DOI: 10.1007/s00208-005-0655-1

Explicit determination of the Picard group of moduli spaces of semistable *G*-bundles on curves

Arzu Boysal · Shrawan Kumar

Received: 29 February 2004 / Published online: 14 June 2005 – © Springer-Verlag 2005

Introduction

Let *G* be a connected, simply-connected, simple affine algebraic group and C_g be a smooth irreducible projective curve of any genus $g \ge 1$ over \mathbb{C} . Denote by $\mathfrak{M}_{\mathcal{C}_g}(G)$ the moduli space of semistable principal *G*-bundles on C_g . Let $\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_g}(G))$ be the Picard group of $\mathfrak{M}_{\mathcal{C}_g}(G)$ and let *X* be the infinite Grassmannian of the affine Kac-Moody group associated to *G*. It is known that $\operatorname{Pic}(X) \simeq \mathbb{Z}$ and is generated by a homogenous line bundle \mathfrak{L}_{χ_0} . Also, as proved by Kumar-Narasimhan [KN], there exists a canonical injective group homomorphism

$$\beta$$
 : Pic($\mathfrak{M}_{\mathcal{C}_{\sigma}}(G)$) \hookrightarrow Pic(X),

which takes $\Theta_V(\mathcal{C}_g, G) \mapsto \mathfrak{L}_{\chi_0}^{m_V}$ for any finite dimensional representation V of G, where $\Theta_V(\mathcal{C}_g, G)$ is the theta bundle associated to the G-module V and m_V is its Dynkin index (cf. Theorem 2.2). As an immediate corollary, they obtained that

$$\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_{\sigma}}(G)) \simeq \mathbb{Z}_{\sigma}$$

generalizing the corresponding result for G = SL(n) proved by Drezet-Narasimhan [DN]. However, the precise image of β was not known for non-classical Gexcluding G_2 . (For classical G and G_2 , see [KN], [LS], [BLS].) The main aim of this paper is to determine the image of β for an arbitrary G. It is shown that the image of β is generated by $\mathcal{L}_{\chi_0}^{m_G}$, where m_G is the least common multiple of the coefficients of the coroot θ^{\vee} written in terms of the simple coroots, θ being the highest root of G (cf. Theorem 2.4, see also Proposition 2.3 and the subsequent discussion where m_G is explicitly given for each G). As a consequence, we obtain that the theta bundles $\Theta_V(\mathcal{C}_g, G)$, where V runs over all the finite dimensional representations of G, generate $\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_g}(G))$ (cf. Theorem 1.3). In fact, it is shown that there is a fundamental weight ω_d such that the theta bundle $\Theta_{V(\omega_d)}(\mathcal{C}_g, G)$ corresponding to the irreducible highest weight G-module $V(\omega_d)$ with highest weight

A. BOYSAL · S. KUMAR

Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA (e-mail: shrawan@email.unc.edu; boysal@email.unc.edu)

 ω_d generates Pic($\mathfrak{M}_{\mathcal{C}_g}(G)$) (cf. Theorem 2.4). All these fundamental weights ω_d are explicitly determined in Proposition 2.3.

It may be mentioned that Picard group of the moduli *stack* of *G*-bundles is studied in [LS], [BLS], $[T_2]$.

We now briefly outline the idea of the proofs. Recall that, by a celebrated result of Narasimhan-Seshadri, the underlying real analytic space $M_g(G)$ of $\mathfrak{M}_{\mathcal{C}_g}(G)$ admits a description as the space of representations of the fundamental group $\pi_1(\mathcal{C}_g)$ into a fixed compact form of G up to conjugation. In particular, $M_g(G)$ depends only upon g and G (and not on the specific choice of the projective curve \mathcal{C}_g). Moreover, this description gives rise to a standard embedding $i_g : M_g(G) \hookrightarrow$ $M_{g+1}(G)$.

Let V be any finite dimensional representation of G. We first show that the first Chern class of the theta bundle $\Theta_V(\mathcal{C}_g, G)$ does not depend upon the choice of the smooth projective curve \mathcal{C}_g , as long as g is fixed (cf. Proposition 1.6).

We next show that the first Chern class of $\Theta_V(\mathcal{C}_{g+1}, G)$ restricts to the first Chern class of $\Theta_V(\mathcal{C}_g, G)$ under the embedding i_g (cf. Proposition 1.8). This result is proved by first reducing the case of general *G* to SL(n) and then reducing the case of SL(n) to SL(2). The corresponding result for SL(2) is obtained by showing that the inclusion $M_g(SL(2)) \hookrightarrow M_{g+1}(SL(2))$ induces isomorpism in cohomology $H^2(M_{g+1}(SL(2)), \mathbb{Z}) \simeq H^2(M_g(SL(2)), \mathbb{Z})$ (cf. Proposition 1.7). The last result for H^2 with rational coefficients is fairly well known (and follows easily by observing that the symplectic form on $M_{g+1}(G)$ restricts to the symplectic form on $M_g(G)$) but the result with integral coefficients is more delicate and is proved in Section 4. The proof involves the calculation of the determinant bundle of the Poincaré bundle on $\mathcal{C}_g \times \mathcal{J}_{\mathcal{C}_g}$, $\mathcal{J}_{\mathcal{C}_g}$ being the Jacobian of \mathcal{C}_g which consists of the isomorphism classes of degree 0 line bundles on \mathcal{C}_g .

By virtue of the above mentioned two propositions (Propositions 1.6 and 1.8), to prove our main result determining $\text{Pic}(\mathfrak{M}_{\mathcal{C}_g}(G))$ stated in the first paragraph for any $g \ge 1$, it suffices to consider the case of genus g = 1.

In the genus g = 1 case, $\mathfrak{M}_{\mathcal{C}_1}(G)$ admits a description as the weighted projective space $\mathbb{P}(1, a_1^{\vee}, a_2^{\vee}, \ldots, a_k^{\vee})$, where a_i^{\vee} are the coefficients of the coroot θ^{\vee} written in terms of the simple coroots and k is the rank of G (cf. Theorems 3.1 and 3.3). The ample generator of the Picard group of $\mathbb{P}(1, a_1^{\vee}, a_2^{\vee}, \ldots, a_k^{\vee})$ is known to be $\mathcal{O}_{\mathbb{P}(1,a_1^{\vee},a_2^{\vee},\ldots,a_k^{\vee})}(m_G)$ (cf. Theorem 3.4). In section 3, we show that $\Theta_{V(\omega_d)}(\mathcal{C}_1, G)$ is, in fact, $\mathcal{O}_{\mathbb{P}(1,a_1^{\vee},a_2^{\vee},\ldots,a_k^{\vee})}(m_G)$, and hence it is the ample generator of Pic $(\mathfrak{M}_{\mathcal{C}_1}(G))$. The proof makes use of the Verlinde formula determining the dimension of the space of global sections $H^0(\mathfrak{M}_{\mathcal{C}_g}(G), \mathfrak{L})$ (cf. Theorem 3.5).

We thank P. Belkale, L. Jeffrey and M.S. Narasimhan for some helpful correspondences/conversations. We are grateful to the referee for some very helpful comments; in particular, for pointing out Theorem 3.3, which simplified our original proof of Proposition 1.9. The second author was partially supported by the NSF.

1. Statement of the main theorem and its proof

For a topological space X, $H^i(X)$ denotes the singular cohomology of X with integral coefficients, unless otherwise explicitly stated.

Let *G* be a connected, simply-connected, simple affine algebraic group over \mathbb{C} . This will be our tacit assumption on *G* throughout the paper. Let \mathcal{C}_g be a smooth irreducible projective curve (over \mathbb{C}) of genus *g*, which we assume to be ≥ 1 . Let $\mathfrak{M}_{\mathcal{C}_g} = \mathfrak{M}_{\mathcal{C}_g}(G)$ be the moduli space of semistable principal *G*-bundles on \mathcal{C}_g .

We begin by recalling the following result due to Kumar-Narasimhan [KN, Theorem 2.4]. (In loc cit. the genus g is assumed to be ≥ 2 . For the genus g = 1 case, the result follows from Theorems 3.1, 3.3 and 3.4.)

Theorem 1.1. With the notation as above,

$$\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_{\sigma}})\simeq\mathbb{Z},$$

where $\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_g})$ is the group of isomorphism classes of algebraic line bundles on $\mathfrak{M}_{\mathcal{C}_g}$.

In particular, any nontrivial line bundle on $\mathfrak{M}_{\mathcal{C}_g}$ is ample or its inverse is ample.

Definition 1.2. Let \mathcal{F} be a family of vector bundles on C_g parametrized by a variety X, i.e., \mathcal{F} is a vector bundle over $C_g \times X$. Then, the 'determinant of the cohomology' gives rise to the determinant bundle $\text{Det}(\mathcal{F})$ of the family \mathcal{F} , which is a line bundle over the base X. By definition, the fiber of $\text{Det}(\mathcal{F})$ over any $x \in X$ is given by the expression:

$$\operatorname{Det}(\mathcal{F})|_{x} = \wedge^{top}(H^{0}(\mathcal{C}_{g},\mathcal{F}_{x}))^{*} \otimes \wedge^{top}(H^{1}(\mathcal{C}_{g},\mathcal{F}_{x})),$$

where \mathcal{F}_x is the restriction of \mathcal{F} to $\mathcal{C}_g \times x$ (cf., e.g., [L, Chap. 6, §1], [KM]).

Let $\mathcal{R}(G)$ denote the set of isomorphism classes of all the finite dimensional algebraic representations of G. For any V in $\mathcal{R}(G)$, we have the Θ -bundle $\Theta_V(\mathcal{C}_g) = \Theta_V(\mathcal{C}_g, G)$ on $\mathfrak{M}_{\mathcal{C}_g}$, which is an algebraic line bundle whose fibre at any principal G-bundle $E \in \mathfrak{M}_{\mathcal{C}_g}$ is given by the expression

$$\Theta_V(\mathcal{C}_g)|_E = \wedge^{top}(H^0(\mathcal{C}_g, E_V))^* \otimes \wedge^{top}(H^1(\mathcal{C}_g, E_V)),$$

where E_V is the associated vector bundle $E \times_G V$ on C_g . Observe that the moduli space \mathfrak{M}_{C_g} does not parametrize a universal family of *G*-bundles, however, the theta bundle $\Theta_V(C_g)$ (which is essentially the determinant bundle if there were a universal family parametrized by \mathfrak{M}_{C_g}) still exists (cf. [K_1 , §3.7]).

Now, we can state the main result of this paper.

Theorem 1.3.

$$\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_g}) = < \Theta_V(\mathcal{C}_g), V \in \mathcal{R}(G) >,$$

where the notation < > denotes the group generated by the elements in the bracket.

Lemma 1.4.

$$c: \operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_{\sigma}}) \simeq H^2(\mathfrak{M}_{\mathcal{C}_{\sigma}}, \mathbb{Z}),$$

where c maps any line bundle \mathfrak{L} to its first Chern class $c_1(\mathfrak{L})$.

In particular,

$$H^2(\mathfrak{M}_{\mathcal{C}_{\sigma}},\mathbb{Z})\simeq\mathbb{Z}.$$

The first Chern class of the ample generator of $\text{Pic}(\mathfrak{M}_{\mathcal{C}_g})$ is called the *positive* generator of $H^2(\mathfrak{M}_{\mathcal{C}_g}, \mathbb{Z})$.

Proof. Consider the following exact sequence of abelian groups:

$$0 \to \mathbb{Z} \to \mathbb{C} \xrightarrow{f} \mathbb{C}^* \to 0,$$

where $f(x) = e^{2\pi i x}$. This gives rise to the following exact sequence of sheaves on $\mathfrak{M}_{\mathcal{C}_g}$ endowed with the analytic topology:

$$0\to \bar{\mathbb{Z}}\to \bar{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_g}}\to \bar{\mathcal{O}}^*_{\mathfrak{M}_{\mathcal{C}_g}}\to 0,$$

where $\bar{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_g}}$ is the sheaf of holomorphic functions on $\mathfrak{M}_{\mathcal{C}_g}$, $\bar{\mathcal{O}}^*_{\mathfrak{M}_{\mathcal{C}_g}}$ is the sheaf of invertible elements of $\bar{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_g}}$ and $\bar{\mathbb{Z}}$ is the constant sheaf corresponding to the abelian group \mathbb{Z} .

The above sequence, of course, induces the following long exact sequence in cohomology:

$$\cdots \to H^1(\mathfrak{M}_{\mathcal{C}_g}, \bar{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_g}}) \to H^1(\mathfrak{M}_{\mathcal{C}_g}, \bar{\mathcal{O}}^*_{\mathfrak{M}_{\mathcal{C}_g}}) \xrightarrow{\bar{c}} H^2(\mathfrak{M}_{\mathcal{C}_g}, \mathbb{Z})$$
$$\to H^2(\mathfrak{M}_{\mathcal{C}_g}, \bar{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_g}}) \to \cdots .$$

First of all,

$$\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_g}) \simeq H^1(\mathfrak{M}_{\mathcal{C}_g}, \mathcal{O}^*_{\mathfrak{M}_{\mathcal{C}_g}}), \tag{1}$$

where $\mathcal{O}_{\mathfrak{M}_{\mathcal{C}_g}}$ is the sheaf of algebraic functions on $\mathfrak{M}_{\mathcal{C}_g}$ and $\mathcal{O}^*_{\mathfrak{M}_{\mathcal{C}_g}}$ is the subsheaf of invertible elements of $\mathcal{O}_{\mathfrak{M}_{\mathcal{C}_g}}$.

Moreover, by GAGA, $\mathfrak{M}_{\mathcal{C}_g}^{\circ}$ being a projective variety,

$$H^{1}(\mathfrak{M}_{\mathcal{C}_{g}}, \mathcal{O}_{\mathfrak{M}_{\mathcal{C}_{g}}}^{*}) \simeq H^{1}(\mathfrak{M}_{\mathcal{C}_{g}}, \bar{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}}^{*}),$$
(2)

and also, for any $p \ge 0$,

$$H^{p}(\mathfrak{M}_{\mathcal{C}_{g}}, \mathcal{O}_{\mathfrak{M}_{\mathcal{C}_{g}}}) \simeq H^{p}(\mathfrak{M}_{\mathcal{C}_{g}}, \bar{\mathcal{O}}_{\mathfrak{M}_{\mathcal{C}_{g}}}).$$
(3)

By Kumar-Narasimhan [KN, Theorem 2.8], $H^i(\mathfrak{M}_{\mathcal{C}_g}, \mathcal{O}_{\mathfrak{M}_{\mathcal{C}_g}}) = 0$ for i > 0. Hence, under the identification (1), by (2)–(3) and the above long exact cohomology sequence,

$$\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_{\sigma}}) \xrightarrow{\sim c} H^2(\mathfrak{M}_{\mathcal{C}_{\sigma}}, \mathbb{Z}),$$

where c is the map \bar{c} under the above identifications. Moreover, as is well known, c is the first Chern class map.

Let us fix a maximal compact subgroup *K* of *G*. Denote the Riemann surface with *g* handles, considered only as a topological manifold, by C_g . Thus, the underlying topological manifold of C_g is C_g . Define $M_g(G) := \varphi^{-1}(1)/\text{Ad}K$, where $\varphi :$ $K^{2g} \to K$ is the commutator map $\varphi(k_1, k_2, \ldots, k_{2g}) = [k_1, k_2][k_3, k_4] \cdots [k_{2g-1},$ $k_{2g}]$ and $\varphi^{-1}(1)/\text{Ad}K$ refers to the quotient of $\varphi^{-1}(1)$ by *K* under the diagonal adjoint action of *K* on K^{2g} .

Now, we recall the following fundamental result due to Narasimhan-Seshadri [NS] for vector bundles and extended for an arbitrary G by Ramanathan [R₁, R₂].

Consider the standard generators $a_1, b_1, a_2, b_2, \ldots, a_g, b_g$ of $\pi_1(\mathcal{C}_g)$ (cf. [N, §14]). Then, we have the presentation:

$$\pi_1(\mathcal{C}_g) = F[a_1, \dots, a_g, b_1, \dots, b_g] / < [a_1, b_1] \cdots [a_g, b_g] > g$$

where $F[a_1, \ldots, a_g, b_1, \ldots, b_g]$ denotes the free group generated by a_1, \ldots, a_g , b_1, \ldots, b_g and $< [a_1, b_1] \cdots [a_g, b_g] >$ denotes the normal subgroup generated by the single element $[a_1, b_1] \cdots [a_g, b_g]$.

Theorem 1.5. Having chosen the standard generators $a_1, b_1, a_2, b_2, \ldots, a_g, b_g$ of $\pi_1(C_g)$, there exists a canonical isomorphism of real analytic spaces:

$$\theta_{\mathcal{C}_g}(G): M_g(G) \simeq \mathfrak{M}_{\mathcal{C}_g}(G).$$

In the sequel, we will often make this identification. Define a class $\alpha \in H^2(Mg(G), \mathbb{Z})$ to be *positive* if it is a positive multiple of the positive generator of $H^2(\mathfrak{M}_{\mathcal{C}_g}(G), \mathbb{Z})$ under the identification $\theta_{\mathcal{C}_g}(G)^*$. Then, for any fixed g, the positivity of α does not depend upon the choice of the algebraic curve \mathcal{C}_g . To prove this, follow the argument as in the proof of Proposition 1.8 to reduce it to the case of G = SL(2). In this case it follow from the identity (11) of the proof of Lemma 4.1.

Proposition 1.6. For any $V \in \mathcal{R}(G)$, $c(\Theta_V(\mathcal{C}_g, G))$, under the above identification $\theta_{\mathcal{C}_g}(G)$, does not depend on the choice of the projective variety structure \mathcal{C}_g on the Riemann surface C_g for any fixed g.

Proof. Let $\rho : G \to SL(V)$ be the given representation. By taking a *K*-invariant Hermitian form on *V* we get $\rho(K) \subset SU(n)$, where $n = \dim V$. For any principal *G*-bundle *E* on C_g , let $E_{SL(V)}$ be the principal SL(V)-bundle over C_g

obtained by the extension of the structure group via ρ . Then, if *E* is semistable, so is $E_{SL(V)}$, giving rise to a variety morphism $\hat{\rho} : \mathfrak{M}_{\mathcal{C}_g}(G) \to \mathfrak{M}_{\mathcal{C}_g}(SL(V))$ (cf. [RR, Theorem 3.18]). Hence, we get the commutative diagram:

$$\mathfrak{M}_{\mathcal{C}_g}(G) \xrightarrow{\hat{\rho}} \mathfrak{M}_{\mathcal{C}_g}(SL(V)) \uparrow \qquad \uparrow \qquad (\mathsf{D}_1) M_g(G) \xrightarrow{\bar{\rho}} M_g(SL(V)),$$

where $\bar{\rho}$ is induced from the commutative diagram:

$$\begin{array}{ccc} K^{2g} & \stackrel{\varphi}{\longrightarrow} & K \\ & \downarrow^{\rho^{\times 2g}} & \qquad \downarrow^{\rho} \\ SU(n)^{2g} & \stackrel{\varphi}{\longrightarrow} & SU(n). \end{array}$$

The diagram (D₁) induces the following commutative diagram in cohomology:

$$\begin{array}{cccc} H^{2}(\mathfrak{M}_{\mathcal{C}_{g}}(SL(V)),\mathbb{Z}) & \stackrel{\hat{\rho}^{*}}{\longrightarrow} & H^{2}(\mathfrak{M}_{\mathcal{C}_{g}}(G),\mathbb{Z}) \\ & & & \downarrow^{\parallel} & & \downarrow^{\parallel} & & (\mathbb{D}_{2}) \\ H^{2}(M_{g}(SL(V)),\mathbb{Z}) & \stackrel{}{\longrightarrow} & H^{2}(M_{g}(G),\mathbb{Z}). \end{array}$$

By the construction of the Θ -bundle, $\hat{\rho}^*(\Theta_V(\mathcal{C}_g, SL(V))) = \Theta_V(\mathcal{C}_g, G)$, where $\hat{\rho}^*$ also denotes the pullback of line bundles and V is thought of as the standard representation of SL(V).

Thus, using the functoriality of the Chern class, we get

$$\hat{\rho}^*(c(\Theta_V(\mathcal{C}_g, SL(V)))) = c(\Theta_V(\mathcal{C}_g, G)).$$
(1)

By Drezet-Narasimhan [DN], $c(\Theta_V(\mathcal{C}_g, SL(V)))$ is the unique positive generator of $H^2(\mathfrak{M}_{\mathcal{C}_g}(SL(V)), \mathbb{Z})$ and thus is independent of the choice of \mathcal{C}_g under the identification $\theta_{\mathcal{C}_g}(SL(V))^*$. Consequently, by (1) and the above commutative diagram (D₂), $c(\Theta_V(\mathcal{C}_g, G))$ is independent of the choice of \mathcal{C}_g .

From now on we will denote the cohomology class $c(\Theta_V(\mathcal{C}_g, G))$ in $H^2(M_g(G), \mathbb{Z})$, under the identification $\theta_{\mathcal{C}_g}(G)^*$, by $c(\Theta_V(g, G))$.

Consider the embedding

$$i_g = i_g(G) : M_g(G) \hookrightarrow M_{g+1}(G)$$

induced by the inclusion of $K^{2g} \to K^{2g+2}$ via $(k_1, \ldots, k_{2g}) \mapsto (k_1, \ldots, k_{2g}, 1, 1)$.

By virtue of the map i_g , we will identify $M_g(G)$ as a subspace of $M_{g+1}(G)$. In particular, we get the following induced sequence of maps in the second cohomology.

$$H^2(M_1(G),\mathbb{Z}) \stackrel{i_1^*}{\leftarrow} H^2(M_2(G),\mathbb{Z}) \stackrel{i_2^*}{\leftarrow} H^2(M_3(G),\mathbb{Z}) \stackrel{i_3^*}{\leftarrow} \cdots$$

Proposition 1.7. For G = SL(2), the maps $i_g^* : H^2(M_{g+1}(G), \mathbb{Z}) \to H^2(M_g(G), \mathbb{Z})$ take the positive generator of $H^2(M_{g+1}(SL(2)), \mathbb{Z})$ to the positive generator of $H^2(M_g(SL(2)), \mathbb{Z})$. In particular, i_g^* are isomorphisms for any $g \ge 1$.

We shall prove this proposition in Section 4.

Proposition 1.8. For any $V \in \mathcal{R}(G)$ and any $g \ge 1$, $i_g^*(c(\Theta_V(g+1, G))) = c(\Theta_V(g, G))$.

Proof. We first claim that it suffices to prove the above proposition for G = SL(n) and the standard *n*-dimensional representation V of SL(n).

Let $\rho : G \to SL(V)$ be the given representation. Consider the following commutative diagram:

$$\begin{array}{ccc} M_g(G) & \stackrel{i_g}{\hookrightarrow} & M_{g+1}(G) \\ \bar{\rho} \downarrow & & \downarrow \bar{\rho} \\ M_g(SL(V)) \stackrel{i_g}{\hookrightarrow} & M_{g+1}(SL(V)), \end{array}$$

where $\bar{\rho}$ is the map defined in the proof of Proposition 1.6. It induces the commutative diagram:

$$H^{2}(M_{g}(G),\mathbb{Z}) \stackrel{i_{g}^{*}}{\leftarrow} H^{2}(M_{g+1}(G),\mathbb{Z})$$
$$\bar{\rho}^{*} \uparrow \qquad \bar{\rho}^{*} \uparrow$$
$$H^{2}(M_{g}(SL(V)),\mathbb{Z}) \stackrel{i_{g}^{*}}{\leftarrow} H^{2}(M_{g+1}(SL(V)),\mathbb{Z}).$$

Therefore, using the commutativity of the above diagram and equation (1) of Proposition 1.6, supposing that $i_g^*(c(\Theta_V(g+1, SL(V)))) = c(\Theta_V(g, SL(V)))$, we get $i_g^*(c(\Theta_V(g+1, G))) = c(\Theta_V(g, G))$. Hence, Proposition 1.8 is established for any *G* provided we assume its validity for G = SL(V) and its standard representation in *V*.

We further reduce the proposition from SL(n) to SL(2). As in the proof of Proposition 1.6, consider the mappings

$$\bar{\rho}: M_g(SL(2)) \to M_g(SL(n)), \text{ and}$$

 $\hat{\rho}: \mathfrak{M}_{\mathcal{C}_{g}}(SL(2)) \to \mathfrak{M}_{\mathcal{C}_{g}}(SL(n))$

induced by the inclusions

$$SU(2) \rightarrow SU(n)$$
 and $SL(2) \rightarrow SL(n)$,

given by $m \mapsto diag(m, 1, \dots, 1)$.

The maps $\bar{\rho}$ and $\hat{\rho}$ induce the commutative diagram:

$$\begin{array}{ccc} H^2(M_g(SL(n)), \mathbb{Z}) & \stackrel{\bar{\rho}^*}{\to} & H^2(M_g(SL(2)), \mathbb{Z}) \\ & \uparrow & || & & \uparrow & || \\ H^2(\mathfrak{M}_{\mathcal{C}_g}(SL(n)), \mathbb{Z}) & \stackrel{\bar{\rho}^*}{\to} & H^2(\mathfrak{M}_{\mathcal{C}_g}(SL(2)), \mathbb{Z}). \end{array}$$

By the construction of the Θ -bundle, $\hat{\rho}^* (\Theta_V(\mathcal{C}_g, SL(n))) = \Theta_{V_2}(\mathcal{C}_g, SL(2))$, where V_2 is the standard 2-dimensional representation of SL(2).

Thus, using the functoriality of the Chern class, we get

$$\hat{\rho}^*(c(\Theta_V(\mathcal{C}_g, SL(n)))) = c(\Theta_{V_2}(\mathcal{C}_g, SL(2))).$$
(1)

Using one more time the result of Drezet-Narasimhan that $c(\Theta_V(\mathcal{C}_g, SL(n)))$ is the unique positive generator of $H^2(\mathfrak{M}_{\mathcal{C}_g}(SL(n)))$ for any *n* (cf. Proof of Proposition 1.6), we see that $\hat{\rho}^*$ is surjective and hence an isomorphism by Lemma 1.4.

Consider the following commutative diagram:

$$\begin{split} H^2(M_g(SL(n)),\mathbb{Z}) & \stackrel{i_g^*}{\leftarrow} H^2(M_{g+1}(SL(n)),\mathbb{Z}) \\ \bar{\rho}^* \downarrow & \bar{\rho}^* \downarrow \\ H^2(M_g(SL(2)),\mathbb{Z}) & \stackrel{i_g^*}{\leftarrow} H^2(M_{g+1}(SL(2)),\mathbb{Z}). \end{split}$$

Suppose that the proposition is true for G = SL(2) and the standard representation V_2 , i.e.,

$$i_g^*(c(\Theta_{V_2}(g+1, SL(2)))) = c(\Theta_{V_2}(g, SL(2))).$$
 (2)

Then, using the commutativity of the above diagram and (1) together with the fact that $\bar{\rho}^*$ is an isomorphism, we get that

$$i_{o}^{*}(c(\Theta_{V}(g+1, SL(n)))) = c(\Theta_{V}(g, SL(n))).$$

Finally, (2) follows from the result of Drezet-Narasimhan cited above and Proposition 1.7. Hence the proposition is established for any G (once we prove Proposition 1.7).

Proposition 1.9. For g = 1, Theorem 1.3 is true.

The proof of this proposition will be given in Section 3.

Proof of Theorem 1.3. Denote the subgroup $< \Theta_V(\mathcal{C}_g, G), V \in \mathcal{R}(G) >$ of $\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_g}(G))$ by $\operatorname{Pic}^{\Theta}(\mathfrak{M}_{\mathcal{C}_g}(G))$.

Set $H^2_{\Theta}(M_g(G)) := c(\operatorname{Pic}^{\Theta}(\mathfrak{M}_{\mathcal{C}_g}(G)))$. By virtue of Proposition 1.6, this is well defined, i.e., $H^2_{\Theta}(M_g(G))$ does not depend upon the choice of the projective variety structure \mathcal{C}_g on \mathcal{C}_g . Moreover, by Proposition 1.8, $i_g^*(H^2_{\Theta}(M_{g+1}(G))) = H^2_{\Theta}(M_g(G))$.

Thus, we get the following commutative diagram, where the upward arrows are inclusions and the maps in the bottom horizontal sequence are induced from the maps i_{e}^{*} .

$$\begin{array}{c} H^2(M_1(G)) \stackrel{i_1^*}{\leftarrow} H^2(M_2(G)) \stackrel{i_2^*}{\leftarrow} H^2(M_3(G)) \stackrel{i_3^*}{\leftarrow} \cdots \\ \uparrow & \uparrow & \uparrow \\ H^2_{\Theta}(M_1(G)) \leftarrow H^2_{\Theta}(M_2(G)) \leftarrow H^2_{\Theta}(M_3(G)) \leftarrow \cdots . \end{array}$$

By Proposition 1.9 and Lemma 1.4, $H^2(M_1(G)) = H^2_{\Theta}(M_1(G))$. Then, i_1^* is surjective and hence an isomorphism (by using Lemma 1.4 again). Thus, by the commutativity of the above diagram, the inclusion $H^2_{\Theta}(M_2(G)) \hookrightarrow H^2(M_2(G))$ is an isomorphism. Arguing the same way, we get that $H^2(M_g(G)) = H^2_{\Theta}(M_g(G))$ for all g. This completes the proof of the theorem by virtue of the isomorphism c of Lemma 1.4.

2. Comparison of the Picard groups of $\mathfrak{M}_{\mathcal{C}_g}$ and the infinite Grassmannian

As earlier, let *G* be a connected, simply-connected, simple affine algebraic group over \mathbb{C} . We fix a Borel subgroup *B* of *G* and a maximal torus $T \subset B$. Let \mathfrak{h} (resp. \mathfrak{b}) be the Lie algebra of *T* (resp. *B*). Let $\Delta_+ \subset \mathfrak{h}^*$ be the set of positive roots (i.e., the roots of \mathfrak{b} with respect to \mathfrak{h}) and let $\{\omega_i\}_{1 \leq i \leq k} \subset \mathfrak{h}^*$ be the set of fundamental weights, where *k* is the rank of *G*. As earlier, $\mathcal{R}(G)$ denotes the set of isomorphism classes of all the finite dimensional algebraic representations of *G*. This is a semigroup under the direct sum of two representations. Let R(G) denote the associated Grothendieck group. Then, R(G) is a ring, where the product is induced from the tensor product of two representations. Then, the fundamental representations $\{V(\omega_i)\}_{1 \leq i \leq k}$ generate the representation ring R(G) as a ring [A].

Let *X* be the infinite Grassmannian associated to the affine Kac-Moody group \mathcal{G} corresponding to *G*, i.e., $X := \mathcal{G}/\mathcal{P}$, where \mathcal{P} is the standard maximal parabolic subgroup of \mathcal{G} (cf. [K₂, §13.2.12]; in loc cit., *X* is denoted by $\mathcal{Y} = \mathcal{X}^Y$). It is known that Pic(*X*) is isomorphic to \mathbb{Z} and is generated by the homogenous line bundle \mathcal{L}_{χ_0} (cf. [K₂, Proposition 13.2.19]).

We recall the following definition from [D,§2].

Definition 2.1. Let \mathfrak{g}_1 and \mathfrak{g}_2 be two (finite dimensional) complex simple Lie algebras and $\varphi : \mathfrak{g}_1 \to \mathfrak{g}_2$ be a Lie algebra homomorphism. There exists a unique number $m_{\varphi} \in \mathbb{C}$, called the Dynkin index of the homomorphism φ , satisfying

$$\langle \varphi(x), \varphi(y) \rangle = m_{\varphi} \langle x, y \rangle, \text{ for all } x, y \in \mathfrak{g}_1,$$

where \langle, \rangle is the Killing form on \mathfrak{g}_1 (and \mathfrak{g}_2) normalized so that $\langle \theta, \theta \rangle = 2$ for the highest root θ .

For a Lie algebra \mathfrak{g}_1 as above and a finite dimensional representation V of \mathfrak{g}_1 , by the Dynkin index m_V of V, we mean the Dynkin index of the Lie algebra homomorphism $\rho : \mathfrak{g}_1 \to \mathfrak{sl}(V)$, where $\mathfrak{sl}(V)$ is the Lie algebra of trace 0 endomorphisms of V.

Then, for any two finite dimensional representations V and W of g_1 , we have, by [D, Chap. 1, §2] or [KN, Lemma 4.5],

$$m_{V\otimes W} = m_V \dim W + m_W \dim V. \tag{1}$$

We recall the following main result of Kumar-Narasimhan [KN, Theorem 2.4]. In loc cit., it is proved under the assumption $g \ge 2$. But it remains true for g = 1 by virtue of Theorem 1.1 and the following identity (1) which is proved in [KNR] for any $g \ge 0$.

Theorem 2.2. There exists a 'natural' injective group homomorphism

 β : Pic($\mathfrak{M}_{\mathcal{C}_{\varphi}}(G)$) \hookrightarrow Pic(X).

Moreover, by [KNR, Theorem 5.4] (see also [Fa]), for any $V \in \mathcal{R}(G)$,

$$\beta(\Theta_V(\mathcal{C}_g, G)) = \mathfrak{L}_{\chi_0}^{\otimes m_V},\tag{1}$$

where V is thought of as a module for \mathfrak{g} under differentiation and m_V is its Dynkin index.

We also recall the following result from [D, Table 5], [KN, Proposition 4.7], or [LS, §2]. We follow the indexing convention as in [B, Planche I-IX].

Proposition 2.3. For any simple Lie algebra \mathfrak{g} , there exists a (not unique in general) fundamental weight ω_d such that $m_{V(\omega_d)}$ divides each of $\{m_{V(\omega_i)}\}_{1 \le i \le k}$. Thus, by (1) of Definition 2.1, $m_{V(\omega_d)}$ divides m_V for any $V \in \mathcal{R}(G)$.

The following table gives the list of all such ω_d 's and the corresponding Dynkin index $m_{V(\omega_d)}$.

For B_3 , ω_3 also satisfies $m_{V(\omega_3)} = 2$; for D_4 , ω_3 and ω_4 both have $m_{V(\omega_3)} = m_{V(\omega_4)} = 2$.

Let θ be the highest root of G. Observe that, for any G, $m_{V(\omega_d)}$ is the least common multiple of the coefficients of the coroot θ^{\vee} written in terms of the simple coroots. We shall denote $m_{V(\omega_d)}$ by m_G .

Combining the above result with Theorem 1.3, we get the following.

Theorem 2.4. For any C_g with $g \ge 1$ and G as in Section 1, the Picard group $\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_g}(G))$ is freely generated by the Θ -bundle $\Theta_{V(\omega_d)}(\mathcal{C}_g, G)$, where ω_d is any fundamental weight as in the above proposition.

In particular,

Im(
$$\beta$$
) is freely generated by $\mathfrak{L}_{\chi_0}^{\otimes m_G}$. (1)

Proof. By Theorem 1.3,

 $\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_g}(G)) = < \Theta_V(\mathcal{C}_g, G), V \in \mathcal{R}(G) > .$

Thus, by Theorem 2.2 and Proposition 2.3,

$$\operatorname{Im}(\beta) = \langle \mathfrak{L}_{\chi_0}^{\otimes m_V}, V \in \mathcal{R}(G) \rangle = \langle \mathfrak{L}_{\chi_0}^{\otimes m_G} \rangle \rangle.$$

This proves (1).

Since β is injective, by the above description of Im(β), $\Theta_{V(\omega_d)}(\mathcal{C}_g, G)$ freely generates Pic($\mathfrak{M}_{\mathcal{C}_g}(G)$), proving the theorem.

Following the same argument as in [So, §4], using Theorem 2.4 and Proposition 2.3, we get the following corollary for genus $g \ge 2$. For genus g = 1, use Theorems 3.1 and 3.3 together with [BR, Theorem 7.1.d]. This corollary is due to [BLS], [So].

Corollary 2.5. Let G be any group and C_g be any curve as in Section 1. Then, the moduli space $\mathfrak{M}_{C_g}(G)$ is locally factorial if and only if G is of type A_k $(k \ge 1)$ or C_k $(k \ge 2)$.

3. Proof of Proposition 1.9

Let *G* be as in the beginning of Section 1. In this section, we identify $\mathfrak{M}_{\mathcal{C}_1}(G)$ with a weighted projective space and show that the generator of $\operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_1}(G))$ is $\Theta_{V(\omega_d)}(\mathcal{C}_1, G)$ as claimed.

We recall the following theorem due independently to Laszlo [La, Theorem 4.16] and Friedman-Morgan-Witten [FMW, §2].

Theorem 3.1. Let C_1 be a smooth, irreducible projective curve of genus 1. Then, there is a natural variety isomorphim between the moduli space $\mathfrak{M}_{C_1}(G)$ and $(C_1 \otimes_{\mathbb{Z}} Q^{\vee})/W$, where Q^{\vee} is the coroot lattice of G and W is its Weyl group acting canonically on Q^{\vee} (and acting trivially on C_1). **Definition 3.2.** Let $N = (n_0, ..., n_k)$ be a k + 1-tuple of positive integers. Consider the polynomial ring $\mathbb{C}[z_0, ..., z_k]$ graded by deg $z_i = n_i$. The scheme $Proj(\mathbb{C}[z_0, ..., z_k])$ is said to be the weighted projective space of type N and we denote it by $\mathbb{P}(N)$.

Consider the standard (nonweighted) projective space $\mathbb{P}^k := Proj$ $(\mathbb{C}[w_0, \ldots, w_k])$, where each deg $w_i = 1$. Then, the graded algebra homomorphism $\mathbb{C}[z_0, \ldots, z_k] \to \mathbb{C}[w_0, \ldots, w_k], z_i \mapsto w_i^{n_i}$, induces a morphism $\delta : \mathbb{P}^k \to \mathbb{P}(N)$.

The following theorem is due to Looijenga [Lo]. His proof had a gap; a complete proof of a more general result is outlined by Bernshtein-Shvartsman [BS].

Theorem 3.3. Let C_1 be an elliptic curve. Then, the variety $(C_1 \otimes_{\mathbb{Z}} Q^{\vee})/W$ is the weighted projective space of type $(1, a_1^{\vee}, a_2^{\vee}, \ldots, a_k^{\vee})$, where a_i^{\vee} are the coefficients of the coroot θ^{\vee} written in terms of the simple coroots $\{\alpha_i^{\vee}\}$ (and, as earlier, k is the rank of G).

The following table lists the weighted projective space isomorphic to $\mathfrak{M}_{\mathcal{C}_1}(G)$ corresponding to any G. In this table the entries beyond 1 are precisely the numbers $(a_1^{\vee}, a_2^{\vee}, \ldots, a_k^{\vee})$ following the convention as in Bourbaki [B, Planche I-IX].

Type of G Type of the weighted projective space $A_k (k \ge 1), \ C_k \ (k \ge 2)$ $(1, 1, 1, \ldots, 1)$ $B_k \ (k > 3)$ $(1, 1, 2, \ldots, 2, 1)$ $D_k \ (k \ge 4)$ $(1, 1, 2, \ldots, 2, 1, 1)$ G_2 (1, 1, 2) F_4 (1, 2, 3, 2, 1) E_6 (1, 1, 2, 2, 3, 2, 1) E_7 (1, 2, 2, 3, 4, 3, 2, 1)(1, 2, 3, 4, 6, 5, 4, 3, 2). E_8

We recall the following result from the theory of weighted projective spaces (see, e.g., Beltrametti-Robbiano [BR, Lemma 3B.2.c and Theorem 7.1.c]).

Theorem 3.4. Let $N = (n_0, ..., n_k)$ and assume $gcd\{n_0, ..., n_k\} = 1$. Then, we have the following.

(a) $\operatorname{Pic}(\mathbb{P}(N)) \simeq \mathbb{Z}$. In fact, the morphism δ of Definition 3.2 induces an injective map $\delta^* : \operatorname{Pic}(\mathbb{P}(N)) \to \operatorname{Pic}(\mathbb{P}^k)$.

Moreover, the ample generator of $\operatorname{Pic}(\mathbb{P}(N))$ maps to $\mathcal{O}_{\mathbb{P}^k}(s)$ under δ^* , where s is the least common multiple of $\{n_0, \ldots, n_k\}$. We denote this ample generator by $\mathcal{O}_{\mathbb{P}(N)}(s)$.

(b) For any $d \ge 0$,

$$H^0(\mathbb{P}(N), \mathcal{O}_{\mathbb{P}(N)}(s)^{\otimes d}) = \mathbb{C}[z_0, \ldots, z_k]_{ds},$$

where $\mathbb{C}[z_0, \ldots, z_k]_{ds}$ denotes the subspace of $\mathbb{C}[z_0, \ldots, z_k]$ consisting of homogeneous elements of degree ds.

Using Theorems 3.1, 3.3 and 3.4 and the fact that the least common multiple of the numbers $\{1, a_1^{\vee}, a_2^{\vee}, \dots, a_k^{\vee}\}$ for each *G* is the Dynkin index $m_G = m_{V(\omega_d)}$, we have

$$\Theta_{V(\omega_d)}(\mathcal{C}_1, G) = \mathcal{O}_{\mathbb{P}(1, a_1^{\vee}, a_2^{\vee}, \dots, a_k^{\vee})}(m_G)^{\otimes p} \tag{*}$$

for some positive integer p. The value of m_G is given in Proposition 2.3 for any G.

We recall the following basic result, the first part of which is due independently to Beauville-Laszlo [BL], Faltings [Fa] and Kumar-Narasimhan-Ramanathan [KNR]. The second part of the theorem as in (1) is the celebrated Verlinde formula for the dimension of the space of conformal blocks essentially due to Tsuchiya-Ueno-Yamada [TUY] (together with works [Fa, Appendix] and [T₁]).

Theorem 3.5. For any ample line bundle $\mathfrak{L} \in \operatorname{Pic}(\mathfrak{M}_{\mathcal{C}_g}(G))$ and $\ell \geq 0$, there is an isomorphism (canonical up to scalar multiples):

$$H^0(\mathfrak{M}_{\mathcal{C}_g}(G),\mathfrak{L}^{\otimes \ell})\simeq L(\mathcal{C}_g,\ell m_{\mathfrak{L}}),$$

where $L(C_g, \ell)$ is the space of conformal blocks corresponding to the one marked point on C_g and trivial representation attached to it with central charge ℓ (cf., e.g., [TUY] for the definition of conformal blocks) and $m_{\mathfrak{L}}$ is the positive integer such that $\beta(\mathfrak{L}) = \mathfrak{L}_{\chi_0}^{\otimes m_{\mathfrak{L}}}$, β being the map as in Theorem 2.2.

Moreover, the dimension $F_g(\ell)$ of the space $L(C_g, \ell)$ is given by the following Verlinde formula:

$$F_g(\ell) = t_\ell^{g-1} \sum_{\mu \in P_\ell} \prod_{\alpha \in \Delta_+} \left| 2\sin\left(\frac{\pi}{\ell+h} < \alpha, \mu+\rho > \right) \right|^{2-2g}, \tag{1}$$

where

- < , >:= Killing form on \mathfrak{h}^* normalized so that < θ , θ >= 2 for the highest root θ ,
- $\begin{aligned} \Delta_{+} &:= the \ set \ of \ positive \ roots, \\ P_{\ell} &:= \{ dominant \ integral \ weights \ \ \mu | < \mu, \theta > \leq \ell \}, \\ \rho &:= \ half \ sum \ of \ positive \ roots, \\ h &:= < \rho, \theta > +1, \ the \ dual \ Coxeter \ number, \\ t_{\ell} &:= (\ell + h)^{rank \ G} (\# P / Q_{lg}), \end{aligned}$

and P is the weight lattice and Q_{lg} is the sublattice of the root lattice Q generated by the long roots.

In fact, we only need to use the above theorem for the case of genus g = 1. For g = 1, the Verlinde formula (1) clearly reduces to the identity:

$$F_1(\ell) = \# P_\ell.$$

Of course,

$$P_{\ell} = \{(n_1, \ldots, n_k) \in (\mathbb{Z}_+)^k : \sum_{i=1}^k n_i a_i^{\vee} \le \ell\}.$$

Proof of Proposition 1.9. Using the specialization of Theorem 3.5 to g = 1, we see that

dim
$$H^0(\mathfrak{M}_{\mathcal{C}_1}(G), \Theta_{V(\omega_d)}(\mathcal{C}_1, G)) = \#P_{m_G}.$$

On the other hand, by Theorems 3.1, 3.3 and 3.4(b),

 $\dim H^0(\mathfrak{M}_{\mathcal{C}_1}(G), \mathcal{O}_{\mathbb{P}(1,a_1^{\vee},a_2^{\vee},\ldots,a_k^{\vee})}(m_G)^{\otimes p}) = \dim(\mathbb{C}[z_0,\ldots,z_k]_{pm_G}) = \#P_{pm_G}.$

Hence, in the equation (*) following Theorem 3.4, p = 1 and $\Theta_{V(\omega_d)}(C_1, G)$ is the (ample) generator of $\text{Pic}(\mathfrak{M}_{C_1}(G))$. This proves Proposition 1.9.

4. Proof of Proposition 1.7

In this section, we take G = SL(2) and abbreviate $\mathfrak{M}_{\mathcal{C}_g}(SL(2))$ by $\mathfrak{M}_{\mathcal{C}_g}$ etc. Let $\mathfrak{M}_{\mathcal{C}_g}^{\mathrm{red}}$ be the closed subvariety of the moduli space $\mathfrak{M}_{\mathcal{C}_g}$ consisting of decomposable bundles on \mathcal{C}_g (which are semistable of rank-2 with trivial determinant). Let $\mathfrak{J}_{\mathcal{C}_g}$ be the Jacobian of \mathcal{C}_g . Recall that the underlying set of the variety $\mathfrak{J}_{\mathcal{C}_g}$ consists of all the isomorphism classes of line bundles on \mathcal{C}_g with trivial first Chern class. Then, there is a surjective morphism $\xi = \xi_{\mathcal{C}_g} : \mathfrak{J}_{\mathcal{C}_g} \to \mathfrak{M}_{\mathcal{C}_g}^{\mathrm{red}} \subset \mathfrak{M}_{\mathcal{C}_g}$, taking $\mathfrak{L} \mapsto \mathfrak{L} \oplus \mathfrak{L}^{-1}$. Moreover, $\xi^{-1}(\xi(\mathfrak{L})) = {\mathfrak{L}, \mathfrak{L}^{-1}}$. The Jacobian $\mathfrak{J}_{\mathcal{C}_g}$ admits the involution τ taking $\mathfrak{L} \mapsto \mathfrak{L}^{-1}$.

Let *T* be a maximal torus of the maximal compact subgroup SU(2) of SL(2), which we take to be the diagonal subgroup of SU(2). Similar to the identification θ_{C_g} as in Theorem 1.5, setting $J_g := T^{2g}$, there is an isomorphism of real analytic spaces $\bar{\theta}_{C_g} : J_g \to \mathfrak{J}_{C_g}$ making the following diagram commutative:

$$\begin{array}{cccc}
 & J_g \xrightarrow{\bar{\theta}_{C_g}} \mathfrak{J}_{C_g} \\
f_g \downarrow & \downarrow \xi_{C_g} \\
 & M_g \xrightarrow{\theta_{C_g}} \mathfrak{M}_{C_g},
\end{array}$$
(E)

where $f_g: J_g \to M_g$ is induced from the standard inclusion $T^{2g} \subset SU(2)^{2g}$. We will explicitly describe the isomorphism $\bar{\theta}_{C_g}$ in the proof of the following lemma.

Recall the definition of the map $i_g : M_g \to M_{g+1}$ from Section 1 and let $r_g : J_g \to J_{g+1}$ be the map $(t_1, \ldots, t_{2g}) \mapsto (t_1, \ldots, t_{2g}, 1, 1)$. Then, we have the

following commutative diagram:

$$J_{g} \xrightarrow{J_{g}} M_{g}$$

$$r_{g} \downarrow \qquad \downarrow i_{g}$$

$$J_{g+1} \xrightarrow{f_{g+1}} M_{g+1}.$$
(F)

Let x_{g+1} denote the positive generator of $H^2(M_{g+1}, \mathbb{Z})$. Then, by Lemma 1.4 and Theorem 1.5,

$$i_g^*(x_{g+1}) = d_g x_g,$$

for some integer d_g . We will prove that $d_g = 1$, which will of course prove Proposition 1.7. Set $y_g := f_g^*(x_g)$; $f_g^* : H^2(M_g, \mathbb{Z}) \to H^2(J_g, \mathbb{Z})$ being the map in cohomology induced from f_g .

Lemma 4.1. $y_g \neq 0$ and $r_g^*(y_{g+1}) = y_g$ as elements of $H^2(J_g, \mathbb{Z})$.

Proof. There exists a unique universal line bundle \mathcal{P} , called the *Poincaré bundle* on $\mathcal{C}_g \times \mathfrak{J}_{\mathcal{C}_g}$ such that, for each $\mathfrak{L} \in \mathfrak{J}_{\mathcal{C}_g}$, \mathcal{P} restricts to the line bundle \mathfrak{L} on $\mathcal{C}_g \times \mathfrak{L}$, and \mathcal{P} restricted to $x_o \times \mathfrak{J}_{\mathcal{C}_g}$ is trivial for a fixed base point $x_o \in \mathcal{C}_g$ (cf. [ACGH, Chap. IV, §2]).

Let \mathcal{F} be the rank-2 vector bundle $\mathcal{P} \oplus \hat{\tau}^*(\mathcal{P})$ over the base space $\mathcal{C}_g \times \mathfrak{J}_{\mathcal{C}_g}$, and think of \mathcal{F} as a family of rank-2 bundles on \mathcal{C}_g parametrized by $\mathfrak{J}_{\mathcal{C}_g}$, where $\hat{\tau} : \mathcal{C}_g \times \mathfrak{J}_{\mathcal{C}_g} \to \mathcal{C}_g \times \mathfrak{J}_{\mathcal{C}_g}$ is the involution $I \times \tau$.

By Drezet-Narasimhan [DN], we have $x_g = c_1(\Theta_{V_2}(\mathcal{C}_g, SL(2)))$ for the standard representation V_2 of SL(2). Using the functoriality of Chern class,

$$\xi^*_{\mathcal{C}_a}(x_g) = c_1(\text{Det }\mathcal{F}),\tag{1}$$

where Det \mathcal{F} denotes the determinant line bundle over $\mathfrak{J}_{\mathcal{C}_g}$ associated to the family \mathcal{F} (cf. Definition 1.2). Recall that the fiber of Det \mathcal{F} at any $\mathfrak{L} \in \mathfrak{J}_{\mathcal{C}_g}$ is given by the expression

$$\operatorname{Det} \mathcal{F}_{|\mathfrak{L}} = \wedge^{top} \left(H^{0}(\mathcal{C}_{g}, \mathfrak{L} \oplus \mathfrak{L}^{-1})^{*} \right) \otimes \wedge^{top} \left(H^{1}(\mathcal{C}_{g}, \mathfrak{L} \oplus \mathfrak{L}^{-1}) \right) \\ = \wedge^{top} \left(H^{0}(\mathcal{C}_{g}, \mathfrak{L})^{*} \oplus H^{0}(\mathcal{C}_{g}, \mathfrak{L}^{-1})^{*} \right) \\ \otimes \wedge^{top} \left(H^{1}(\mathcal{C}_{g}, \mathfrak{L}) \oplus H^{1}(\mathcal{C}_{g}, \mathfrak{L}^{-1}) \right) \\ = \wedge^{top} \left(H^{0}(\mathcal{C}_{g}, \mathfrak{L})^{*} \right) \otimes \wedge^{top} \left(H^{0}(\mathcal{C}_{g}, \mathfrak{L}^{-1})^{*} \right) \otimes \wedge^{top} \left(H^{1}(\mathcal{C}_{g}, \mathfrak{L}) \right) \\ \otimes \wedge^{top} \left(H^{1}(\mathcal{C}_{g}, \mathfrak{L}^{-1}) \right) \\ = \left(\operatorname{Det} \mathcal{P} \right)_{|\mathfrak{L}} \otimes \left(\tau^{*}(\operatorname{Det} \mathcal{P}) \right)_{|\mathfrak{L}}.$$

$$(2)$$

Applying the Grothendieck-Riemann-Roch theorem (cf. [F, Example 15.2.8]) for the projection $C_g \times \mathfrak{J}_{C_g} \xrightarrow{\pi} \mathfrak{J}_{C_g}$ gives

$$ch(R\pi_*\mathcal{P}) = \pi_*(ch\,\mathcal{P}\cdot \mathrm{Td}\,T_\pi),\tag{3}$$

where ch is the Chern character and Td T_{π} denotes the Todd genus of the relative tangent bundle of $C_g \times \mathfrak{J}_{C_g}$ along the fibers of π . By the definition of Det \mathcal{P} and $R\pi_*\mathcal{P}$,

$$c_1(\operatorname{Det} \mathcal{P}) = -\operatorname{ch}(R\pi_*\mathcal{P})_{[2]},\tag{4}$$

where, for a cohomology class y, $y_{[n]}$ denotes the component of y in H^n . Since \mathcal{P} restricted to $x_o \times \mathfrak{J}_{\mathcal{C}_g}$ is trivial and for any $\mathfrak{L} \in \mathfrak{J}_{\mathcal{C}_g}$, \mathcal{P} restricts to the line bundle \mathfrak{L} on $\mathcal{C}_g \times \mathfrak{L}$ (with the trivial Chern class), we get

$$c_1(\mathcal{P}) \in H^1(\mathcal{C}_g) \otimes H^1(\mathfrak{J}_{\mathcal{C}_g}).$$
(5)

Thus, using (3)–(4),

$$-c_{1}(\text{Det }\mathcal{P}) = \pi_{*}\left((\text{ch }\mathcal{P}\cdot\text{Td }T_{\pi})_{[4]}\right)$$
$$= \pi_{*}\left(\frac{c_{1}(\mathcal{P})^{2}}{2} + \frac{c_{1}(\mathcal{P})\cdot c_{1}(T_{\pi})}{2}\right)$$
$$= \pi_{*}\left(c_{1}(\mathcal{P})^{2}\right)/2.$$
(6)

The last equality follows from (5), since the cup product $c_1(\mathcal{P}) \cdot c_1(T_{\pi})$ vanishes, $c_1(T_{\pi})$ being in $H^2(\mathcal{C}_g) \otimes H^0(\mathfrak{J}_{\mathcal{C}_g})$.

Recall the presentation of $\pi_1(\mathcal{C}_g)$ given just above Theorem 1.5. Then, $H_1(\mathcal{C}_g, \mathbb{Z}) = \bigoplus_{i=1}^g \mathbb{Z} a_i \oplus \bigoplus_{i=1}^g \mathbb{Z} b_i$. Moreover, the \mathbb{Z} -module dual basis $\{a_i^*, b_i^*\}_{i=1}^g$ of $H^1(\mathcal{C}_g, \mathbb{Z}) = \operatorname{Hom}_{\mathbb{Z}}(H_1(\mathcal{C}_g, \mathbb{Z}), \mathbb{Z})$ satisfies $a_i^* \cdot a_j^* = 0 = b_i^* \cdot b_j^*, a_i^* \cdot b_j^* = \delta_{ij}[\mathcal{C}_g]$, where $[\mathcal{C}_g]$ denotes the positive generator of $H^2(\mathcal{C}_g, \mathbb{Z})$.

Having fixed a base point x_o in C_g , define the algebraic map

 ψ : $\mathcal{C}_g \to \mathfrak{J}_{\mathcal{C}_g}, x \mapsto \mathcal{O}(x - x_o).$

Of course, $\mathfrak{J}_{\mathcal{C}_g}$ is canonically identified as $H^1(\mathcal{C}_g, \mathcal{O}_{\mathcal{C}_g})/H^1(\mathcal{C}_g, \mathbb{Z})$. Thus, as a real analytic space, we can identify

$$\begin{aligned} \mathfrak{J}_{\mathcal{C}_g} &\simeq H^1(\mathcal{C}_g, \mathbb{R}) / H^1(\mathcal{C}_g, \mathbb{Z}) \simeq H^1(\mathcal{C}_g, \mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{R}/\mathbb{Z}) \\ &\simeq \operatorname{Hom}_{\mathbb{Z}} \big(H_1(\mathcal{C}_g, \mathbb{Z}), \mathbb{R}/\mathbb{Z} \big) = J_g \end{aligned}$$
(7)

obtained from the \mathbb{R} -vector space isomorphism

$$H^1(\mathcal{C}_g,\mathbb{R})\simeq H^1(\mathcal{C}_g,\mathcal{O}_{\mathcal{C}_g}),$$

induced from the inclusion $\mathbb{R} \subset \mathcal{O}_{\mathcal{C}_g}$, where the last equality in (7) follows by using the basis $\{a_1, b_1, \ldots, a_g, b_g\}$ of $H_1(\mathcal{C}_g, \mathbb{Z})$. The induced map, under the identification (7),

$$\psi_* : H_1(\mathcal{C}_g, \mathbb{Z}) \to H_1(\mathfrak{J}_{\mathcal{C}_g}, \mathbb{Z}) \simeq H^1(\mathcal{C}_g, \mathbb{Z})$$

is the Poincaré duality isomorphism. To see this, identify

$$\operatorname{Hom}_{\mathbb{Z}}(H_1(\mathcal{C}_g,\mathbb{Z}),\mathbb{R}/\mathbb{Z})\simeq\operatorname{Hom}_{\mathbb{Z}}(H^1(\mathcal{C}_g,\mathbb{Z}),\mathbb{R}/\mathbb{Z})$$
(8)

using the Poincaré duality isomorphim: $H_1(\mathcal{C}_g, \mathbb{Z}) \simeq H^1(\mathcal{C}_g, \mathbb{Z})$. Then, under the identifications (7)–(8), the map

$$\psi: \mathcal{C}_g \to \operatorname{Hom}_{\mathbb{Z}}(H^1(\mathcal{C}_g, \mathbb{Z}), \mathbb{R}/\mathbb{Z})$$

can be described as

$$\psi(x)([\omega]) = e^{2\pi i \int_{x_0}^x \omega}$$

for any closed 1-form ω on C_g representing the cohomology class $[\omega] \in H^1(C_g, \mathbb{Z})$ (cf. [M, Theorem 2.5]), where $\int_{x_o}^x \omega$ denotes the integral of ω along any path in C_g from x_o to x.

Since

$$\psi_*: H_1(\mathcal{C}_g, \mathbb{Z}) \to H_1(\mathfrak{J}_{\mathcal{C}_g}, \mathbb{Z}) \simeq H^1(\mathcal{C}_g, \mathbb{Z})$$

is the Poincaré duality isomorphism, it is easy to see that the cohomology map induced form ψ :

$$\psi^* : H^1(\mathfrak{J}_{\mathcal{C}_g}, \mathbb{Z}) \simeq H_1(\mathcal{C}_g, \mathbb{Z}) \to H^1(\mathcal{C}_g, \mathbb{Z})$$

is given by

$$\psi^*(a_i) = b_i^*, \ \psi^*(b_i) = -a_i^* \text{ for all } 1 \le i \le g.$$
 (9)

In particular, ψ^* is an isomorphism. Moreover, the isomorphism does not depend on the choice of x_o .

Consider the map

$$\mathcal{C}_g \times \mathcal{C}_g \stackrel{I \times \psi}{\to} \mathcal{C}_g \times \mathfrak{J}_{\mathcal{C}_g}.$$

Let $\mathcal{P}' := (I \times \psi)^*(\mathcal{P})$. Then, \mathcal{P}' is the unique line bundle over $\mathcal{C}_g \times \mathcal{C}_g$ satisfying the following properties:

$$\mathcal{P}'|_{\mathcal{C}_g \times x} = \mathcal{O}(x - x_o)$$
 and $\mathcal{P}'|_{x_o \times \mathcal{C}_g}$ is trivial.

Consider the following line bundle over $C_g \times C_g$:

$$\mathcal{O}_{\mathcal{C}_g \times \mathcal{C}_g}(\Delta) \otimes (\mathcal{O}(-x_o) \boxtimes 1) \otimes (1 \boxtimes \mathcal{O}(-x_o)),$$

where \triangle denotes the diagonal in $C_g \times C_g$. One sees that this bundle also satisfies the restriction properties mentioned above and hence it must be isomorphic with \mathcal{P}' . Consequently,

$$c_1(\mathcal{P}') = c_1(\mathcal{O}_{\mathcal{C}_g \times \mathcal{C}_g}(\Delta)) + c_1(\mathcal{O}(-x_o) \boxtimes 1) + c_1(1 \boxtimes \mathcal{O}(-x_o)).$$

Using the definition of \mathcal{P}' and the functoriality of the Chern classes,

$$c_1(\mathcal{P}') = c_1((I \times \psi)^*(\mathcal{P})) = (I \times \psi)^* c_1(\mathcal{P}).$$
 (10)

By (5), $c_1(\mathcal{P}) \in H^1(\mathcal{C}_g) \otimes H^1(\mathfrak{J}_{\mathcal{C}_g})$, and hence $c_1(\mathcal{P}') \in H^1(\mathcal{C}_g) \otimes H^1(\mathcal{C}_g)$. Moreover,

$$c_1(\mathcal{O}(-x_o)\boxtimes 1) + c_1(1\boxtimes \mathcal{O}(-x_o)) \in H^2(\mathcal{C}_g) \otimes H^0(\mathcal{C}_g) \oplus H^0(\mathcal{C}_g) \otimes H^2(\mathcal{C}_g).$$

Thus, $c_1(\mathcal{P}')$ is the component of $c_1(\mathcal{O}_{\mathcal{C}_g \times \mathcal{C}_g}(\Delta))$ in $H^1(\mathcal{C}_g) \otimes H^1(\mathcal{C}_g)$. Hence, by Milnor-Stasheff [MS, Theorem 11.11],

$$c_1(\mathcal{P}') = -\sum_{i=1}^g a_i^* \otimes b_i^* + \sum_{i=1}^g b_i^* \otimes a_i^*.$$

Therefore, by (10),

$$c_1(\mathcal{P}) = -\sum_{i=1}^g a_i^* \otimes \psi^{*-1}(b_i^*) + \sum_{i=1}^g b_i^* \otimes \psi^{*-1}(a_i^*),$$

and thus, by (6),

$$c_{1}(\text{Det }\mathcal{P}) = -\frac{1}{2}\pi_{*}(c_{1}(\mathcal{P})^{2})$$

$$= -\frac{1}{2}\pi_{*}\left(\left(-\sum_{i=1}^{g}a_{i}^{*}\otimes\psi^{*-1}(b_{i}^{*}) + \sum_{i=1}^{g}b_{i}^{*}\otimes\psi^{*-1}(a_{i}^{*})\right)^{2}\right)$$

$$= -\frac{1}{2}\pi_{*}\left(\sum_{i=1}^{g}a_{i}^{*}\cdot b_{i}^{*}\otimes\psi^{*-1}(b_{i}^{*})\cdot\psi^{*-1}(a_{i}^{*}) + \sum_{i=1}^{g}b_{i}^{*}\cdot a_{i}^{*}\otimes\psi^{*-1}(a_{i}^{*})\cdot\psi^{*-1}(b_{i}^{*})\right)$$

$$= -\sum_{i=1}^{g}\psi^{*-1}(b_{i}^{*})\cdot\psi^{*-1}(a_{i}^{*}) \in H^{2}(\mathfrak{J}_{\mathcal{C}_{g}},\mathbb{Z}).$$

Now, the involution τ of $\mathfrak{J}_{\mathcal{C}_g}$ induces the map -I on $H^1(\mathfrak{J}_{\mathcal{C}_g}, \mathbb{Z})$ (since, under the identification $\overline{\theta}_{\mathcal{C}_g} : J_g \to \mathfrak{J}_{\mathcal{C}_g}, \tau$ corresponds to the map $x \mapsto x^{-1}$ for $x \in J_g$). Therefore,

$$\tau^*(c_1(\operatorname{Det} \mathcal{P})) = c_1(\operatorname{Det} \mathcal{P})$$

Hence, by the identities (1)–(2),

$$\xi_{\mathcal{C}_g}^*(x_g) = c_1(\text{Det }\mathcal{F}) = 2c_1(\text{Det }\mathcal{P}) = 2\sum_{i=1}^g \psi^{*-1}(a_i^*) \cdot \psi^{*-1}(b_i^*),$$
(11)

which is clearly a nonvanishing class in $H^2(\mathfrak{J}_{C_g}, \mathbb{Z})$. Moreover, for any $g \ge 2$, under the last equality of (7), the map $r_{g-1} : J_{g-1} \to J_g$ corresponds to the map $H_1(\mathcal{C}_g, \mathbb{Z}) \to H_1(\mathcal{C}_{g-1}, \mathbb{Z}), a_i \mapsto a_i, b_i \mapsto b_i$ for $1 \le i \le g-1, a_g \mapsto 0, b_g \mapsto$ 0. Thus, by (9) and (11), $\xi^*_{\mathcal{C}_g}(x_g)$ restricts, via r^*_{g-1} , to the class $\xi^*_{\mathcal{C}_{g-1}}(x_{g-1})$ for any $g \ge 2$. But, by the commutative diagram (E), $\xi^*_{\mathcal{C}_g}(x_g) = y_g$. This proves Lemma 4.1.

Proof of Proposition 1.7. By the above Lemma 4.1 and the commutative diagram (F), we see that

$$f_g^*(d_g x_g) = f_g^* i_g^*(x_{g+1}) = r_g^*(f_{g+1}^*(x_{g+1})), \text{ i.e., } d_g y_g = y_g.$$

Since the cohomology of J_g is torsion free and y_g is a nonvanishing class, we get $d_g = 1$. This concludes the proof of Proposition 1.7.

References

- [A] Adams, F.: Lectures on Lie Groups. W. A. Benjamin, Inc., 1969
- [ACGH] Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of Algebraic Curves. Springer-Verlag, 1985
- [BL] Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164, 385–419 (1994)
- [BLS] Beauville, A., Laszlo, Y., Sorger, C.: The Picard group of the moduli of G-bundles on a curve. Compositio Math. 112, 183–216 (1998)
- [BR] Beltrametti, M., Robbiano, L.: Introduction to the theory of weighted projective spaces. Expo. Math. **4**, 111–162 (1986)
- [BS] Bernshtein, I.N., Shvartsman, O.V.: Chevalley's theorem for complex crystallographic Coxeter groups. Funct. Anal. Appl. 12, 308–310 (1978)
- [B] Bourbaki, N.: Groupes et Algèbres de Lie, Chap. 4–6. Masson, Paris, 1981
- [DN] Drezet, J.–M., Narasimhan, M.S.: Groupe de Picard des variétés de modules de fibrés semi–stables sur les courbes algébriques. Invent. Math. **97**, 53–94 (1989)
- [D] Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc. Transl. (Ser. II) 6, 111–244 (1957)
- [Fa] Faltings, G.: A proof for the Verlinde formula. J. Alg. Geom. 3, 347–374 (1994)
- [FMW] Friedman, R., Morgan, J.W., Witten, E.: Principal *G*-bundles over elliptic curves. Mathematical Research Letters **5**, 97–118 (1998)

[F] Fulton, W.: Intersection Theory. Springer, Berlin Heidelberg, 1998

- [KM] Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curves I: preliminaries on "det" and "div". Math. Scand. 39, 19–55 (1976)
- [K₁] Kumar, S.: Infinite Grassmannians and moduli spaces of *G*-bundles. In: Vector Bundles on Curves New Directions, Lecture Notes in Mathematics 1649, pp. 1–49, Springer, Berlin Heidelberg, 1997
- [K₂] Kumar, S.: Kac-Moody Groups, their Flag Varieties and Representation Theory. Progress in Mathematics vol. **204**, Birkhäuser, 2002
- [KN] Kumar, S., Narasimhan, M.S.: Picard group of the moduli spaces of G–bundles. Math. Annalen **308**, 155–173 (1997)
- [KNR] Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannians and moduli spaces of G-bundles. Math. Annalen 300, 41–75 (1994)

- [L] Lang, S.: Introduction to Arakelov Theory. Springer, Berlin Heidelberg, 1988
- [La] Laszlo, Y.: About *G*-bundles over elliptic curves. Ann. Inst. Fourier, Grenoble **48**, 413–424 (1998)
- [LS] Laszlo, Y., Sorger, C.: The line bundles on the moduli of parabolic G–bundles over curves and their sections. Ann. Scient. Éc. Norm. Sup. **30**, 499–525 (1997)
- [Lo] Looijenga, E.: Root systems and elliptic curves. Invent. Math. 38, 17–32 (1976)
- [M] Milne, J.S.: Chap. VII–Jacobian varieties. In: Arithmetic Geometry, Cornell, G., et al., (eds.), Springer, Berlin Heidelberg 1986, 167–212
- [MS] Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Annals of Mathematics Studies vol. **76**, Princeton University Press, 1974
- [NS] Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. **82**, 540–567 (1965)
- [N] Narasimhan, R.: Compact Riemann Surfaces. Birkhäuser Verlag, 1992
- [RR] Ramanan, S., Ramanathan, A.: Some remarks on the instability flag. Tôhoku Math. J. 36, 269–291 (1984)
- [R₁] Ramanathan, A.: Stable principal bundles on a compact Riemann surface- Construction of moduli space. Thesis, University of Bombay, 1976
- [R₂] Ramanathan, A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152 (1975)
- [So] Sorger, C.: On moduli of G-bundles on a curve for exceptional G. Ann. Scient. Éc. Norm. Sup. 32, 127–133 (1999)
- [S] Szenes, A.: The combinatorics of the Verlinde formulas In: Vector Bundles in Algebraic Geometry, Hitchin, N.J., et al., (eds.), Cambridge University Press, 1995
- [T₁] Teleman, C.: Lie algebra cohomology and the fusion rules. Commun. Math. Phys. 173, 265–311 (1995)
- [T₂] Teleman, C.: Borel-Weil-Bott theory on the moduli stack of *G*-bundles over a curve. Invent. Math. **134**, 1–57 (1998)
- [TUY] Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Stud. Pure Math. **19**, 459–565 (1989)