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Abstract

Let G be a semisimple connected complex algebraic group. We study the tensor
product decomposition of irreducible finite-dimensional representations of G.
The techniques we employ range from representation theory to algebraic geom-
etry and topology. This is mainly a survey of author’s various results on the
subject obtained individually or jointly with Belkale, Kapovich, Leeb, Millson
and Stembridge.
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Dedicated to the memory of my beloved mother

1. Introduction

Let G be a semisimple connected complex algebraic group with Lie algebra
g. The irreducible finite-dimensional representations of G are parametrized by
the set Λ+ of dominant characters of T , where T is a maximal torus of G.
For λ ∈ Λ+, let V (λ) be the corresponding (finite-dimensional) irreducible
representation of G. By the complete reducibility theorem, for any λ, µ ∈ Λ+,
we can decompose

V (λ)⊗ V (µ) =
⊕

ν∈Λ+

mν
λ,µV (ν), (1)

where mν
λ,µ (called the Littlewood-Richardson coefficients) denotes the multi-

plicity of V (ν) in the tensor product V (λ) ⊗ V (µ). We say that V (ν) occurs
in V (λ) ⊗ V (µ) (or V (ν) is a component of V (λ) ⊗ V (µ)) if mν

λ,µ > 0. The
numbers mν

λ,µ are also called the tensor product multiplicities.
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From the orthogonality relations, (1) is equivalent to the decomposition

chV (λ) · chV (µ) =
∑

ν∈Λ+

mν
λ,µ chV (ν). (2)

One of the major goals of the ‘tensor product problem’ is to determine
(all) the components of V (λ) ⊗ V (µ). Of course, a more refined problem is to
determine the components together with their multiplicities. In general, even
the first problem is very hard.

We will also discuss a weaker ‘saturated tensor product problem.’ We say
that V (ν) is a saturated component of V (λ) ⊗ V (µ) if V (Nν) occurs in the
tensor product V (Nλ)⊗ V (Nµ) for some integer N ≥ 1.

The aim of this note is to give an overview of some of our results on the
tensor product decomposition obtained individually or jointly with others over
the last more than twenty years. We give enough details of many of the proofs
to make this note more accessible.

We begin by setting the notation in Section 2 to be used through the paper.
We recall some fairly well known basic facts (including some results of Kostant
and Steinberg) about the tensor product decomposition in Section 3.

In Section 4, we recall the existence of ‘root components’ in the tensor
product, conjectured by Wahl (and proved in [K3]). Roughly, the result asserts
that for any λ, µ ∈ Λ+ and any positive root β such that λ + µ − β ∈ Λ+,
V (λ+ µ− β) is a component of V (λ)⊗ V (µ) (cf. Theorem (4.1)). This result
has a geometric counterpart in the surjectivity of the Wahl map for the flag
varieties G/P (cf. Theorem (4.2)).

In Section 5, we study a solution of the Parthasarathy-Ranga Rao-
Varadarajan-Kostant (for short PRVK) conjecture asserting that for λ, µ ∈ Λ+

and any w ∈ W , the irreducible G-module V (λ+ wµ) occurs in the G-
submodule U(g) · (vλ ⊗ vwµ) of V (λ)⊗ V (µ) with multiplicity exactly 1, where
W is the Weyl group of G, λ+ wµ denotes the unique element in Λ+ in the
W -orbit of λ + wµ and vλ is a nonzero weight vector of V (λ) of weight λ (cf.
Theorem (5.13) and also its refinement Theorem (5.15)). We have outlined its
more or less a complete proof except the proof of a crucial cohomology vanishing
result for Bott-Samelson-Demazure-Hansen varieties (see Theorem (5.2)).

Section 6: This section is based on the work [BK1] due to Belkale-Kumar.
Since the existence of a component V (ν) in V (λ) ⊗ V (µ) is equivalent to the
nonvanishing of the G-invariant space [V (λ)⊗V (µ)⊗V (ν∗)]G, the tensor prod-
uct problem can be restated (replacing ν by ν∗) in a more symmetrical form
of determining when [V (λ) ⊗ V (µ) ⊗ V (ν)]G 6= 0. We generalize this problem
from s = 3 to any s ≥ 1 and define the tensor product semigroup:

Γ̄s(G) := {(λ1, . . . , λs) ∈ (Λ+)s : [V (λ1)⊗ · · · ⊗ V (λs)]
G 6= 0}.

Similarly, define the saturated tensor product semigroup:

Γs(G) := {(λ1, . . . , λs) ∈ (Λ+)s : [V (Nλ1)⊗· · ·⊗V (Nλs)]
G 6= 0 for someN > 0}.
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By virtue of the convexity result in symplectic geometry, there exists a (unique)
convex polyhedral cone Γs(G)R ⊂ (Λ+

R
)s such that Γs(G) = Γs(G)R∩Λs, where

Λ+
R

is the dominant chamber in ΛR := Λ⊗Z R. The main result of this section
(cf. Theorem (6.3)) determines a system of inequalities describing the cone
Γs(G)R explicitly in terms of a certain deformed product in the cohomology of
the flag varieties G/P for maximal parabolic subgroups P . Moreover, as proved
by Ressayre (cf. Theorem (6.4)), this system of inequalities is an irredundant
system. We have outlined a more or less complete proof of Theorem (6.3), which
makes essential use of Geometric Invariant Theory, specifically the Hilbert-
Mumford criterion for semistability and Kempf’s maximally destabilizing one
parameter subgroups associated to unstable points. In addition, the notion of
‘Levi-movability’ plays a fundamental role in the proofs.

In Section 7, which is a joint work with Stembridge, we exploit isogenies
between semisimple groups over algebraically closed fields of finite char. to get
inequalities between the dimensions of invariants in tensor products of repre-
sentations of complex semisimple groups (cf. Theorem (7.2)). As a corollary,
we obtain that Γs(Sp(2`)) = Γs(SO(2`+ 1)) (cf. Corollary (7.5)).

Section 8 describes the ‘saturation problem,’ which provides a comparison
between the semigroups Γs(G) and Γ̄s(G). We recall here the result due to
Knutson-Tao on the saturation for the group SL(n) and the results and con-
jectures of Kapovich-Millson and Belkale-Kumar.

Section 9 is devoted to recalling the classical Littlewood-Richardson theorem
for the tensor product decomposition of irreducible polynomial representations
of GL(n) and its generalization by Littelmann for any G via his LS path model.
In addition, we recall the formula given by Berenstein-Zelevinsky, which deter-
mines the tensor product multiplicities as the number of lattice points in some
convex polytope.

For the tensor product multiplicities, there is an approach by Lusztig [Lu]
via his canonical bases. Similarly, there is an approach by Kashiwara [Ka] via
his crystal bases.

There are some software programs to calculate the tensor product multi-
plicities (e.g., see [LCL], [St1]). Also, for some explicit tensor product decom-
positions for SL(n) see [BCH], [ST2]; for E8 see [MMP], [GP]; and for all the
classical groups, see [Koi] and [L1].

2. Notation

Let G be a semisimple connected complex algebraic group. We choose a Borel
subgroup B and a maximal torus T ⊂ B and let W = WG := NG(T )/T be the
associated Weyl group, where NG(T ) is the normalizer of T in G. Let P ⊇ B be
a (standard) parabolic subgroup of G and let U = UP be its unipotent radical.
Consider the Levi subgroup L = LP of P containing T , so that P is the semi-
direct product of U and L. Then, BL := B ∩ L is a Borel subgroup of L. Let
Λ = Λ(T ) denote the character group of T , i.e., the group of all the algebraic
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group morphisms T → Gm. Clearly, W acts on Λ. We denote the Lie algebras
of G,B, T, P, U, L,BL by the corresponding Gothic characters: g, b, t, p, u, l, bL
respectively. We will often identify an element λ of Λ (via its derivative λ̇) by
an element of t∗. Let R = Rg ⊂ t∗ be the set of roots of g with respect to
the Cartan subalgebra t and let R+ be the set of positive roots (i.e., the set
of roots of b). Similarly, let Rl be the set of roots of l with respect to t and
R+

l be the set of roots of bL. Let ∆ = {α1, . . . , α`} ⊂ R+ be the set of simple
roots, {α∨

1 , . . . , α
∨
` } ⊂ t the corresponding simple coroots and {s1, . . . , s`} ⊂ W

the corresponding simple reflections, where ` is the rank of G. We denote the
corresponding simple root vectors by {e1, . . . , e`}, i.e., ei ∈ gαi

. We denote by
∆(P ) the set of simple roots contained in Rl. For any 1 ≤ j ≤ `, define the
element xj ∈ t by

αi(xj) = δi,j , ∀ 1 ≤ i ≤ `. (3)

Recall that if WP is the Weyl group of P (which is, by definition, the Weyl
Group WL of L), then in each coset of W/WP we have a unique member w of
minimal length. This satisfies (cf. [K4, Exercise 1.3.E]):

wBLw
−1 ⊆ B. (4)

LetWP be the set of the minimal length representatives in the cosets ofW/WP .
For any w ∈ WP , define the Schubert cell:

CP
w := BwP/P ⊂ G/P.

Then, it is a locally closed subvariety of G/P isomorphic with the affine space
A

`(w), `(w) being the length of w (cf. [J, Part II, Chapter 13]). Its closure
is denoted by XP

w , which is an irreducible (projective) subvariety of G/P of
dimension `(w). We denote the point wP ∈ CP

w by ẇ. We abbreviate XB
w by

Xw.
Let µ(XP

w ) denote the fundamental class of XP
w considered as an ele-

ment of the singular homology with integral coefficients H2`(w)(G/P,Z) of
G/P . Then, from the Bruhat decomposition, the elements {µ(XP

w )}w∈WP

form a Z-basis of H∗(G/P,Z). Let {[XP
w ]}w∈WP be the Poincaré dual ba-

sis of the singular cohomology with integral coefficients H∗(G/P,Z). Thus,
[XP

w ] ∈ H2(dimG/P−`(w))(G/P,Z).
An element λ ∈ Λ is called dominant (resp. dominant regular) if λ̇(α∨

i ) ≥ 0
(resp. λ̇(α∨

i ) > 0) for all the simple coroots α∨
i . Let Λ+ (resp. Λ++) denote

the set of all the dominant (resp. dominant regular) characters. The set of
isomorphism classes of irreducible (finite-dimensional) representations of G is
parametrized by Λ+ via the highest weight of an irreducible representation.
For λ ∈ Λ+, we denote by V (λ) the corresponding irreducible representation
(of highest weight λ). The dual representation V (λ)∗ is isomorphic with V (λ∗),
where λ∗ is the weight −woλ; wo being the longest element of W . The µ-weight
space of V (λ) is denoted by V (λ)µ. For λ ∈ Λ+, let P (λ) be the set of weights
of V (λ). The W -orbit of any λ ∈ Λ contains a unique element in Λ+, which we
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denote by λ̄. We also have the shifted action of W on Λ via w∗λ = w(λ+ρ)−ρ,
where ρ is half the sum of positive roots. (Observe that, even though ρ may
not belong to Λ, wρ− ρ does.)

For any λ ∈ Λ, we have a G-equivariant line bundle L(λ) on G/B associated
to the principal B-bundle G → G/B via the one-dimensional B-module λ−1.
(Any λ ∈ Λ extends uniquely to a character of B.) The one-dimensional B-
module λ is also denoted by Cλ.

All the schemes are considered over the base field of complex numbers C.
The varieties are reduced (but not necessarily irreducible) schemes.

3. Some Basic Results

We follow the notation from the last section; in particular, G is a semisimple
connected complex algebraic group. The aim of this section is to recall some
fairly well known basic results on the tensor product decomposition. We begin
with the following.

Lemma (3.1). For λ, µ ∈ Λ+, V (λ + µ) occurs in V = V (λ) ⊗ V (µ) with
multiplicity 1.

The unique submodule V (λ+ µ) is called the Cartan component of V .

Proof. Let vλ ∈ V (λ) (resp. vµ ∈ V (µ)) be a nonzero highest weight vector.
Then, the line Cvλ⊗vµ ⊂ V is clearly stable under the Borel subalgebra. From
this, we easily see that the G-submodule generated by vλ ⊗ vµ is isomorphic
with V (λ+ µ).

The weight space of V corresponding to the weight λ + µ is clearly one-
dimensional. Hence, the multiplicity of V (λ+ µ) in V is at most one.

The following result is due to Kostant [Ko].

Proposition (3.2). For λ, µ ∈ Λ+, any component V (ν) of V = V (λ)⊗ V (µ)
is of the form ν = λ + µ1, for some µ1 ∈ P (µ). Moreover, its multiplicity
mν

λ,µ ≤ dimV (µ)µ1
.

Proof. Clearly, the multiplicity mν
λ,µ is equal to the dimension of

Homg

(
V (ν), V (λ)⊗ V (µ)

)
' Homb

(
Cν , V (λ)⊗ V (µ)

)

' Homb

(
Cν ⊗ V (λ)∗, V (µ)

)
.

But, V (λ)∗ is generated, as a b-module, by its lowest weight vector v−λ of weight
−λ. Hence, any homomorphism φ ∈ Homb(Cν ⊗ V (λ)∗, V (µ)) is completely
determined by φ(Cν ⊗ v−λ), which must be a weight vector of weight −λ+ ν ∈
P (µ).
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We have the following general result due to Steinberg [S].

Theorem (3.3). For λ, µ, ν ∈ Λ+, the multiplicity mν
λ,µ =∑

w∈W ε(w)n(w∗ν)−λ(µ), where nλ′(µ) is the dimension of the λ′-weight
space in V (µ).

Proof. Define the Z-linear operator D : R(T ) → R(T ) by D(eγ) =∑
w∈W ε(w)ew∗γ

∑
w∈W ε(w)ew∗0 , where R(T ) is the representation ring of the torus T . Then,

D is linear over the invariant subring R(T )W (under the standard action of
W : v · eγ = evγ). Moreover, D(ev∗γ) = ε(v)D(eγ), for any v ∈ W . In particu-
lar, D(eγ) = 0 if γ + ρ is not regular (equivalently, if γ has nontrivial isotropy
under the shifted action of W ). For any γ ∈ Λ such that γ + ρ is regular, let
wγ ∈ W be the unique element such that wγ ∗ γ ∈ Λ+.

By the Weyl character formula, for any λ ∈ Λ+, chV (λ) = D(eλ), where
chV (λ) denotes the character of V (λ). Thus,

ch(V (λ)⊗ V (µ)) = chV (λ) · chV (µ)

= D(eλ · chV (µ)), since chV (µ) ∈ R(T )W

=
∑

γ

nγ(µ)D(eλ · eγ)

=
∑

γ:λ+γ+ρ
is regular

ε(wλ+γ)nγ(µ)D
(
ewλ+γ∗ (λ+γ)

)

=
∑

ν∈Λ+

(
∑

w∈W

ε(w)n(w∗ν)−λ(µ)

)
D(eν), since ε(w) = ε(w−1).

Thus, from the equivalence of (1) and (2) in Section 1, the theorem follows.

Corollary (3.4). For λ, µ ∈ Λ+, if λ + µ′ is nearly dominant (i.e., (λ +
µ′)(α∨

i ) ≥ −1 for all the simple coroots α∨
i ) for all µ′ in P (µ), then the multi-

plicity of V (ν) in V (λ)⊗ V (µ):

mν
λ,µ = nν−λ(µ).

Of course, by Proposition (3.2), V (ν) occurs in V (λ) ⊗ V (µ) only if ν =
λ+ µ′ for some µ′ ∈ P (µ).

Proof. By the above theorem,

mν
λ,µ =

∑

w∈W

ε(w)n(w∗ν)−λ(µ).

For w 6= 1, we claim that n(w∗ν)−λ(µ) = 0. Equivalently, (w ∗ν)−λ /∈ P (µ).
Since any weight in λ + P (µ) is nearly dominant (by assumption) and ν is
dominant, we have w ∗ ν /∈ λ+ P (µ) for any w 6= 1.
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As a corollary of the above corollary, we get the following (cf. [Kas], [K2,
Proposition 1.5]).

Corollary (3.5). For λ, µ ∈ Λ+ such that V (µ) is minuscule (i.e., P (µ) is a
single W -orbit), we have the decomposition

V (λ)⊗ V (µ) '
⊕

w̄∈W/Wµ:

λ+wµ∈Λ+

V (λ+ wµ), (∗)

each occuring with multiplicity 1, where Wµ := {w ∈ W : wµ = µ} is the
isotropy group of µ. Moreover, the number of irreducible components in V (λ)⊗
V (µ) is equal to the cardinality #Wλ\W/Wµ.

Proof. By [Bo, Exercise 24, p. 226], λ+µ′ is nearly dominant for any µ′ ∈ P (µ).
Thus, by the above corollary, the decomposition (∗) follows. For the second part,
define

f : (W/Wµ)
+ → Wλ\W/Wµ, f(wWµ) = WλwWµ,

where (W/Wµ)
+ := {w̄ ∈ W/Wµ : λ + wµ ∈ Λ+}. It is easy to see that f

is injective, and, for any w of minimal element in its double coset WλwWµ,
wWµ ∈ (W/Wµ)

+.

As another corollary of Theorem (3.3), we get the following.

Corollary (3.6). For λ, µ, ν ∈ Λ+,

mν
λ,µ =

∑

v,w∈W

ε(v) ε(w)P
(
v(µ+ ρ)− w(ν + ρ) + λ

)
,

where P is the Kostant’s partition function.

Proof. Use Kostant’s formula for any dominant character µ and any integral
character λ′:

nλ′(µ) =
∑

v∈W

ε(v)P((v ∗ µ)− λ′).

The following result is due to Kostant [Ko, Lemma 4.1].

Theorem (3.7). For any λ, µ, ν ∈ Λ+, the multiplicity

mν
λ,µ = dim

{
v ∈ V (µ)ν−λ : e

λ(α∨
i )+1

i v = 0, for all simple roots αi

}
.

Proof. Of course, by the proof of Proposition (3.2),

mν
λ,µ = dimHomg(V (ν), V (λ)⊗ V (µ))

= dimHomb(Cν ⊗ V (λ)∗, V (µ)).
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Let v−λ ∈ V (λ)∗ be a nonzero lowest weight vector. Then, by a result due to
Harish-Chandra,

φ : U(n) −→ V (λ)∗, X 7→ X · v−λ,

is surjective with kernel

kerφ =
∑

1≤i≤`

U(n) · e
λ(α∨

i )+1
i ,

where n is the nil-radical of b. (This also follows immediately from the BGG
resolution.) This proves the theorem.

The following corollary follows immediately from the above theorem and
SL(2)-representation theory.

Corollary (3.8). For any λ, µ ∈ Λ+ and w ∈ W such that λ+wµ is dominant,

we have mλ+wµ
λ,µ = 1.

Lemma (3.9). For any λ, µ, ν, λ′, µ′, ν′ ∈ Λ+ such that mν′

λ′,µ′ ≥ 1, we have

mν+ν′

λ+λ′,µ+µ′ ≥ mν
λ,µ.

Proof. We have

Homg

(
V (ν), V (λ)⊗ V (µ)

)
' Homg

(
V (λ)∗ ⊗ V (µ)∗ ⊗ V (ν∗)∗,C

)

'
[
V (λ)∗ ⊗ V (µ)∗ ⊗ V (ν∗)∗

]g

' H0
(
(G/B)3,L(λ� µ� ν∗)

)G
,

where the last isomorphism follows from the Borel-Weil theorem:
H0(G/B,L(λ)) ' V (λ)∗ (for any λ ∈ Λ+), and L(λ � µ � ν∗) denotes the
external tensor product line bundle L(λ) � L(µ) � L(ν∗) on (G/B)3. Take a

nonzero σo ∈ H0
(
(G/B)3,L(λ′

� µ′
� ν′∗)

)G
. Then, the map

H0
(
(G/B)3,L(λ�µ�ν∗)

)G
−→ H0

(
(G/B)3,L

(
(λ+λ′)�(µ+µ′)�(ν∗+ν′∗)

))G
,

σ 7→ σ · σo, is clearly injective.

4. Root Components in the Tensor Product

In this section, we assume that G is a semisimple simply-connected complex
algebraic group and follow the notation from Section 2. The aim of this section
is to state the existence of certain tensor product components coming from
the positive roots, conjectured by Wahl [W]. Specifically, we have the following
result due to Kumar [K3], a proof of which can be found in loc. cit. The proof
is purely representation theoretic (based on Theorem (3.7)) and unfortunately
requires some case by case analysis. For any λ ∈ Λ, define Sλ = {1 ≤ i ≤ ` :
λ(α∨

i ) = 0}. Also, for any β ∈ R+, define Fβ = {1 ≤ i ≤ ` : β−αi /∈ R+∪{0}}.
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Theorem (4.1). Take any λ, µ ∈ Λ+ and β ∈ R+ satisfying:

(P1) λ+ µ− β ∈ Λ+, and

(P2) Sλ ∪ Sµ ⊂ Fβ.

Then, V (λ+ µ− β) is a component of V (λ)⊗ V (µ).

Observe that if G2 does not occur as a component of g, then the conditions
(P1)− (P2) are automatically satisfied for any λ, µ ∈ Λ++.

Let X be a smooth projective variety with line bundles L1 and L2 on X.
Consider the Wahl map defined by him (which he called the Gaussian map)
ΦL1,L2

: H0(X×X, ID ⊗ (L1�L2)) → H0(X,Ω1
X ⊗L1⊗L2), which is induced

from the projection ID → ID/I2
D by identifying the OX×X/ID ' OD-module

ID/I2
D (supported in D) with the sheaf of 1-forms Ω1

X on D ' X (cf. [W]),
where ID is the ideal sheaf of the diagonal D.

The following Theorem is a geometric counterpart of Theorem (4.1). It
was conjectured by Wahl and proved by him for X = SL(n)/B and also for any
minuscule G/P (cf. [W]). Kumar proved it for any G/P (cf. [K3]) by using The-
orem (4.1). In fact, he showed that Theorems (4.1) and (4.2) are ‘essentially’
equivalent. Theorem (4.2) is proved in an arbitrary char. for Grassmannians
by Mehta-Parameswaran [MP]; for orthogonal and symplectic Grassmannians
in odd char. by Lakshmibai-Raghavan-Sankaran [LRS]; and for minuscule G/P
in any char. by Brown-Lakshmibai [BL].

Theorem (4.2). The Wahl map ΦL1,L2
is surjective for any flag variety X =

G/P (where G is any semisimple simply-connected group and P ⊂ G a parabolic
subgroup) and any ample homogeneous line bundles L1 and L2 on X.

Equivalently, Hp(G/P ×G/P, I2
D ⊗ (L1 � L2)) = 0, for all p > 0.

5. Proof of Parthasarathy-Ranga

Rao-Varadarajan-Kostant Conjecture

In this section, we assume that G is a semisimple simply-connected complex
algebraic group and follow the notation from Section 2. We begin with the
following result due to Parthasarathy-Ranga Rao-Varadarajan [PRV, Corollary
1 to Theorem 2.1].

Theorem (5.1). For any λ, µ ∈ Λ+, the irreducible module V (λ+ woµ) occurs
with multiplicity one in the tensor product V (λ)⊗V (µ), where wo is the longest
element of W .

Proof. Denote ν = λ+ woµ. We clearly have

Homg(V (λ)⊗ V (µ), V (ν)) ' Homb(Cλ ⊗ V (µ), V (ν)).



Tensor Product Decomposition 1235

Moreover, as in the proof of Theorem (3.7), the map φ : U(n) → V (µ), X 7→
X · vwoµ, is surjective with kernel

kerφ =
∑

1≤i≤`

U(n)e
−(woµ)(α

∨
i )+1

i , (5)

where vwoµ is a nonzero lowest weight vector of V (µ). Since the weight space
V (ν)λ+woµ is one-dimensional, dimHomb(Cλ ⊗ V (µ), V (ν)) ≤ 1. Moreover, by
(5), the map vλ⊗vwoµ 7→ vλ+woµ extends to a b-module map Cλ⊗V (µ) → V (ν)

iff e
−(woµ)(α

∨
i )+1

i vλ+woµ = 0 for all 1 ≤ i ≤ `. But the latter holds, as can be
easily seen from the representation theory of SL2.

Now, we prove a vast generalization of the above theorem.
For any B-variety X, we denote by X̃ the G-variety G×

B
X, i.e., it is the

total space of the fiber bundle with fiber X, associated to the principal B-
bundle G → G/B. For any B-varieties X,Y and a B-morphism φ : X → Y ,

there is a canonical G-morphism φ̃ : X̃ → Ỹ .
For any sequence (not necessarily reduced) w = (si1 , . . . , sin) of simple

reflections, let Zw be the Bott-Samelson-Demazure-Hansen (for short BSDH)
variety defined as the quotient Zw = Pi1 × · · · ×Pin/B

n under the right action
of Bn on Pi1 × · · · × Pin via:

(p1, . . . , pn)(b1, . . . , bn) = (p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn),

for pj ∈ Pij , bj ∈ B, where Pij is the standard minimal parabolic with
∆(Pij ) = {αij}. We denote the Bn-orbit of (p1, . . . , pn) by [p1, . . . , pn].
Then, Zw is a smooth B-variety (in fact a Pi1 -variety) under the left mul-
tiplication on the first factor. For any 1 ≤ j ≤ n, consider the subse-
quence w(j) := (si1 , . . . , ŝij , . . . , sin). Then, we have a B-equivariant embeding
Zw(j) ↪→ Zw, [p1, . . . , p̂j , . . . , pn] 7→ [p1, . . . , pj−1, 1, pj+1, . . . , pn]. Thus, we have

the G-varieties Z̃w and Z̃w(j) and a canonical inclusion Z̃w(j) ↪→ Z̃w. Of course,

Z̃w (and Z̃w(j)) is smooth. For any w ∈ W , we also have the G-variety X̃w,
where Xw is the Schubert variety as in Section 2. Moreover, for any v ≤ w, we
have a canonical inclusion X̃v ↪→ X̃w, induced from the inclusion Xv ↪→ Xw.
Further, there are G-morphisms (G acting on G/B ×G/B diagonally):

θ̃w : Z̃w → G/B ×G/B and d̃w : X̃w → G/B ×G/B,

defined by
θ̃w[g, z] = (gB, gθw(z)), for g ∈ G, z ∈ Zw, and

d̃w[g, x] = (gB, gx), for g ∈ G, x ∈ Xw,

where the map θw : Zw → G/B is defined by [p1, . . . , pn] 7→ p1 . . . pnB. Clearly,

the map θ̃w (resp. d̃w) is well defined, i.e., it descends to Z̃w (resp. X̃w). It

can be easily seen that the map d̃w is a closed immersion and its image is
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the closure of the G-orbit of the point (e, ẇ) in G/B × G/B, where ẇ is the
point wB ∈ G/B. The sequence w = (si1 , . . . , sin) is said to be reduced if
m(w) := si1 . . . sin is a reduced decomposition.

For any λ, µ ∈ Λ, we denote by L(λ�µ) the line bundle on G/B×G/B which
is the external tensor product of the line bundles L(λ) and L(µ) respectively.
We further denote by Lw(λ � µ) (resp. Lw(λ � µ)) the pull-back of L(λ � µ)

by the map θ̃w (resp. d̃w). The following cohomology vanishing result (rather
its Corollary (5.4)) is crucial to the proof of the PRVK conjecture.

Theorem (5.2). Let w = (si1 , . . . , sin) be any sequence of simple reflections
and let 1 ≤ j ≤ k ≤ n be such that the subsequence (sij , . . . , sik) is reduced.
Then, for any λ, µ ∈ Λ+, we have:

Hp
(
Z̃w,Lw(λ� µ)⊗OZ̃w

[
− ∪k

q=j Z̃w(q)

])
= 0, for all p > 0.

The proof of this theorem is identical to the proof of the analogous result
for Zw given in [K4, Theorem 8.1.8] if we observe the following simple:

Lemma (5.3). For any sequence w = (si1 , . . . , sin) (not necessarily reduced),

the canonical bundle KZ̃w

of Z̃w is isomorphic with

Lw((−ρ)� (−ρ))⊗OZ̃w

[
−∂Z̃w], where ∂Z̃w := ∪n

q=1 Z̃w(q).

Applying Theorem (5.2) to the cohomology exact sequence, corresponding
to the sheaf sequence:

0 → OZ̃w
[−Z̃w(j)] → OZ̃w

→ OZ̃w(j)
→ 0

tensored with the locally free sheaf Lw(λ� µ), we get the following:

Corollary (5.4). Let w = (si1 , . . . , sin) be any sequence. Then, for any 1 ≤

j ≤ n and any λ, µ ∈ Λ+, the canonical restriction map H0
(
Z̃w,Lw(λ�µ)

)
→

H0
(
Z̃w(j),Lw(j)(λ� µ)

)
is surjective.

In the case when w is a reduced sequence, the image of the map θ̃w : Z̃w →
G/B×G/B is precisely equal to d̃w(X̃w), where w = m(w). By slight abuse of

notation, we denote the map θ̃w, considered as a map Z̃w → X̃w, again by θ̃w.
Then, θ̃w is a birational surjective morphism. As a consequence of the above
corollary, we get the following:

Corollary (5.5). For any v ≤ w ∈ W , and λ, µ ∈ Λ+, the canonical restriction

map H0
(
X̃w,Lw(λ� µ)

)
→ H0

(
X̃v,Lv(λ� µ)

)
is surjective.

Proof. Take a reduced sequence w such that m(w) = w. Then, we can find a
reduced subsequence v such that m(v) = v (cf. [K4, Lemma 1.3.16]). Since any

Schubert variety Xw is normal (cf. [BrK, Theorem 3.2.2]), then so is X̃w. Hence,
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by the projection formula [H, Exercise 5.1, Chap. II] and the Zariski’s main
theorem [H, Corollary 11.4 and its proof, Chap. III] applied to the projective

birational morphism θ̃w, we get the isomorphism

θ̃∗w : H0
(
X̃w,Lw(λ� µ)

)
' H0

(
Z̃w,Lw(λ� µ)

)
.

Now, the corollary follows by successively applying the last corollary.

Remark (5.6). Even though we do not need, we also get (from Theorem (5.2))

that for any locally free sheaf L on X̃w, one has:

Hp(X̃w,L) ' Hp(Z̃w, θ̃
∗
w(L)), for all p ≥ 0,

and Hp
(
X̃w,Lw(λ � µ)

)
= 0 for all p > 0 and any λ, µ ∈ Λ+. These cohomo-

logical results hold even in an arbitrary char. via Frobenius splitting methods
(cf. [BrK, Theorems 3.1.2 and 3.3.4]).

The following result is a special case of a theorem of Bott [Bot, Theorem I],
who proved the result for an arbitrary Hp(G/B,M) in terms of the Lie algebra
cohomology (cf. [K4, Exercise 8.3.E.4] for the statement and the idea of a short
proof).

Theorem (5.7). For any finite-dimensional algebraic B-module M , there is a
G-module isomorphism:

H0(G/B,M) '
⊕

θ∈Λ+

V (θ)∗ ⊗ [V (θ)⊗M ]b,

where we put the trivial G-module structure on the b-invariants and M denotes
the locally free sheaf on G/B associated to the B-module M .

Proof. By the Peter-Weyl theorem and Tannaka-Krein duality (cf. [BD, Chap.
III]), the affine coordinate ring C[G] (as a G×G-module) is given by:

C[G] '
⊕

θ∈Λ+

V (θ)∗ ⊗ V (θ),

where G × G acts on C[G] via
(
(g, h).f

)
(x) = f(g−1xh) and G × G acts on

V (θ)∗ ⊗ V (θ) factorwise. From this, the theorem follows easily.

As a consequence of the above theorem, we derive the following:

Theorem (5.8). For any w ∈ W,λ ∈ Λ and µ ∈ Λ+, H0
(
X̃w,Lw(λ � µ)

)
is

canonically G-module isomorphic with
⊕

θ∈Λ+

V (θ)∗ ⊗Homb(Cλ ⊗ Vw(µ), V (θ)),

where we put the trivial G-module structure on Homb(Cλ ⊗ Vw(µ), V (θ)) and
Vw(µ) ⊂ V (µ) is the Demazure submodule, which is, by definition, the U(b)-
span of the extremal weight vector vwµ of weight wµ in V (µ).



1238 Shrawan Kumar

Proof. By the definition of the direct image sheaf π∗, corresponding to the
canonical fibration π = πw : X̃w → G/B, we get that H0

(
X̃w,Lw(λ � µ)

)
'

H0
(
G/B, π∗Lw(λ�µ)

)
. Since the line bundle Lw(λ�µ) on the G-space X̃w is a

G-equivariant line bundle and the map π isG-equivariant, the direct image sheaf
π∗Lw(λ� µ) is a locally free sheaf on G/B associated to the B-module Mw :=
C−λ ⊗H0(Xw,Lw(µ)), where Lw(µ) := L(µ)|Xw

. This gives the following:

H0
(
X̃w,Lw(λ� µ)

)
' H0(G/B,Mw), (6)

where Mw is the locally free sheaf on G/B associated to the B-module Mw.
Now, by Theorem (5.7), we get by the isomorphism (6):

H0
(
X̃w,Lw(λ� µ)

)
'
⊕

θ∈Λ+

V (θ)∗ ⊗
[
V (θ)⊗Mw

]b
(7)

'
⊕

θ∈Λ+

V (θ)∗ ⊗Homb(M
∗
w, V (θ)). (8)

Now, the theorem follows from the isomorphism:

H0(Xw,Lw(µ))
∗ ' Vw(µ), forµ ∈ Λ+,

which of course is a consequence of the Demazure character formula (cf., e.g.,
[K4, Corollary 8.1.26]).

We recall the following result due to Joseph [Jo, §3.5], which is a general-
ization of Harish-Chandra’s theorem used in the proof of Theorem (3.7).

Theorem (5.9). For any w ∈ W and µ ∈ Λ+, the map U(n) → Vw(µ),
defined by X 7→ X.vwµ, has kernel precisely equal to the left U(n)-ideal∑

α∈R+ U(n)Xkα+1
α , where Xα is any nonzero root vector in the root space

gα and kα is defined as follows:

kα = kµα(w) = 0, if (wµ)(α∨) ≥ 0 (9)

= −(wµ)(α∨), otherwise. (10)

Corollary (5.10). For any w ∈ W and λ, µ ∈ Λ+, Homb(Cλ ⊗
Vw(µ), V (λ+ wµ)) is one-dimensional (over C).

Proof. Since Vw(µ) is a U(n)-cyclic module generated by the element vwµ of
weight wµ, Cλ is of weight λ, and the λ + wµ weight space in V (λ+ wµ) is
one-dimensional, we clearly have

dimHomb(Cλ ⊗ Vw(µ), V (λ+ wµ)) ≤ 1.

By the above theorem, the map vλ ⊗ vwµ 7→ vλ+wµ clearly extends uniquely to
a b-module map, where vλ+wµ is some fixed nonzero vector of weight λ + wµ
in V (λ+ wµ).
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For any λ, µ ∈ Λ+, by the Borel-Weil theorem, there is a G-module (in fact
a G×G-module) isomorphism ξ :

(
V (λ)⊗V (µ)

)∗
' H0(G/B×G/B,L(λ�µ)).

On composition with the canonical restriction mapH0(G/B×G/B,L(λ�µ)) →

H0(X̃w,Lw(λ� µ)), we get a G-module map

ξw :
(
V (λ)⊗ V (µ)

)∗
→ H0(X̃w,Lw(λ� µ)).

Since C̃w = G×
B
Cw sits as a (Zariski) open subset of X̃w (where Cw = CB

w is

the Bruhat cell as in Section 2), the following lemma is trivial to prove.

Lemma (5.11). ker ξw = {f ∈
(
V (λ) ⊗ V (µ)

)∗
: f|U(g)(vλ⊗vwµ) = 0}, where

U(g)(vλ ⊗ vwµ) denotes the U(g)-span of the vector vλ ⊗ vwµ in V (λ)⊗ V (µ).

By Corollary (5.5) (applied to w = wo and v = w), the map ξw is surjective
and hence dualizing the above lemma, we get the following crucial:

Proposition (5.12). For any w ∈ W and λ, µ ∈ Λ+,

H0(X̃w,Lw(λ� µ))∗ ' U(g)(vλ ⊗ vwµ) ↪→ V (λ)⊗ V (µ).

Now combining Theorem (5.8) with Corollary (5.10) and Proposition
(5.12), we get the following most important result of this section. In the nineteen
sixties, Parthasarathy-Ranga Rao-Varadarajan (for short PRV) conjectured
(unpublished) the ‘In particular’ part of the following theorem (and proved
it for w = wo; cf. Theorem 5.1). Then, Kostant (in the mid eighties) came up
with a more precise form of their conjecture (known as the PRVK conjecture),
which is the first part of the following theorem. It was proved by Kumar [K1]
(using only char. 0 methods) and was extended by Mathieu [M1] to an arbitrary
char. The proof given here follows that of Kumar. Subsequently, other proofs of
the original PRV conjecture appeared. Lusztig’s results on the intersection ho-
mology of generalized Schubert varieties associated to affine Kac-Moody groups
give a proof of the PRV conjecture; Rajeswari [Ra] gave a proof for classical G
using Standard Monomial Theory; Littelmann [L2] gave a proof using his LS
path models.

Theorem (5.13). For any finite-dimensional semisimple Lie algebra g, any
λ, µ ∈ Λ+, and w ∈ W , the irreducible g-module V (λ+ wµ) (with extremal
weight λ + wµ) occurs with multiplicity exactly one inside the g-submodule
U(g)(vλ ⊗ vwµ) of V (λ)⊗ V (µ).

In particular, the g-module V (λ+ wµ) occurs with multiplicity at least one
in V (λ)⊗ V (µ).

Remark (5.14). (a) As proved in [K1, Proposition 2.13], V (λ+ wµ) occurs
‘for the first time’ in U(g)(vλ ⊗ vwµ) if λ and µ are both regular. Precisely, for
λ, µ ∈ Λ++, the g-module V (λ+ wµ) does not occur in U(g)(vλ⊗ vvµ), for any
v < w.
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(b) Following recent works of Dimitrov-Roth and Ressayre (cf. [DR1], [DR2],
[R3]), one obtains the following: Let λ, µ, ν ∈ Λ+ be such that there exists
w ∈ W with ν = λ+ wµ. Then, the following are equivalent:

(i) For all k ≥ 1, V (kν) appears in V (kλ)⊗ V (kµ) with multiplicity 1.
(ii) there exist w1, w2, w3 ∈ W such that `(w3) = `(w1) + `(w2), w3 ∗ ν =

w1 ∗ λ+ w2 ∗ µ and the canonical product map

H`(w1)
(
G/B,L(w1 ∗λ)

)
⊗H`(w2)

(
G/B,L(w2 ∗µ)

)
−→ H`(w3)

(
G/B,L(w3 ∗ν)

)

is nonzero.

The following is a refinement of Theorem (5.13) proved by Kumar [K2,
Theorem 1.2] (which was conjectured by D.N. Verma).

Theorem (5.15). Fix λ, µ ∈ Λ+ and consider the map η : Wλ\W/Wµ → Λ+,
defined by η(WλvWµ) = λ+ vµ, for any v ∈ W , where Wλ is the stabilizer
of λ in W . Then, for any w ∈ W , the irreducible g-module V (λ+ wµ) occurs
in V (λ)⊗ V (µ) with multiplicity at least equal to #η−1(η(WλwWµ)), where #
denotes the order.

In particular, the number of irreducible components of V (λ)⊗V (µ) (counted
with multiplicities) is at least as much as the order of the double coset space
Wλ\W/Wµ. (Of course, Wλ = Wµ = {e}, if we assume λ and µ to be both
regular.)

Proof. Fix a w ∈ W and let {Wλw1Wµ, . . . ,WλwnWµ} be the distinct double
cosets such that η(WλwiWµ) = λ+ wµ, for all 1 ≤ i ≤ n, and such that each wi

is of minimal length in its double coset. By [BrK, Remark 3.1.3], the restriction
map

H0
(
G/B ×G/B,L(λ� µ)

)
→ H0(Y,L(λ� µ)|Y

)

is surjective, where Y :=
⋃n

i=1 X̃wi
is the closed subvariety (equipped with

the reduced subscheme structure) of G/B × G/B. For 1 ≤ j ≤ n, define

Yj =
⋃j

i=1 X̃wi
. Now, the theorem follows from the following proposition due to

Kumar [K2, Proposition 2.5] together with [BrK, Exercise 3.3.E.3]. (This propo-
sition is obtained by considering the ideal sheaf of Yj in Yj+1 and induction
on j.)

Proposition (5.16). For any 1 ≤ j ≤ n, the irreducible g-module V (λ+ wµ)
occurs in H0

(
Yj ,L(λ� µ)|Yj

)∗
with multiplicity exactly equal to j.

6. Determination of the Saturated Tensor Cone

This section is based on the work [BK1] due to Belkale-Kumar. We follow
the notation and assumptions from Secton 2; in particular, G is a semisimple
connected complex algebraic group.

For any λ, µ, ν ∈ Λ+,

HomG

(
V (ν), V (λ)⊗ V (µ)

)
' [V (λ)⊗ V (µ)⊗ V (ν∗)]G,
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and hence the tensor product problem of determining the components V (ν)
in the tensor product V (λ) ⊗ V (µ) can be restated (replacing ν by ν∗) in a
more symmetrical form of determining when [V (λ) ⊗ V (µ) ⊗ V (ν)]G 6= 0. We
generalize this problem from s = 3 to any s ≥ 1 and define the tensor product
semigroup:

Γ̄s(G) := {(λ1, . . . , λs) ∈ (Λ+)s : [λ1, . . . , λs]
G 6= 0},

where [λ1, . . . , λs]
G denotes the dimension of the space of G-invariants [V (λ1)⊗

· · ·⊗V (λs)]
G. By Lemma (3.9), it is indeed a semigroup. Some general results on

Γ̄3(G) are obtained in the paper [KM1] by Kapovich-Millson. The determination
of Γ̄s(G) in general is very hard, so we look at the weaker ‘saturated tensor
product problem’ and define the saturated tensor product semigroup:

Γs(G) := {(λ1, . . . , λs) ∈ (Λ+)s : [Nλ1, . . . , Nλs]
G 6= 0 for someN > 0}.

Let Λ+
R

:= {λ ∈ Λ ⊗Z R : λ(α∨
i ) ≥ 0 for all the simple corootsα∨

i }. By virtue
of the convexity result in symplectic geometry, there exists a (unique) convex
polyhedral cone Γs(G)R ⊂ (Λ+

R
)s such that

Γs(G) = Γs(G)R ∩ Λs.

The aim of this section is to find the inequalities describing the cone Γs(G)R
explicitly. Observe that the cone Γs(G)R depends only upon the Lie algebra g

of G.
The following deformation of the cohomology product in H∗(G/P ) is due

to Belkale-Kumar [BK1, §6]. This deformed product is crucially used in the
determination of Γs(G).

Definition (6.1). Let P be any standard parabolic subgroup of G. Write the
standard cup product in H∗(G/P,Z) in the {[XP

w ]} basis as follows:

[
XP

u

]
·
[
XP

v

]
=

∑

w∈WP

cwu,v
[
XP

w

]
. (11)

Introduce the indeterminates τi for each αi ∈ ∆ \∆(P ) and define a deformed
cup product � as follows:

[
XP

u

]
�
[
XP

v

]
=

∑

w∈WP




∏

αi∈∆\∆(P )

τ
(w−1ρ−u−1ρ−v−1ρ−ρ)(xi)
i


 cwu,v

[
XP

w

]
,

where ρ is the (usual) half sum of positive roots of g and xi is defined in
Section 2.

By (subsequent) Corollary (6.17), whenever cwu,v is nonzero, the exponent
of τi in the above is a nonnegative integer. Moreover, it is easy to see that the
product � is associative and clearly commutative. This product should not be
confused with the small quantum cohomology of G/P .
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The cohomology algebra of G/P obtained by setting each τi = 0 in
(H∗(G/P,Z)⊗Z[τi],�) is denoted by (H∗(G/P,Z),�0). Thus, as a Z-module,
it is the same as the singular cohomology H∗(G/P,Z) and under the product
�0 it is associative (and commutative). Moreover, it continues to satisfy the
Poincaré duality (cf. [BK1, Lemma 16(d)]).

The cohomology algebra H∗(G/P ) under the product �0 is intimately con-
nected with the Lie algebra cohomology of the nil-radical u of the parabolic
subalgebra p (cf. [BK1, Theorem 43]).

We recall the following lemma from [BK1, Lemma 19].

Lemma (6.2). Let P be a cominuscule maximal standard parabolic subgroup of
G (i.e., the simple root αP ∈ ∆ \∆(P ) appears with coefficient 1 in the highest
root of R+). Then, the product � coincides with the cup product in H∗(G/P ).

Given a standard maximal parabolic subgroup P , let ωP denote the cor-
responding fundamental weight, i.e., ωP (α

∨
i ) = 1, if αi ∈ ∆ \ ∆(P ) and 0

otherwise.

The following theorem due to Belkale-Kumar [BK1, Theorem 22] determines
the semigroup Γs(G) ‘most efficiently’. For G = SL(n), every maximal parabolic
subgroup P is cominuscule and hence, by the above lemma, the deformed prod-
uct �0 in H∗(G/P ) coincides with the standard cup product. In this case, the
following theorem was obtained by Klyachko [Kly] with a refinement by Belkale
[B1]. If we replace the product �0 in (b) of the following theorem by the stan-
dard cup product, then the equivalence of (a) and (b) for general G was proved
by Kapovich-Leeb-Millson [KLM] following an analogous slightly weaker result
proved by Berenstein-Sjamaar [BS]. It may be mentioned that replacing the
product �0 in (b) by the standard cup product, we get, in general, ‘far more’
inequalities for simple groups other than SLn. For example, for G of type B3

(or C3), the standard cup product gives rise to 135 inequalities, whereas the
product �0 gives only 102 inequalities (cf. [KuLM]).

Theorem (6.3). Let (λ1, . . . , λs) ∈ (Λ+)s. Then, the following are equivalent:

(a) (λ1, . . . , λs) ∈ Γs(G).

(b) For every standard maximal parabolic subgroup P in G and every choice
of s-tuples (w1, . . . , ws) ∈ (WP )s such that

[XP
w1

]�0 · · · �0 [X
P
ws

] = [XP
e ] ∈

(
H∗(G/P,Z),�0

)
,

the following inequality holds:

s∑

j=1

λj(wjxiP ) ≤ 0, (IP(w1,...,ws)
)

where αiP is the (unique) simple root in ∆ \∆(P ).
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The following result is due to Ressayre [R1]. In the case G = SL(n), it was
earlier proved by Knutson-Tao-Woodward [KTW].

Theorem (6.4). The set of inequalities provided by the (b)-part of Theorem
(6.3) is an irredundant system of inequalities describing the cone Γs(G)R inside
(Λ+

R
)s, i.e., the hyperplanes given by the equality in IP(w1,...,ws)

are precisely those

facets of the cone Γs(G)R which intersect the interior of (Λ+
R
)s.

As a preparation towards the proof of Theorem (6.3), we first recall the
following transversality theorem due to Kleiman (cf. [BK1, Proposition 3]).

Theorem (6.5). Let a connected algebraic group G act transitively on a
smooth variety X and let X1, . . . , Xs be irreducible locally closed subvari-
eties of X. Then, there exists a nonempty open subset U ⊆ Gs such that for
(g1, . . . , gs) ∈ U , the intersection

⋂s
j=1 gjXj is proper (possibly empty) and

dense in
⋂s

j=1 gjX̄j.
Moreover, if Xj are smooth varieties, we can find such a U with the addi-

tional property that for (g1, . . . , gs) ∈ U ,
⋂s

j=1 gjXj is transverse at each point
of intersection.

We need the shifted Bruhat cell:

ΦP
w := w−1BwP ⊂ G/P.

Let TP = T (G/P )ė be the tangent space of G/P at ė ∈ G/P . It carries a
canonical action of P . For w ∈ WP , define TP

w to be the tangent space of ΦP
w at

ė. We shall abbreviate TP and TP
w by T and Tw respectively when the reference

to P is clear. By (4), BL stabilizes ΦP
w keeping ė fixed. Thus,

BLTw ⊂ Tw. (12)

The following result follows easily from the above transversality theorem and
[F1, Proposition 7.1 and §12.2] by observing that gΦP

w passes through ė ⇔
gΦP

w = pΦP
w for some p ∈ P .

Proposition (6.6). Take any (w1, . . . , ws) ∈ (WP )s such that

s∑

j=1

codimΦP
wj

≤ dimG/P. (13)

Then, the following three conditions are equivalent:

(a) [XP
w1

] · . . . · [XP
ws

] 6= 0 ∈ H∗(G/P ).

(b) For generic (p1, . . . , ps) ∈ P s, the intersection p1Φ
P
w1

∩ · · · ∩ psΦ
P
ws

is
transverse at ė.
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(c) For generic (p1, . . . , ps) ∈ P s,

dim(p1Tw1
∩ · · · ∩ psTws

) = dimG/P −

s∑

j=1

codimΦP
wj

.

The set of s-tuples in (b) as well as (c) is an open subset of P s.

The definition of the deformed product �0 was arrived at from the following
crucial concept.

Definition (6.7). Let w1, . . . , ws ∈ WP be such that

s∑

j=1

codimΦP
wj

= dimG/P. (14)

We then call the s-tuple (w1, . . . , ws) Levi-movable for short L-movable if, for
generic (l1, . . . , ls) ∈ Ls, the intersection l1Φw1

∩ · · · ∩ lsΦws
is transverse at ė.

By Proposition (6.6), if (w1, . . . , ws) is L-movable, then [XP
w1

] · . . . · [XP
ws

] =
d[XP

e ] in H∗(G/P ), for some nonzero d.

A Review of Geometric Invariant Theory. We need to consider the Geo-
metric Invariant Theory (GIT) in a nontraditional setting, where a nonreductive
group acts on a nonprojective variety. First we recall the following definition
due to Mumford.

Definition (6.8). Let S be any (not necessarily reductive) algebraic group
acting on a (not necessarily projective) variety X and let L be an S-equivariant
line bundle on X. Let O(S) be the set of all one parameter subgroups (for short
OPS) in S. Take any x ∈ X and δ ∈ O(S) such that the limit limt→0 δ(t)x
exists in X (i.e., the morphism δx : Gm → X given by t 7→ δ(t)x extends to a

morphism δ̃x : A1 → X). Then, following Mumford, define a number µL(x, δ)

as follows: Let xo ∈ X be the point δ̃x(0). Since xo is Gm-invariant via δ, the
fiber of L over xo is a Gm-module; in particular, is given by a character of Gm.
This integer is defined as µL(x, δ).

We record the following standard properties of µL(x, δ) (cf. [MFK, Chap. 2,
§1]):

Proposition (6.9). For any x ∈ X and δ ∈ O(S) such that limt→0 δ(t)x exists
in X, we have the following (for any S-equivariant line bundles L,L1,L2):

(a) µL1⊗L2(x, δ) = µL1(x, δ) + µL2(x, δ).

(b) If there exists σ ∈ H0(X,L)S such that σ(x) 6= 0, then µL(x, δ) ≥ 0.

(c) If µL(x, δ) = 0, then any element of H0(X,L)S which does not vanish at
x does not vanish at limt→0 δ(t)x as well.
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(d) For any S-variety X
′ together with an S-equivariant morphism f : X′ → X

and any x′ ∈ X
′ such that limt→0 δ(t)x

′ exists in X
′, we have µf∗

L(x′, δ) =
µL(f(x′), δ).

(e) (Hilbert-Mumford criterion) Assume that X is projective, S is connected
and reductive and L is ample. Then, x ∈ X is semistable (with respect to
L) if and only if µL(x, δ) ≥ 0, for all δ ∈ O(S).

For an OPS δ ∈ O(S), let δ̇ ∈ s be its derivative at 1. Also, define the
associated parabolic subgroup P (δ) of S by

P (δ) :=
{
g ∈ S : lim

t→0
δ(t)gδ(t)−1 exists inS

}
.

Definition (6.10). (Maximally destabilizing one parameter subgroups) We
recall the definition of Kempf’s OPS attached to an unstable point, which is
in some sense ‘most destabilizing’ OPS. Let X be a projective variety with the
action of a connected reductive group S and let L be a S-linearized ample line
bundle on X. Introduce the set M(S) of fractional OPS in S. This is the set
consisting of the ordered pairs (δ, a), where δ ∈ O(S) and a ∈ Z>0, modulo the
equivalence relation (δ, a) ' (γ, b) if δb = γa. The equivalence class of (δ, a) is
denoted by [δ, a]. An OPS δ of S can be thought of as the element [δ, 1] ∈ M(S).
The group S acts on M(S) via conjugation: g · [δ, a] = [gδg−1, a]. Choose a S-
invariant norm q : M(S) → R+. We can extend the definition of µL(x, δ) to any

element δ̂ = [δ, a] ∈ M(S) and x ∈ X by setting µL(x, δ̂) = µL(x,δ)
a . We note the

following elementary property: If δ̂ ∈ M(S) and p ∈ P (δ) then

µL(x, δ̂) = µL(x, pδ̂p−1). (15)

For any unstable (i.e., nonsemistable) point x ∈ X, define

q∗(x) = inf
δ̂∈M(S)

{q(δ̂) | µL(x, δ̂) ≤ −1},

and the optimal class

Λ(x) = {δ̂ ∈ M(S) | µL(x, δ̂) ≤ −1, q(δ̂) = q∗(x)}.

Any δ̂ ∈ Λ(x) is called Kempf’s OPS associated to x.
By a theorem of Kempf (cf. [Ki, Lemma 12.13]), Λ(x) is nonempty and the

parabolic P (δ̂) := P (δ) (for δ̂ = [δ, a]) does not depend upon the choice of

δ̂ ∈ Λ(x). The parabolic P (δ̂) for δ̂ ∈ Λ(x) will be denoted by P (x) and called
the Kempf’s parabolic associated to the unstable point x.

We recall the following theorem due to Ramanan-Ramanathan [RR, Propo-
sition 1.9].
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Theorem (6.11). For any unstable point x ∈ X and δ̂ = [δ, a] ∈ Λ(x), let

xo = lim
t→0

δ(t) · x ∈ X.

Then, xo is unstable and δ̂ ∈ Λ(xo).

Now, we return to the setting of Section 2. Let P be any standard parabolic
subgroup of G acting on P/BL via the left multiplication. We call δ ∈ O(P )
P -admissible if, for all x ∈ P/BL, limt→0 δ(t) · x exists in P/BL.

Observe that, BL being the semidirect product of its commutator [BL, BL]
and T , any λ ∈ Λ extends uniquely to a character of BL. Thus, for any λ ∈ Λ,
we have a P -equivariant line bundle LP (λ) on P/BL associated to the principal
BL-bundle P → P/BL via the one-dimensional BL-module λ−1. The following
lemma is easy to establish (cf. [BK1, Lemma 14]). It is a generalization of the
corresponding result in [BS, Section 4.2].

Lemma (6.12). Let δ ∈ O(T ) be such that δ̇ ∈ t+ := {x ∈ t : αi(x) ∈
R+ ∀ the simple rootsαi}. Then, δ is P -admissible and, moreover, for any λ ∈
Λ and x = ulBL ∈ P/BL (for u ∈ U, l ∈ L), we have the following formula:

µLP (λ)(x, δ) = −λ(wδ̇),

where w ∈ WP is the unique element such that l−1 ∈ BLwBL.

Definition (6.13). Let w ∈ WP . Since Tw is a BL-module (by (12)), we have
the P -equivariant vector bundle Tw := P ×

BL

Tw on P/BL. In particular, we

have the P -equivariant vector bundle T := P ×
BL

T and Tw is canonically a

P -equivariant subbundle of T . Take the top exterior powers det(T /Tw) and
det(Tw), which are P -equivariant line bundles on P/BL. Observe that, since T
is a P -module, the P -equivariant vector bundle T is P -equivariantly isomorphic
with the product bundle P/BL × T under the map ξ : P/BL × T → T taking
(pBL, v) 7→ [p, p−1v], for p ∈ P and v ∈ T ; where P acts on P/BL×T diagonally.
We will often identify T with the product bundle P/BL × T under ξ.

For w ∈ WP , define the character χw ∈ Λ by

χw =
∑

β∈(R+\R+
l
)∩w−1R+

β .

Then, from [K4, 1.3.22.3] and (4),

χw = ρ− 2ρL + w−1ρ, (16)

where ρ (resp. ρL) is half the sum of roots in R+ (resp. in R+
l ).
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The following lemma is easy to establish.

Lemma (6.14). For w ∈ WP , as P -equivariant line bundles on P/BL, we
have: det(T /Tw) = LP (χw).

Let Ts be the P -equivariant product bundle (P/BL)
s×T → (P/BL)

s under
the diagonal action of P on (P/BL)

s×T . Then, Ts is canonically P -equivariantly
isomorphic with the pull-back bundle π∗

j (T ), for any 1 ≤ j ≤ s, where πj :
(P/BL)

s → P/BL is the projection onto the j-th factor. For any w1, . . . , ws ∈
WP , we have a P -equivariant map of vector bundles on (P/BL)

s:

Θ = Θ(w1,...,ws) : Ts → ⊕s
j=1π

∗
j (T /Twj

) (17)

obtained as the direct sum of the projections Ts → π∗
j (T /Twj

) under the identi-

fication Ts ' π∗
j (T ). Now, assume that w1, . . . , ws ∈ WP satisfies the condition

(14). In this case, we have the same rank bundles on the two sides of the map
(17). Let θ be the bundle map obtained from Θ by taking the top exterior
power:

θ = det(Θ) : det
(
Ts
)
→ det

(
T /Tw1

)
� · · ·� det

(
T /Tws

)
. (18)

Clearly, θ is P -equivariant and hence one can view θ as a P -invariant element
in

H0

(
(P/BL)

s, det(Ts)
∗ ⊗

(
det
(
T /Tw1

)� · · ·� det
(
T /Tws

))
)
.

= H0
(
(P/BL)

s,LP (χw1
− χ1)� LP (χw2

)� · · ·� LP (χws
)
)
. (19)

The following lemma follows easily from Proposition (6.6).

Lemma (6.15). Let (w1, . . . , ws) be an s-tuple of elements of WP satisfying
the condition (14). Then, we have the following:

1. The section θ is nonzero if and only if [XP
w1

] · . . . · [XP
ws

] 6= 0 ∈ H∗(G/P ).

2. The s-tuple (w1, . . . , ws) is L-movable if and only if the section θ restricted
to (L/BL)

s is not identically 0.

Proposition (6.16). Assume that (w1, . . . , ws) ∈ (WP )s satisfies condition
(14). Then, the following are equivalent.

(a) (w1, . . . , ws) is L-movable.
(b) [XP

w1
] · . . . · [XP

ws
] = d[XP

e ] in H∗(G/P ), for some nonzero d, and for
each αi ∈ ∆ \∆(P ), we have






s∑

j=1

χwj


− χ1


 (xi) = 0.
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Proof. (a)⇒(b): Let (w1, . . . , ws) ∈ (WP )s be L-movable. Consider the restric-

tion θ̂ of the P -invariant section θ to (L/BL)
s. Then, θ̂ is non-vanishing by the

above lemma. But, for

H0
(
(L/BL)

s, (LP (χw1
− χ1)� LP (χw2

)� · · ·� LP (χws
))|(L/BL)s

)L

to be nonzero, the center of L should act trivially (under the diagonal action)
on LP (χw1

− χ1)�LP (χw2
)� · · ·�LP (χws

) restricted to (L/BL)
s. This gives∑s

j=1 χwj
(h) = χ1(h), for all h in the Lie algebra zL of the center of L; in

particular, for h = xi with αi ∈ ∆ \∆(P ).
(b)⇒(a): By the above lemma, θ(p̄1, . . . , p̄s) 6= 0, for some p̄j ∈ P/BL.

Consider the central OPS of L: δ(t) :=
∏

αi∈∆\∆(P ) t
xi . For any x = ulBL ∈

P/BL, with u ∈ U and l ∈ L,

lim
t→0

δ(t)x = lim
t→0

δ(t)uδ(t)−1(δ(t)l)BL.

But, since β(δ̇) > 0, for all β ∈ R+ \ R+
l , we get limt→0 δ(t)uδ(t)

−1 = 1.
Moreover, since δ(t) is central in L, δ(t)lBL equals lBL. Thus, limt→0 δ(t)x
exists and lies in L/BL.

Now, let L be the P -equivariant line bundle LP (χw1
−χ1)�LP (χw2

)� · · ·�
LP (χws

) on X := (P/BL)
s, and p̄ := (p̄1, . . . , p̄s) ∈ X. Then, by Lemma (6.12)

(since δ is central in L), we get

µL(p̄, δ) = −
∑

αi∈∆\∆(P )








s∑

j=1

χwj


− χ1


 (xi)




= 0, by assumption.

Therefore, using Proposition (6.9)(c) for S = P , θ does not vanish at
limt→0 δ(t)p̄. But, from the above, this limit exists as an element of (L/BL)

s.
Hence, (w1, . . . , ws) is L-movable by Lemma (6.15).

Corollary (6.17). For any u, v, w ∈ WP such that cwu,v 6= 0 (cf. equation
(11)), we have

(χw − χu − χv)(xi) ≥ 0, for each αi ∈ ∆ \∆(P ). (20)

Proof. By the assumption of the corollary, [XP
u ] · [XP

v ] · [XP
wowwP

o
] = d[XP

e ],

for some nonzero d (in fact d = cwu,v), where wP
◦ is the longest element of WP .

Thus, by taking (w1, w2, w3) = (u, v, woww
P
o ) in Lemma (6.15), the section θ

is nonzero. Now, apply Proposition (6.9)(b) for the OPS δ(t) = txi and Lemma
(6.12) (together with the identity (16)) to get the corollary.

Proof of Theorem (6.3): Let L denote the G-linearized line bundle L(λ1)�
· · ·� L(λs) on (G/B)s and let P1, . . . , Ps be the standard parabolic subgroups
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such that L descends as an ample line bundle (still denoted by) L on X :=
G/P1×· · ·×G/Ps. We call a point x ∈ (G/B)s semistable (with respect to, not
necessarily ample, L) if its image in X under the canonical map π : (G/B)s → X

is semistable. Since the map π induces an isomorphism of G-modules:

H0(X,LN ) ' H0((G/B)s,LN ), ∀N > 0, (21)

the condition (a) of Theorem (6.3) is equivalent to the following condition:

(c) The set of semistable points of (G/B)s with respect to L is nonempty.

Proof of the implication (c) ⇒ (b) of Theorem (6.3): Let x = (ḡ1, . . . , ḡs) ∈
(G/B)s be a semistable point, where ḡj = gjB. Since the set of semistable points
is clearly open, we can choose a generic enough x such that the intersection
∩ gjBwjP itself is nonempty (cf. Theorem (6.5)). (By assumption, ∩ gjBwjP
is nonempty for any gj .) Pick f ∈ ∩ gjBwjP . Translating x by f−1, we assume
that f = 1. Consider the central OPS δ = txiP in L. Thus, applying Lemma
(6.12) for P = G, the required inequality IP(w1,...,ws)

is the same as µL(x, δ) ≥ 0;

but this follows from Proposition (6.9), since x is semistable by assumption.
To prove the implication (b) ⇒ (a) in Theorem (6.3), we need to re-

call the following result due to Kapovich-Leeb-Millson [KLM]. (For a self-
contained algebro-geometric proof of this result, see [BK1, §7.4].) Suppose that
x = (ḡ1, . . . , ḡs) ∈ (G/B)s is an unstable point and P (x) the Kempf’s parabolic

associated to π(x). Let δ̂ = [δ, a] be a Kempf’s OPS associated to π(x). Ex-
press δ(t) = fγ(t)f−1, where γ̇ ∈ t+. Then, P (γ) is a standard parabolic.
Let P be a maximal parabolic containing P (γ). Define wj ∈ W/WP (γ) by
fP (γ) ∈ gjBwjP (γ) for j = 1, . . . , s.

Theorem (6.18). (i) The intersection
⋂s

j=1 gjBwjP ⊂ G/P is the single-
ton {fP}.

(ii) For the simple root αiP ∈ ∆ \∆(P ),
∑s

j=1 λj(wjxiP ) > 0.

Now, we come to the proof of the implication (b) ⇒ (a) in Theorem (6.3).
Assume, if possible, that (a) (equivalently (c) as above) is false, i.e., the set
of semistable points of (G/B)s is empty. Thus, any point x = (ḡ1, . . . , ḡs) ∈
(G/B)s is unstable. Choose a generic x so that for each standard parabolic

P̃ in G and any (z1, . . . , zs) ∈ W s, the intersection g1Bz1P̃ ∩ · · · ∩ gsBzsP̃

is transverse (possibly empty) and dense in g1Bz1P̃ ∩ · · · ∩ gsBzsP̃ . Let δ̂ =
[δ, a], P, γ, f, wj be as above associated to x. It follows from Theorem (6.18)
that

⋂s
j=1 gjBwjP ⊂ G/P is the single point fP and, since x is generic, we get

[XP
w1

] · . . . · [XP
ws

] = [XP
e ] ∈ H∗(G/P,Z). (22)

We now claim that the s-tuple (w1, . . . , ws) ∈ (W/WP )
s is L-movable.

Write gj = fpjw
−1
j bj , for some pj ∈ P (γ) and bj ∈ B. Hence,

δ(t)ḡj = fγ(t)pjw
−1
j B = fγ(t)pjγ

−1(t)w−1
j B ∈ G/B.
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Define, lj = limt→0 γ(t)pjγ
−1(t). Then, lj ∈ L(γ), where L(γ) is the Levi

subgroup of P (γ) containing T . Therefore,

lim
t→0

δ(t)x = (fl1w
−1
1 B, . . . , f lsw

−1
s B).

By Theorem (6.11), δ̂ ∈ Λ(limt→0 δ(t)x). We further note that fP (γ) ∈
∩j(fljw

−1
j )BwjP (γ).

Applying Theorem (6.18) to the unstable point xo = limt→0 δ(t)x yields: fP
is the only point in the intersection

⋂s
j=1 fljw

−1
j BwjP , i.e., translating by f , we

get: ė = eP is the only point in the intersection Ω :=
⋂s

j=1 ljw
−1
j BwjP. Thus,

dimΩ = 0. By (22), the expected dimension of Ω is 0 as well. If this intersection
Ω were not transverse at ė, then by [F1, Remark 8.2], the local multiplicity at
ė would be > 1, each w−1

j BwjP being smooth. Further, G/P being a homoge-

neous space, any other component of the intersection
⋂
ljw

−1
j BwjP contributes

nonnegatively to the intersection product [XP
w1

] · . . . · [XP
ws

] (cf. [F1, §12.2]).

Thus, from (22), we get that the intersection
⋂
ljw

−1
j BwjP is transverse at

ė ∈ G/P , proving that (w1, . . . , ws) is L-movable. Thus, by Proposition (6.16)
and the identities (16), (22), we get [XP

w1
] �0 . . . �0 [X

P
ws

] = [XP
e ]. Now, part

(ii) of Theorem (6.18) contradicts the inequality IP(w1,...,ws)
. Thus, the set of

semistable points of (G/B)s is nonempty, proving condition (a) of Theorem
(6.3).

Remark (6.19). (1) The cone Γs(G)R coincides with the eigencone under the
identification of t+ with Λ+

R
induced from the Killing form (cf. [Sj, Theorem

7.6]). The eigencone for G = SL(n) has extensively been studied since the
initial work of H. Weyl in 1912. For a detailed survey on the subject, we refer
to Fulton’s article [F2].

(2) The cone Γ3(G)R is quite explicitly determined for any semisimple G of
rank 2 in [KLM, §7], any simple G of rank 3 in [KuLM] and for G = Spin(8) in
[KKM]. It has 50, 102, 102, 306 facets for G of type A3, B3, C3, D4 respectively.

(3) The ‘explicit’ determination of Γs(G) via Theorem (6.3) hinges upon
understanding the product �0 in H∗(G/P ) in the Schubert basis, for all the
maximal parabolic subgroups P . Clearly, the product �0 is easier to understand
than the usual cup product (which is the subject matter of Schubert Calculus)
since, in general, ‘many more’ terms in the product �0 in the Schubert basis
drop out. For the lack of space, we do not recall various results about the
product �0, instead we refer to the papers [BK1, §§9,10], [BK2, §§8,9], [KKM,
§4], [PS], [Ri1], [Ri2], [ReR], [R3].

7. Special Isogenies and Tensor Product

Multiplicities

This section is based on the work [KS] due to Kumar-Stembridge. It exploits
certain ‘exceptional’ isogenies between semisimple algebraic groups over alge-
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braically closed fields of char. p > 0 to derive relations between tensor product
multiplicities of Spin2`+1 and Sp2` and also between two different sets of mul-
tiplicities of F4 (and also that of G2).

Let G = G(k) and G′ = G′(k) be connected, semisimple algebraic groups
over an algebraically closed field k of char. p > 0, and let f : G → G′ be an
isogeny (i.e., a surjective algebraic group homomorphism with a finite kernel).
Fix a Borel subgroup B of G and T ⊂ B a maximal torus, and let B′ = f(B)
and T ′ = f(T ) be the corresponding groups in G′. Then, T ′ (resp. B′) is a
maximal torus (resp. a Borel subgroup) of G′.

The map f induces a homomorphism f∗ : Λ(T ′) → Λ(T ), which extends to
an isomorphism f∗

R
: Λ(T ′)R

∼
−→ Λ(T )R, where Λ(T )R := Λ(T )⊗ZR. Moreover,

f∗ takes Λ(T ′)+ to Λ(T )+.
Letting R = R(G,T ) denote the root system of G with respect to T and

similarly R′ = R(G′, T ′), we recall the following from [C, Exposé n◦ 18, Defi-
nition 1].

Definition (7.1). An isomorphism φ : Λ(T ′)R → Λ(T )R is called special
if φ(Λ(T ′)) ⊂ Λ(T ), and there exist integers d(α) ≥ 0 such that R′ ={
pd(α)φ−1(α) : α ∈ R

}
.

For any isogeny f as above, the induced map f∗
R
is a special isomorphism.

Conversely, for any special isomorphism φ : Λ(T ′)R → Λ(T )R, there exists an
isogeny f : G → G′ with f∗

R
= φ (cf. [C, Exposé n◦ 23, §3, Théorème 1]).

In the following, an important result due to Donkin, asserting the existence
of good filtrations for tensor products of the space of global sections of homoge-
neous line bundles, has been used. (It should be noted that Donkin proved this
result for almost all the cases barring a few exceptions involving small primes
[D]; the result was subsequently proved uniformly by Mathieu for all primes
[M2].) This allows replacing the following inequality (23) with a cohomological
statement that is independent of the char. of the field (including the char. 0
case), thereby enabling us to deduce the inequality directly from the existence
of an isogeny in char. p.

Theorem (7.2). If f : G → G′ is an isogeny of connected semisimple alge-
braic groups over an algebraically closed field k of char. p > 0, then for all
λ′
1, . . . , λ

′
n ∈ Λ(T ′)+,

[λ′
1, . . . , λ

′
n]

G′(C) ≤ [f∗(λ′
1), . . . , f

∗(λ′
n)]

G(C), (23)

where G(C) is the connected semisimple complex algebraic group with the same
root datum as that of G(k) and similarly for G′(C).

Proof. The map f clearly induces a surjective morphism (of varieties) f̄ : Xn →
X ′

n, where Xn := (G/B)×n. Consider the dominant line bundle L(λ′
1) � · · · �

L(λ′
n) on X ′

n. Then, the pull-back line bundle on Xn is the homogeneous line
bundle L(λ1)� · · ·�L(λn), where λi := f∗(λ′

i). Thus, we get an injective map

f̄∗ : H0
(
X ′

n,L(λ
′
1)� · · ·� L(λ′

n)
)
↪→ H0

(
Xn,L(λ1)� · · ·� L(λn)

)
.
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Since the map f̄ is f -equivariant under the diagonal action of G on Xn and G′

on X ′
n, the injection f̄∗ induces an injection (still denoted by)

f̄∗ : H0
(
X ′

n,L(λ
′
1)� · · ·� L(λ′

n)
)G′

↪→ H0
(
Xn,L(λ1)� · · ·� L(λn)

)G
. (24)

We have of course

H0
(
Xn,L(λ1)� · · ·� L(λn)

)
∼= H0

(
G/B,L(λ1)

)
⊗ · · · ⊗H0

(
G/B,L(λn)

)
.

By [BrK, Corollary 4.2.14], the above module M := H0
(
G/B,L(λ1)

)
⊗ · · · ⊗

H0
(
G/B,L(λn)

)
admits a good filtration. Hence, by [BrK, Theorem 4.2.7, iden-

tity (4.2.1.3) and Proposition 4.2.3(c)], its T -character is

chM =
∑

λ∈Λ(T )+

dim
[
H0
(
G/B,L(λ)

)
⊗M

]G
· ch(Vk(λ)),

where Vk(λ) := H0(G/B,L(λ))∗ is the Weyl module with highest weight λ. Re-
call that, by the Borel-Weil Theorem, H0

(
G(C)/B(C),LC(λ)

)
' V (λ)∗, where

(as earlier) V (λ) is the (complex) irreducible G(C)-module with highest weight
λ and LC(λ) is the homogeneous line bundle on G(C)/B(C) corresponding to
the character λ−1 of B(C). Moreover, as is well-known, chVk(λ) = chV (λ).
(This follows from the vanishing of the cohomology Hi(G/B,L(λ)) for all
i > 0.)

But, clearly, chM = ch(Vk(λ1)
∗) · · · ch(Vk(λn)

∗); in particular, it is in-
dependent of the char. of the field (including char. 0). Moreover, since
{chV (λ)}λ∈Λ(T )+ are Z-linearly independent as elements of the group ring of

Λ(T ), we deduce that dim
[
H0
(
G/B,L(λ)

)
⊗M

]G
is independent of the char.

of the base field for all λ ∈ Λ(T )+. Taking λ = 0, we obtain that dimMG is
independent of the char. Observe next that (24) implies

dim[M ′]G
′

≤ dim[M ]G, (25)

whereM ′ := H0
(
G′/B′,L(λ′

1)
)
⊗ · · · ⊗H0

(
G′/B′,L(λ′

n)
)
.

Thus, (25) implies

dim
[
V (λ′

1)⊗ · · · ⊗ V (λ′
n)
]G′(C)

= dim
[
V (λ′

1)
∗ ⊗ · · · ⊗ V (λ′

n)
∗
]G′(C)

≤ dim
[
V (λ1)

∗ ⊗ · · · ⊗ V (λn)
∗
]G(C)

= dim[V (λ1)⊗ · · · ⊗ V (λn)]
G(C).

Definition (7.3). An isogeny f : G → G′ for a simple G is called special if
d(α) = 0 for some α ∈ R(G,T ), where d(α) is as in Definition (7.1); it is central
if d(α) = 0 for all α ∈ R(G,T ). A complete list of special non-central isogenies
may be found in [BT, §3.3]. In the following, we list the resulting tensor product
inequalities implied by Theorem (7.2).
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Let G be the simply-connected group of type B` (i.e., G = Spin2`+1),
and G′ the simply-connected group of type C` (i.e., G′ = Sp2`). Following

the notation from the appendices of [Bo], we identify Λ(T ) = {
∑`

i=1 aiεi :

ai ± aj ∈ Z ∀i, j} and Λ(T ′) =
⊕`

i=1 Zεi. This provides a canonical inclusion
Λ(T ′) ↪→ Λ(T ), εi 7→ εi, which takes Λ(T ′)+ ↪→ Λ(T )+. Moreover, under this
identification, the image of Λ(T ′) (resp. Λ(T ′)+) is precisely equal to Λ(T̄ )
(resp. Λ(T̄ )+), where T̄ is the maximal torus in SO2`+1.

Theorem (7.2) specializes as follows.

Corollary (7.4). (a) If λ1, . . . , λn are dominant weights for Sp2` (` ≥ 2), then

[λ1, . . . , λn]
Sp2`(C) ≤ [λ1, . . . , λn]

SO2`+1(C).

(b) If λ1, . . . , λn are dominant weights for Spin2`+1 (` ≥ 2), then

[λ1, . . . , λn]
Spin2`+1(C) ≤ [2λ1, . . . , 2λn]

Sp2`(C).

(c) If λ1, . . . , λn are dominant weights for F4, then

[λ1, . . . , λn]
F4(C) ≤ [φ(λ1), . . . , φ(λn)]

F4(C),

where φ(aω1+bω2+cω3+dω4) := dω1+cω2+2bω3+2aω4 (ωi being fundamental
weights).

(d) If λ1, . . . , λn are dominant weights for G2, then

[λ1, . . . , λn]
G2(C) ≤ [φ(λ1), . . . , φ(λn)]

G2(C),

where φ(aω1 + bω2) := 3bω1 + aω2.

Proof. (a) The identity map is a special isomorphism Λ(T ′)R → Λ(T )R giving
rise to an isogeny f : SO2`+1(k) → Sp2`(k), where char. k = 2.

(b) In this case, the map µ 7→ 2µ defines a special isomorphism Λ(T ′)R →
Λ(T )R inducing an isogeny f : Sp2`(k) → Spin2`+1(k), where char. k = 2.

(c) In this case, the simple roots generate Λ(T ). Numbering them
α1, α2, α3, α4 as in [Bo], we have that α1 and α2 are long and α3 and α4 are
short. Then, there is a special isomorphism φ : Λ(T )R → Λ(T )R such that

φ(α1) = 2α4, φ(α2) = 2α3, φ(α3) = α2, φ(α4) = α1.

Let G = G′ be of type F4 and char. k = 2 and apply Theorem (7.2).

(d) Letting α1 and α2 denote the simple roots, with α1 short and α2

long, there is a special isomorphism φ : Λ(T )R → Λ(T )R such that φ(α1) =
α2, φ(α2) = 3α1. Let G = G′ be of type G2 and char. k = 3 and apply
Theorem (7.2).
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As an immediate corollary of the (a) and the (b) parts above, we have the
following:

Corollary (7.5). For any s ≥ 1 and any ` ≥ 2, the saturated tensor semigroup
Γs(Sp2`(C)) = Γs(SO2`+1(C)) under the identification of their Λ(T )+ as above.

Remark (7.6). (a) Any nonspecial isogenies or central isogenies do not yield
any new inequalities.

(b) There is another combinatorial proof of Theorem (7.2) based on Littel-
mann’s Path Model for tensor product multiplicity. More specifically, Kumar-
Stembridge [KS] use a variant of the Path Model (see [St2]) in which the objects
are chains in the Bruhat ordering of various Weyl group orbits, and the inequal-
ity is obtained by comparing chains related by integer renormalizations.

8. Saturation Problem

We continue to follow the notation and assumptions from Secton 2; in par-
ticular, G is a semisimple connected complex algebraic group. In Section 6,
we defined the tensor product semigroup Γ̄s(G) as well as the saturated ten-
sor product semigroup Γs(G) (for any integer s ≥ 1) and determined Γs(G)
by describing its facets. The saturation problem aims at connecting these two
semigroups.

We begin with the following definition. We take s = 3 as this is the most
relevant case to the tensor product decomposition.

Definition (8.1). An integer d ≥ 1 is called a saturation factor for G, if for
any (λ, µ, ν) ∈ Γ3(G) such that λ + µ + ν ∈ Q, (dλ, dµ, dν) ∈ Γ̄3(G), where
Q is the root lattice of G. Of course, if d is a saturation factor then so is its
any multiple. If d = 1 is a saturation factor for G, we say that the saturation
property holds for G.

The saturation theorem of Knutson-Tao [KT], proved by using their ‘hon-
eycomb model’ asserts the following. Other proofs of their result are given by
Derksen-Weyman [DK], Belkale [B2] and Kapovich-Millson [KM2] (cf. Theo-
rem (8.3) below).

Theorem (8.2). The saturation property holds for G = SL(n).

The following general result (though not optimal) on saturation factor is
obtained by Kapovich-Millson [KM2] by using the geometry of geodesics in Eu-
clidean buildings and Littelmann’s path model. A weaker form of the following
theorem was conjectured by Kumar in a private communication to J. Millson
(also see [KT, Conjecture]).

Theorem (8.3). For any connected simple G, d = k2g is a saturated factor,
where kg is the least common multiple of the coefficients of the highest root θ
of the Lie algebra g of G written in terms of the simple roots {α1, . . . , α`}.
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Observe that the value of kg is 1 for g of type A`(` ≥ 1); it is 2 for g of
type B`(` ≥ 2), C`(` ≥ 3), D`(` ≥ 4); and it is 6, 12, 60, 12, 6 for g of type
E6, E7, E8, F4, G2 respectively.

Kapovich-Millson determined Γ̄3(G) explicitly for G = Sp(4) and G2 (cf.
[KM1, Theorems 5.3, 6.1]). In particular, from their description, the following
theorem follows easily.

Theorem (8.4). The saturation property does not hold for either G = Sp(4)
or G2. Moreover, 2 is a saturation factor (and no odd integer d is a saturation
factor) for Sp(4), whereas both of 2, 3 are saturation factors for G2 (and hence
any integer d > 1 is a saturation factor for G2).

It was known earlier that the saturation property fails for G of type B` (cf.
[E]).

Kapovich-Millson [KM1] made the following very interesting conjecture:

Conjecture (8.5). If G is simply-laced, then the saturation property holds for
G.

Apart from G = SL(n), the only other simply-connected, simple, simply-
laced group G for which the above conjecture is known so far is G = Spin(8),
proved by Kapovich-Kumar-Millson [KKM, Theorem 5.3] by explicit calculation
using Theorem (6.3).

Theorem (8.6). The above conjecture is true for G = Spin(8).

Finally, we have the following improvement of Theorem (8.3) for the groups
SO(2`+ 1) and Sp(2`) due to Belkale-Kumar [BK2, Theorems 25 and 26].

Theorem (8.7). For the groups SO(2`+1) and Sp(2`), 2 is a saturation factor.

The proof of the above theorem relies on the following theorem [BK2, The-
orem 23].

Theorem (8.8). Let (λ1, . . . , λs) ∈ Γ̄s(SL(2`)). Then, (λ1
C , . . . , λ

s
C) ∈

Γ̄s(Sp(2`)), where λj
C is the restriction of λj to the maximal torus of Sp(2`).

A similar result is true for Sp(2`) replaced by SO(2`+ 1).

Belkale-Kumar [BK2, Conjecture 29] conjectured the following generaliza-
tion of Theorem (8.8). Let G be a simply-connected, semisimple complex al-
gebraic group and let σ be a diagram automorphism of G with fixed subgroup
Gσ = K.

Conjecture (8.9). Let (λ1, . . . , λs) ∈ Γ̄s(G). Then, (λ1
K , . . . , λs

K) ∈ Γ̄s(K),

where λj
K is the restriction of λj to the maximal torus of K.
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(Observe that, for any dominant character λ for G, λK is dominant for K
with respect to the Borel subgroup BK := Bσ of K.)

We also mention the following ‘rigidity’ result (conjectured by Fulton) due
to Knutson-Tao-Woodward [KTW] proved by combinatorial methods. There
are now geometric proofs of the theorem by Belkale [B3] and Ressayre [R2].

Theorem (8.10). Let G = SL(n) and let λ, µ, ν ∈ Λ+. If [V (λ)⊗V (µ)⊗V (ν)]G

is one-dimensional then so is [V (Nλ)⊗ V (Nµ)⊗ V (Nν)]G, for any N ≥ 1.

The direct generalization of this theorem for other groups is, in general, false.
But, a certain cohomological reinterpretation of the theorem remains true for
any G (cf. a forthcoming paper by Belkale-Kumar-Ressayre).

9. Generalization of Littlewood-Richardson

Formula

We recall the classical Littlewood-Richardson formula for GL(n) (cf., e.g., [Ma,
Chap. 1, §9]). Let T be the standard maximal torus of GL(n) consisting of
invertible diagonal matrices. Then, the irreducible polynomial representations
of GL(n) (i.e., those irreducible representations whose matrix coefficients extend
as a regular function on the whole of M(n)) are parametrized by the partitions
λ : (λ1 ≥ · · · ≥ λn ≥ 0) (λi ∈ Z), where λ is viewed as an element of Λ+ via
the character: diag(t1, . . . , tn) 7→ tλ1

1 . . . tλn
n . Consider the decomposition (1)

in Section 1 for the tensor product of irreducible polynomial representations of
GL(n).

Theorem (9.1). mν
λ,µ 6= 0 only if both of λ, µ ⊂ ν. In this case, mν

λ,µ equals
the number of tableaux T of shape ν − λ and weight µ such that the word
w(T ) = (a1, . . . , aN ) associated to T (reading the symbols in T from right to
left in successive rows starting with the top row) is a lattice permutation, i.e.,
for all 1 ≤ i ≤ m−1, and 1 ≤ r ≤ N,#{j ≤ r : aj = i} ≥ #{j ≤ r : aj = i+1},
where the symbols in T lie in {1, . . . ,m}.

Littelmann generalized the above thorem for all semisimple Lie algebras g

by using his LS path models as below. Let G be the simply-connected complex
algebraic group with Lie algebra g.

Definition (9.2). Let Π be the set of all piecewise-linear, continuous paths
γ : [0, 1] → ΛR := Λ⊗Z R with γ(0) = 0 and γ(1) ∈ Λ, modulo the equivalence
relation γ ≡ γ′ if γ′ is obtained from γ by a piecewise-linear, nondecreasing,
continuous reparametrization. For any simple root αi, there are two operators
eαi

, fαi
: Π t {0} → Π t {0} defined in [L2], [L3]. Let Π+ be the set of those

paths γ ∈ Π such that Im γ ⊂ Λ+
R
. For any γ ∈ Π+, let Pγ be the smallest

subset of Π containing γ such that Pγ t {0} is stable under the operators
{eαi

, fαi
; 1 ≤ i ≤ `}.
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The following theorem due to Littelmann [L2], [L3] generalizes Theorem
(9.1).

Theorem (9.3). For any λ, µ ∈ Λ+, take any path γλ, γµ ∈ Π+ such that
γλ(1) = λ and γµ(1) = µ. Then,

V (λ)⊗ V (µ) =
⊕

γ

V (λ+ γ(1)),

where γ runs over all the paths in Pγµ
such that the cancatenation γλ ∗γ ∈ Π+.

By [L2, §8] (also see [L1]), the above theorem indeed generalizes Theorem
(9.1).

We now come to the tensor product multiplicity formula due to Berenstein-
Zelevinsky [BZ, Theorem 2.3].

Definition (9.4). Let V be a finite-dimensional representation of G and let
λ, µ ∈ P (V ) (the set of weights of V ), and let i = (i1, . . . , ir) be a sequence
with 1 ≤ ij ≤ `. An i-trail from λ to µ in V is a sequence of weights T = (λ0 =
λ, λ1, . . . , λr = µ) in P (V ) such that

(1) for all 1 ≤ j ≤ r, we have λj−1−λj = cj(T )αij , for some cj = cj(T ) ∈ Z+,
and

(2) ec1i1 . . . e
cr
ir

: Vµ → Vλ is a nonzero map, where eij is a nonzero simple root
vector as in Section 2 and Vµ is the weight space of V corresponding to
the weight µ.

Fix a reduced word for the longest element wo = si1 . . . siN and let io =
(i1, . . . , iN ).

Theorem (9.5). For λ, µ, ν ∈ Λ+, the tensor product multiplicity mν
λ,µ equals

the number of N -tuples (d1, . . . , dN ) of nonnegative integers satisfying the fol-
lowing conditions:

(a)
∑N

j=1 djsi1 . . . sij−1
αij = λ+ µ− ν,

(b)
∑

j cj(T )dj ≥ (siλ + µ − ν)(ω∨
i ), for any 1 ≤ i ≤ ` and any io-trail T

from siω
∨
i to woω

∨
i in V (ω∨

i ), and

(c)
∑

j cj(T )dj ≥ (λ + siµ − ν)(ω∨
i ), for any 1 ≤ i ≤ ` and any io-trail T

from ω∨
i to wosiω

∨
i in V (ω∨

i ),

where V (ω∨
i ) is the i-th fundamental representation for the Langlands dual Lie

algebra g∨.
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