∑
w∈W P

τ (u
−1ρ+v−1ρ−w−1ρ−ρ)(xP )nwu,vε

w
P , (32)

where xP :=∑
αi∈Δ\Δ(P) xi , Δ(P) is the set of simple roots of the Levi L of P and,

as in Sect. 2, Δ is the set of simple roots of G.

The following lemma is a generalization of the corresponding result in the finite
case (cf. [1, Proposition 17]).

Proposition 7.1 (a) The product � is associative and clearly commutative.
(b) Whenever nwu,v is nonzero, the exponent of τ in the above is a nonnegative integer.

Proof The proof of the associativity of � is identical to the proof given in [1, Proof
of Proposition 17 (b)].

(b) We give the proof in the case when P is of finite type, i.e., its Levi subgroup is
finite dimensional. The proof for general P is along similar lines. The proof of this part
follows the proof of [1, Theorem 43]. Consider the decreasing filtration A = {Am}m≥0
of H∗(X P ,C) defined as follows:

Am :=
⊕

w∈W P :(ρ−w−1ρ)(xP )≥m

CεwP .

A priori {Am}m≥0 may not be a multiplicative filtration.
We next introduce another filtration {F̄m}m≥0 of H∗(X P ,C) in terms of the Lie

algebra cohomology. Recall that H∗(X P ,C) can be identified canonically with the
Lie algebra cohomology H∗(g, l), where l is the Lie algebra of the Levi subgroup
L of P (cf. [12, Theorem 1.6]). The underlying cochain complex C• = C•(g, l) for
H∗(g, l) can be written as

C• := [∧•(g/l)∗]l = Homl
(∧•(uP)⊗∧•(u−P ),C

)
,
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where uP (resp. u−P ) is the nil-radical of the Lie algebra of P (resp. the opposite
parabolic subgroup P−). Define a decreasing multiplicative filtration F = {Fm}m≥0
of the cochain complex C• by subcomplexes:

Fm := Homl

(
∧•(uP )⊗∧•(u−P)⊕

s+t≤m−1 ∧•(s)(uP )⊗∧•(t)(u−P )
,C

)
,

where ∧•(s)(uP ) (resp. ∧•(s)(u−P )) denotes the subspace of ∧•(uP ) (resp. ∧•(u−P ))
spanned by the h-weight vectors of weight β with P-relative height

htP (β) :=| β(xP ) |= s.

Now, define the filtration F̄ = {F̄m}m≥0 of H∗(g, l) � H∗(X P ,C) by

F̄m := Image of H∗(Fm)→ H∗(C•).

The filtration F of C• gives rise to the cohomology spectral sequence {Er }r≥1 con-
verging to H∗(C•) = H∗(X P ,C). By [13, Proof of Proposition 3.2.11], for any
m ≥ 0,

Em
1 =

⊕
s+t=m

[
H•
(s)(uP )⊗ H•

(t)(u
−
P )
]l
,

where H•
(s)(uP ) denotes the cohomology of the subcomplex (∧•(s)(uP ))

∗ of the stan-
dard cochain complex ∧•(uP )

∗ associated to the Lie algebra uP and similarly for
H•
(t)(u

−
P ). Moreover, by loc. cit., the spectral sequence degenerates at the E1 term, i.e.,

Em
1 = Em∞. (33)

Further, by the definition of P-relative height,

[H•
(s)(uP)⊗ H•

(t)(u
−
P)]l �= 0 ⇒ s = t.

Thus,

Em
1 = 0, unless m is even and

E2m
1 = [H•

(m)(uP )⊗ H•
(m)(u

−
P )]l.

In particular, from (33) and the general properties of spectral sequences (cf. [13,
Theorem E.9]), we have a canonical algebra isomorphism:

gr(F̄) �
⊕
m≥0

[
H•
(m)(uP)⊗ H•

(m)(u
−
P )
]l
, (34)
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where
[

H•
(m)(uP )⊗ H•

(m)(u
−
P)
]l

sits inside gr(F̄) precisely as the homogeneous part

of degree 2m; homogeneous parts of gr(F̄) of odd degree being zero.
Finally, we claim that, for any m ≥ 0,

Am = F̄2m : (35)

Following Kumar [11], take the d-∂ harmonic representative ŝw in C• for the coho-
mology class εwP . An explicit expression is given in [11, Proposition 3.17]. From this
explicit expression, we easily see that

Am ⊂ F̄2m, for all m ≥ 0. (36)

Moreover, from the definition of A, for any m ≥ 0,

dim
Am

Am+1
= #

{
w ∈ W P : (ρ − w−1ρ)(xP ) = m

}
.

Also, by the isomorphism (34) and [13, Theorem 3.2.7],

dim
F̄2m

F̄2m+1
= #

{
w ∈ W P : (ρ − w−1ρ)(xP ) = m

}
.

Thus,

dim
Am

Am+1
= dim

F̄2m

F̄2m+1
. (37)

Of course,

A0 = F̄0. (38)

Thus, combining the equations (36), (37) and (38), we get (35). It is easy to see that
the filtration {F̄2m}m≥0 is multiplicative and hence so is {Am}m≥0. This proves the (b)
part of the proposition. ��

The cohomology of X P obtained by setting τ = 0 in (H∗(X P ,Z) ⊗ Z[τ ],�)
is denoted by (H∗(X P ,Z),�0). Thus, as a Z-module, it is the same as the singular
cohomology H∗(X P ,Z) and under the product�0 it is associative (and commutative).

The following conjecture is a generalization of the corresponding result in the finite
case due to Belkale–Kumar [1, Theorem 22].

Conjecture 2 Fix s > 1. Let G be any indecomposable symmetrizable Kac–Moody
group (i.e., its generalized Cartan matrix is indecomposable, cf. [13, §1.1]) and let
(λ1, . . . , λs, μ) ∈ Ps+1+ . Assume further that none of λ j is W -invariant and μ −∑s

j=1 λ j ∈ Q, where Q is the root lattice of G. Then, the following are equivalent:

(a) (λ1, . . . , λs, μ) ∈ Γs .
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(b) For every standard maximal parabolic subgroup P in G and every choice of s+1-
tuples (w1, . . . , ws, v) ∈ (W P )s+1 such that εvP occurs with coefficient 1 in the
deformed product

ε
w1
P �0 · · · �0 ε

ws
P ∈ (

H∗(X P ,Z),�0
)
,

the following inequality holds:

⎛
⎝ s∑

j=1

λ j (w j xP )

⎞
⎠− μ(vxP ) ≥ 0, (I P

(w1,...,ws ,v)
)

where αiP is the (unique) simple root in Δ\Δ(P) and xP := xiP .

Remark 7.2 (a) By Theorem 3.2, the above inequalities I P
(w1,...,ws ,v)

are indeed satis-
fied for any (λ1, . . . , λs, μ) ∈ Γs .

(b) If G is an affine Kac–Moody group, then the condition that λ ∈ P+ is W -invariant
is equivalent to the condition that λ(c) = 0.

Theorem 7.3 Let g = ŝl2. Let λ,μ, ν ∈ P+ be such that λ+μ− ν ∈ Q and both of
λ(c) and μ(c) are nonzero. Then, the following are equivalent:

(a) (λ, μ, ν) ∈ Γ2.
(b) The following set of inequalities is satisfied for all w ∈ W and i = 0, 1.

λ(xi )+ μ(wxi )− ν(wxi ) ≥ 0, and

λ(wxi )+ μ(xi )− ν(wxi ) ≥ 0.

In particular, Conjecture 2 is true for g = ŝl2 and s = 2.

Proof By Lemma 5.2, there exist (unique) n1, n2 ∈ Z such that

ν − μ+ n1δ ∈ Po(λ), and ν − λ+ n2δ ∈ Po(μ).

Let n :=min (n1, n2). By our description of the δ-maximal components as in Theorem
6.1 applied to λ̄, μ̄, ν̄ and using the identity (27), we see that L(ν+nδ) is a δ-maximal
component of L(λ)⊗ L(μ). Thus, by the equation (28), for any N ≥ 1, L(Nν+Nnδ)
is a δ-maximal component of L(Nλ)⊗ L(Nμ). In particular, by Proposition 4.2 and
Lemma 4.1,

L(Nν) ⊂ L(Nλ)⊗ L(Nμ) for some N > 1 if and only if n ≥ 0. (39)

By [4, Proposition 12.5 (a)], if a weight γ + kδ ∈ P(λ) (for some k ∈ Z+), then
γ ∈ P(λ). Thus,

n ≥ 0 if and only if ν ∈ (P(λ)+ μ) ∩ (P(μ)+ λ) . (40)
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We next show that

P(λ) = (λ+ Q) ∩ Cλ, (41)

where Cλ := {γ ∈ h∗ : λ(xi )− γ (wxi ) ≥ 0 for all w ∈ W and all xi }. Clearly,

P(λ) ⊂ (λ+ Q) ∩ Cλ.

Since λ+ Q and Cλ are W -stable, and λ+ Q is contained in the Tits cone (by [13,
Exercise 13.1.E.8(a)]), (λ+ Q) ∩ Cλ = W · ((λ+ Q) ∩ Cλ ∩ P+).

Conversely, take γ ∈ (λ+Q)∩Cλ∩P+. Then, (λ−γ )(xi ) ≥ 0 and (λ−γ )(c) = 0
and hence λ−γ ∈ ⊕i Z+αi , i.e., λ ≥ γ . Thus, by [4, Proposition 12.5(a)], γ ∈ P(λ).
This proves (41). Now, combining (39), (40) and (41), we get L(Nν) ⊂ L(Nλ) ⊗
L(Nμ) for some N > 1 if and only if for all w ∈ W and i = 0, 1,

λ(xi )− (ν − μ)(wxi ) ≥ 0, and μ(xi )− (ν − λ)(wxi ) ≥ 0.

This proves the equivalence of (a) and (b) in the theorem.
To prove the ‘In particular’ statement of the theorem, let P0 (resp. P1) be the maximal

parabolic subgroup of Gmin = ŜL2 with Δ(P0) = {α1} (resp. Δ(P1) = {α0}). For
any n ≥ 0, let

wn := · · · s0s1s0 (n-factors) and vn := · · · s1s0s1 (n-factors).

Then, by [13, Exercise 11.3.E.4], H∗(G/P0)has a Z-basis {εn
P0
}n≥0, where εn

P0
:= εwn

P0
.

Moreover,

εn
P0
· εm

P0
=
(

n + m

n

)
εn+m

P0
.

In particular, εn+m
P0

appears with coefficient one in εn
P0
· εm

P0
if and only if at least one

of n or m is 0.
By using the diagram automorphism of ŜL2, one similarly gets that H∗(G/P1) has

a Z-basis {εn
P1
}n≥0, where εn

P1
:= εvn

P1
, with the product given by

εn
P1
· εm

P1
=
(

n + m

n

)
εn+m

P1
.

Moreover, from the definition of the deformed product �0, clearly

ε0
P0
�0 ε

m
P0
= ε0

P0
· εm

P0
,

and similarly for P1. From this the ‘In particular’ statement of the theorem follows. ��
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Remark 7.4 (1) It is easy to see that if λ = mδ for some m ∈ Z, then the equivalence
of (a) and (b) in the above theorem breaks down.

(2) Though we have proved Conjecture 2 for ŜL2 only for s = 2, it is quite likely that a
similar proof will prove it for any s > 2 (for ŜL2). One can generalize the construction
of the action of the Virasoro algebra on tensor products for s > 2, hence Γs can be
computed by determining only δ-maximal components. Furthermore, Proposition 4.2
can be generalized by writing the characters of the first s − 1 factors in terms of their
“string functions” while using the Kac–Weyl character formula for the last factor. For
ŜL2, this results in a computation of the δ-maximal components that is similar to the
s = 2 case, albeit with extra parameters (many of the bounds used in the proof of
Proposition 5.5 remain valid still).

8 The A(2)
2 case

By a method similar to that of A(1)1 , we handle the A(2)2 case, with minor modifications
where necessary. Write h = Cc ⊕ Cα∨ ⊕ Cd and h∗ = Cω0 ⊕ Cα ⊕ Cδ, where
α(α∨) = 2, δ(d) = 1, ω0(c) = 1, and all other values are 0. Then (h, {α0 :=
δ − 2α, α1 := α}, {α∨0 := c − 1

2α
∨, α∨1 := α∨}) is a realization of the Generalized

Cartan Matrix

(
2 −1
−4 2

)

of A(2)2 . The fundamental weights are ω0 and ω1 = 1
2ω0+ 1

2α. This easily allows one
to compute the dominant δ-maximal weights. Analogous to Corollary 5.1, we have
the following:

Lemma 8.1 Let λ be a dominant integral weight. Then, the dominant δ-maximal
weights of L(λ) are the dominant weights of the form

P+ ∩
{
λ− jα, λ+ k(2α − δ), λ+ α − δ + l(2α − δ) : j, k, l ∈ Z≥0

}
.

Moreover, Po(λ) is the W -orbit of the above.

Again, to determine the saturated tensor cone, it is enough to describe the δ-maximal
components. Thus, to determine the δ-maximal components, by virtue of proposition
4.2, we must find the highest δ-degree term in

∑
λ∈TΛ

′,Λ′′
Λ

ε(vΛ,Λ′′,λ)cΛ′,λeSΛ,Λ′′,λδ .

This computation is done in a somewhat similar manner as in the A(1)1 case, but
there are some important modifications. First, we need to use two different piecewise
smooth functions to describe the δ-maximal weights of L(λ). An upper function A+
interpolates the δ-maximal weights which are in the W -orbit of the dominant weights
of the form

{
λ− jα, λ+ k(2α − δ) : j, k ∈ Z≥0

}
,
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while another function A− interpolates the δ-maximal weights in the W -orbit of the
dominant weights of the form

{
λ− jα, λ+ α − δ + l(2α − δ) : j, l ∈ Z≥0

}
.

Now, all of the arguments made in the ŝl2 case must be made for two extensions
of SΛ,Λ′′,λ to non-integral values, using A+ and A− respectively. Let Λ := m0ω0 +
m1ω1, Λ′ := m′0ω0 + m′1ω1, and Λ′′ := m′′0ω0 + m′′1ω1. The following result is an

analogue of Proposition 5.5 and Lemma 5.7 for the A(2)2 case.

Proposition 8.2 LetΛ,Λ′,Λ′′ be as above. Assume that both ofΛ′(c) andΛ′′(c) > 0
and Λ − Λ′ − Λ′′ ∈ Q, where Q = Zα + Zδ is the root lattice of A(2)2 . Then, the

maximum μ
Λ′,Λ′′
Λ of the set

{
SΛ,Λ′′,λ : λ ∈ TΛ

′,Λ′′
Λ , ε(vΛ,Λ′′,λ) = 1

}

occurs when λ ≡ Λ′ + 1
2

(
m1 − m′1 − m′′1

)
α mod Cδ. The maximum μ̄

Λ′,Λ′′
Λ of the

set
{

SΛ,Λ′′,λ : λ ∈ TΛ
′,Λ′′

Λ , ε(vΛ,Λ′′,λ) = −1
}

occurs when λ ≡ Λ′ − ( 1
2 (m

′
1 + m′′1 + m1)+ 1

)
α mod Cδ or when λ ≡ Λ′ −( 1

2 (m
′
1 + m′′1 + m1)− 2(Λ′(c)+Λ′′(c)+ 1)

)
α mod Cδ.

Corollary 8.3 LetΛ,Λ′,Λ′′ be as in Proposition 8.2. Assume further thatΛ′(c) ≥ 2,

Λ′′(c) ≥ 2, m′1,m′′1 �= 1. Then, if μΛ
′,Λ′′

Λ = μ̄Λ′,Λ′′Λ , we have

μ
Λ′′,Λ′
Λ �= μ̄Λ′′,Λ′Λ .

The proof of Corollary 8.3 requires a description of the situations in whichμΛ
′,Λ′′

Λ =
μ̄
Λ′,Λ′′
Λ . We reduce these situations to certain cases, and show that in most of these

cases, if the roles ofΛ′ andΛ′′ are interchanged, then (as in the ŝl2 case) the equality
does not occur. In the remaining cases, we show that Λ′(c) < 2, Λ′′(c) < 2, m′1 = 1,
or m′′1 = 1.

Theorem 8.4 LetΛ,Λ′,Λ′′ be as in Proposition 8.2. Then, L(Λ+nδ) is a δ-maximal
component of L(Λ′)⊗L(Λ′′) if n = min(n1, n2), where n1 is such thatΛ−Λ′′+n1δ ∈
Po(Λ′) and n2 is such that Λ−Λ′ + n2δ ∈ Po(Λ′′).

Lemma 8.5 Fix a positive integer N. Let Λ ∈ P̄+ and let λ ∈ Λ + Q. Then, Nλ ∈
Po(NΛ) if and only if λ ∈ Po(Λ).

Combining the above results, we get a description of Γ2, which is identical to that of
ŝl2 (cf. Theorem 7.3).
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Theorem 8.6 Let g = A(2)2 . Let λ,μ, ν ∈ P+ be such that λ+ μ− ν ∈ Q and both
of λ(c) and μ(c) are nonzero. Then, the following are equivalent:

(a) (λ, μ, ν) ∈ Γ2.
(b) The following set of inequalities is satisfied for all w ∈ W and i = 0, 1.

λ(xi )+ μ(wxi )− ν(wxi ) ≥ 0, and

λ(wxi )+ μ(xi )− ν(wxi ) ≥ 0.

In particular, Conjecture 2 is true for this case as well for s = 2.

The ‘In particular’ statement of the above theorem follows by using the description
of the cup product in the cohomology of the two partial flag varieties of A(2)2 (given
below) corresponding to the two maximal parabolic subgroups P0 and P1, where the
Levi subgroup of P0 (resp. P1) has α1 (resp. α0) for its simple root.

Observe that

W P0 = {wn}n≥0, where wn := · · · s0s1s0 (n-factors),

and similarly

W P1 = {vn}n≥0, where vn := · · · s1s0s1 (n-factors).

Let

τn := εwn
P0
∈ H2n(X P0 ,Z); δn := εvn

P1
∈ H2n(X P1 ,Z).

Then, the following result is due to Kitchloo [9].

Theorem 8.7 For any n,m ≥ 1,

τn · τm = D(n,m)τn+m,

and

δn · δm = C(n,m)δn+m,

where

C(n,m) = D(n,m) =
(

m + n
n

)
, if at least one of m, n is even.

If both of m, n is odd, then

D(n,m) = 2

(
m + n

n

)
and C(n,m) = 2−1

(
m + n

n

)
.

123



936 M. Brown, S. Kumar

It is clear that if the level of L(Λ′) or L(Λ′′) is zero, then the tensor product
has a single component. Thus, it is already saturated. Assume now that the levels of
both of L(Λ′) and L(Λ′′) are> 0. Then, since there are representations of level 1

2 , the
conditions of Corollary 8.3 are satisfied for any NΛ, NΛ′, NΛ′′withΛ−Λ′−Λ′′ ∈ Q,
provided N ≥ 4. Hence:

Corollary 8.8 For A(2)2 , 4 is a saturation factor.

Remark 8.9 When the Kac–Moody Lie algebra g is infinite dimensional, then the
saturated tensor semigroup Γs is not finitely generated, for any s ≥ 2. Thus, it is not
clear a priori that there exists a saturation factor for such a g.
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