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Introduction

Let G be a connected, simply-connected, simple affine algebraic group and Cg
be a smooth irreducible projective curve of any genus g ≥ 1 over C. De-
note by MCg (G) the moduli space of semistable principal G-bundles on Cg. Let
Pic(MCg (G)) be the Picard group of MCg (G) and letX be the infinite Grassman-
nian of the affine Kac-Moody group associated toG. It is known that Pic(X) � Z

and is generated by a homogenous line bundle Lχ0 . Also, as proved by Kumar-
Narasimhan [KN], there exists a canonical injective group homomorphism

β : Pic(MCg (G)) ↪→ Pic(X),

which takes �V (Cg,G) �→ LmVχ0
for any finite dimensional representation V of

G, where�V (Cg,G) is the theta bundle associated to theG-module V andmV is
its Dynkin index (cf. Theorem 2.2). As an immediate corollary, they obtained that

Pic(MCg (G)) � Z,

generalizing the corresponding result forG = SL(n) proved by Drezet-Narasim-
han [DN]. However, the precise image of β was not known for non-classical G
excludingG2. (For classicalG andG2, see [KN], [LS], [BLS].) The main aim of
this paper is to determine the image of β for an arbitrary G. It is shown that the
image of β is generated by LmGχ0

, where mG is the least common multiple of the
coefficients of the coroot θ∨ written in terms of the simple coroots, θ being the
highest root of G (cf. Theorem 2.4, see also Proposition 2.3 and the subsequent
discussion wheremG is explicitly given for eachG). As a consequence, we obtain
that the theta bundles �V (Cg,G), where V runs over all the finite dimensional
representations ofG, generate Pic(MCg (G)) (cf. Theorem 1.3). In fact, it is shown
that there is a fundamental weightωd such that the theta bundle�V(ωd)(Cg,G) cor-
responding to the irreducible highest weightG-moduleV (ωd)with highest weight
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ωd generates Pic(MCg (G)) (cf. Theorem 2.4). All these fundamental weights ωd
are explicitly determined in Proposition 2.3.

It may be mentioned that Picard group of the moduli stack of G-bundles is
studied in [LS], [BLS], [T2].

We now briefly outline the idea of the proofs. Recall that, by a celebrated result
of Narasimhan-Seshadri, the underlying real analytic space Mg(G) of MCg (G)
admits a description as the space of representations of the fundamental group
π1(Cg) into a fixed compact form of G up to conjugation. In particular, Mg(G)

depends only upon g andG (and not on the specific choice of the projective curve
Cg). Moreover, this description gives rise to a standard embedding ig : Mg(G) ↪→
Mg+1(G).

Let V be any finite dimensional representation of G. We first show that the
first Chern class of the theta bundle �V (Cg,G) does not depend upon the choice
of the smooth projective curve Cg, as long as g is fixed (cf. Proposition 1.6).

We next show that the first Chern class of �V (Cg+1,G) restricts to the first
Chern class of �V (Cg,G) under the embedding ig (cf. Proposition 1.8). This
result is proved by first reducing the case of general G to SL(n) and then reduc-
ing the case of SL(n) to SL(2). The corresponding result for SL(2) is obtained by
showing that the inclusion Mg(SL(2)) ↪→ Mg+1(SL(2)) induces isomorpism in
cohomology H 2(Mg+1(SL(2)),Z) � H 2(Mg(SL(2)),Z) (cf. Proposition 1.7).
The last result for H 2 with rational coefficients is fairly well known (and follows
easily by observing that the symplectic form on Mg+1(G) restricts to the sym-
plectic form on Mg(G)) but the result with integral coefficients is more delicate
and is proved in Section 4. The proof involves the calculation of the determinant
bundle of the Poincaré bundle on Cg × JCg , JCg being the Jacobian of Cg which
consists of the isomorphism classes of degree 0 line bundles on Cg.

By virtue of the above mentioned two propositions (Propositions 1.6 and 1.8),
to prove our main result determining Pic(MCg (G)) stated in the first paragraph
for any g ≥ 1, it suffices to consider the case of genus g = 1.

In the genus g = 1 case, MC1(G) admits a description as the weighted pro-
jective space P(1, a∨1 , a

∨
2 , . . . , a

∨
k ), where a∨i are the coefficients of the coroot

θ∨ written in terms of the simple coroots and k is the rank of G (cf. Theorems
3.1 and 3.3). The ample generator of the Picard group of P(1, a∨1 , a

∨
2 , . . . , a

∨
k ) is

known to be OP(1,a∨1 ,a
∨
2 ,... ,a

∨
k )
(mG) (cf. Theorem 3.4). In section 3, we show that

�V(ωd)(C1,G) is, in fact, OP(1,a∨1 ,a
∨
2 ,... ,a

∨
k )
(mG), and hence it is the ample generator

of Pic(MC1(G)). The proof makes use of the Verlinde formula determining the
dimension of the space of global sections H 0(MCg (G),L) (cf. Theorem 3.5).

We thank P. Belkale, L. Jeffrey and M.S. Narasimhan for some helpful cor-
respondences/conversations. We are grateful to the referee for some very help-
ful comments; in particular, for pointing out Theorem 3.3, which simplified our
original proof of Proposition 1.9. The second author was partially supported by
the NSF.
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1. Statement of the main theorem and its proof

For a topological space X, Hi(X) denotes the singular cohomology of X with
integral coefficients, unless otherwise explicitly stated.

Let G be a connected, simply-connected, simple affine algebraic group over
C. This will be our tacit assumption onG throughout the paper. Let Cg be a smooth
irreducible projective curve (over C) of genus g, which we assume to be≥ 1. Let
MCg =MCg (G) be the moduli space of semistable principal G-bundles on Cg.

We begin by recalling the following result due to Kumar-Narasimhan [KN,
Theorem 2.4]. (In loc cit. the genus g is assumed to be ≥ 2. For the genus g = 1
case, the result follows from Theorems 3.1, 3.3 and 3.4.)

Theorem 1.1. With the notation as above,

Pic(MCg ) � Z,

where Pic(MCg ) is the group of isomorphism classes of algebraic line bundles on
MCg .

In particular, any nontrivial line bundle on MCg is ample or its inverse is
ample.

Definition 1.2. Let F be a family of vector bundles on Cg parametrized by a
variety X, i.e., F is a vector bundle over Cg × X. Then, the ‘determinant of the
cohomology’ gives rise to the determinant bundle Det(F) of the family F , which
is a line bundle over the baseX. By definition, the fiber of Det(F) over any x ∈ X
is given by the expression:

Det(F)|x = ∧top(H 0(Cg,Fx))
∗ ⊗ ∧top(H 1(Cg,Fx)),

where Fx is the restriction of F to Cg × x (cf., e.g., [L, Chap. 6, §1], [KM]).
Let R(G) denote the set of isomorphism classes of all the finite dimensional

algebraic representations of G. For any V in R(G), we have the �-bundle
�V (Cg) = �V (Cg,G) on MCg , which is an algebraic line bundle whose fibre
at any principal G-bundle E ∈MCg is given by the expression

�V (Cg)|E = ∧top(H 0(Cg, EV ))∗ ⊗ ∧top(H 1(Cg, EV )),

whereEV is the associated vector bundleE×G V on Cg. Observe that the moduli
space MCg does not parametrize a universal family of G-bundles, however, the
theta bundle �V (Cg) (which is essentially the determinant bundle if there were a
universal family parametrized by MCg ) still exists (cf. [K1, §3.7]).

Now, we can state the main result of this paper.
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Theorem 1.3.

Pic(MCg ) =< �V (Cg), V ∈ R(G) >,
where the notation < > denotes the group generated by the elements in the
bracket.

Lemma 1.4.

c : Pic(MCg ) � H 2(MCg ,Z),

where c maps any line bundle L to its first Chern class c1(L).
In particular,

H 2(MCg ,Z) � Z.

The first Chern class of the ample generator of Pic(MCg ) is called the positive
generator of H 2(MCg ,Z).

Proof. Consider the following exact sequence of abelian groups:

0→ Z→ C
f→ C

∗ → 0,

where f (x) = e2πix . This gives rise to the following exact sequence of sheaves
on MCg endowed with the analytic topology:

0→ Z̄→ ŌMCg → Ō∗MCg
→ 0,

where ŌMCg is the sheaf of holomorphic functions on MCg , Ō∗MCg
is the sheaf

of invertible elements of ŌMCg and Z̄ is the constant sheaf corresponding to the
abelian group Z.

The above sequence, of course, induces the following long exact sequence in
cohomology:

· · · → H 1(MCg , ŌMCg )→ H 1(MCg , Ō∗MCg
)

c̄→ H 2(MCg ,Z)

→ H 2(MCg , ŌMCg )→ · · · .
First of all,

Pic(MCg ) � H 1(MCg ,O∗MCg
), (1)

where OMCg is the sheaf of algebraic functions on MCg and O∗MCg
is the subsheaf

of invertible elements of OMCg .
Moreover, by GAGA, MCg being a projective variety,

H 1(MCg ,O∗MCg
) � H 1(MCg , Ō∗MCg

), (2)
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and also, for any p ≥ 0,

Hp(MCg ,OMCg ) � Hp(MCg , ŌMCg ). (3)

By Kumar-Narasimhan [KN, Theorem 2.8], Hi(MCg ,OMCg ) = 0 for i > 0.
Hence, under the identification (1), by (2)–(3) and the above long exact cohomol-
ogy sequence,

Pic(MCg )
∼c→ H 2(MCg ,Z),

where c is the map c̄ under the above identifications. Moreover, as is well known,
c is the first Chern class map. ��

Let us fix a maximal compact subgroupK ofG. Denote the Riemann surface
with g handles, considered only as a topological manifold, byCg. Thus, the under-
lying topological manifold of Cg isCg. DefineMg(G) := ϕ−1(1)/AdK , where ϕ :
K2g → K is the commutator mapϕ(k1, k2, . . . , k2g) = [k1, k2][k3, k4] · · · [k2g−1,

k2g] and ϕ−1(1)/AdK refers to the quotient of ϕ−1(1) by K under the diagonal
adjoint action of K on K2g.

Now, we recall the following fundamental result due to Narasimhan-Seshadri
[NS] for vector bundles and extended for an arbitraryG by Ramanathan [R1, R2].

Consider the standard generators a1, b1, a2, b2, . . . , ag, bg of π1(Cg) (cf. [N,
§14]). Then, we have the presentation:

π1(Cg) = F [a1, . . . , ag, b1, . . . , bg]/ < [a1, b1] · · · [ag, bg] >,

whereF [a1, . . . , ag, b1, . . . , bg] denotes the free group generated by a1, . . . , ag,
b1, . . . , bg and < [a1, b1] · · · [ag, bg] > denotes the normal subgroup generated
by the single element [a1, b1] · · · [ag, bg].

Theorem 1.5. Having chosen the standard generators a1, b1, a2, b2, . . . , ag, bg
of π1(Cg), there exists a canonical isomorphism of real analytic spaces:

θCg (G) : Mg(G) �MCg (G).
In the sequel, we will often make this identification. Define a class α ∈

H 2(Mg(G),Z) to be positive if it is a positive multiple of the positive gener-
ator of H 2(MCg (G),Z) under the identification θCg (G)∗ . Then, for any fixed g,
the positivity of α does not depend upon the choice of the algebraic curve Cg. To
prove this, follow the argument as in the proof of Proposition 1.8 to reduce it to
the case of G = SL(2). In this case it follow from the identity (11) of the proof
of Lemma 4.1.

Proposition 1.6. For any V ∈ R(G), c(�V (Cg,G)), under the above identifica-
tion θCg (G), does not depend on the choice of the projective variety structure Cg
on the Riemann surface Cg for any fixed g.

Proof. Let ρ : G → SL(V ) be the given representation. By taking a K-invari-
ant Hermitian form on V we get ρ(K) ⊂ SU(n), where n = dimV . For any
principal G-bundle E on Cg, let ESL(V ) be the principal SL(V )-bundle over Cg
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obtained by the extension of the structure group via ρ. Then, if E is semistable,
so is ESL(V ), giving rise to a variety morphism ρ̂ : MCg (G)→MCg (SL(V )) (cf.
[RR, Theorem 3.18]). Hence, we get the commutative diagram:

MCg (G)
ρ̂→MCg (SL(V ))

↑ ↑
Mg(G)

ρ̄→ Mg(SL(V )),

(D1)

where ρ̄ is induced from the commutative diagram:

K2g ϕ−−−→ K


�ρ×2g



�ρ

SU(n)2g −−−→
ϕ

SU(n).

The diagram (D1) induces the following commutative diagram in cohomology:

H 2(MCg (SL(V )),Z)
ρ̂∗−−−→ H 2(MCg (G),Z)



�‖



�‖

H 2(Mg(SL(V )),Z) −−−→
ρ̄∗

H 2(Mg(G),Z).

(D2)

By the construction of the �-bundle, ρ̂∗(�V (Cg, SL(V ))) = �V (Cg,G),
where ρ̂∗ also denotes the pullback of line bundles and V is thought of as the
standard representation of SL(V ).

Thus, using the functoriality of the Chern class, we get

ρ̂∗(c(�V (Cg, SL(V )))) = c(�V (Cg,G)). (1)

By Drezet-Narasimhan [DN], c(�V (Cg, SL(V ))) is the unique positive genera-
tor of H 2(MCg (SL(V )),Z) and thus is independent of the choice of Cg under
the identification θCg (SL(V ))∗. Consequently, by (1) and the above commutative
diagram (D2), c(�V (Cg,G)) is independent of the choice of Cg. ��

From now on we will denote the cohomology class c(�V (Cg,G)) in
H 2(Mg(G), Z), under the identification θCg (G)∗, by c(�V (g,G)).

Consider the embedding

ig = ig(G) : Mg(G) ↪→ Mg+1(G)

induced by the inclusion ofK2g → K2g+2 via (k1, . . . , k2g) �→(k1, . . . , k2g, 1, 1).
By virtue of the map ig, we will identify Mg(G) as a subspace of Mg+1(G).

In particular, we get the following induced sequence of maps in the second
cohomology.

H 2(M1(G),Z)
i∗1← H 2(M2(G),Z)

i∗2← H 2(M3(G),Z)
i∗3← · · · ·
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Proposition 1.7. ForG = SL(2), the maps i∗g : H 2(Mg+1(G),Z)→ H 2(Mg(G),

Z) take the positive generator of H 2(Mg+1(SL(2)),Z) to the positive generator
of H 2(Mg(SL(2)),Z).

In particular, i∗g are isomorphisms for any g ≥ 1.

We shall prove this proposition in Section 4.

Proposition 1.8. For any V ∈ R(G) and any g ≥ 1, i∗g(c(�V (g + 1,G))) =
c(�V (g,G)).

Proof. We first claim that it suffices to prove the above proposition forG = SL(n)
and the standard n-dimensional representation V of SL(n).

Let ρ : G → SL(V ) be the given representation. Consider the following
commutative diagram:

Mg(G)
ig
↪→ Mg+1(G)

ρ̄ ↓ ↓ ρ̄
Mg(SL(V ))

ig
↪→ Mg+1(SL(V )),

where ρ̄ is the map defined in the proof of Proposition 1.6. It induces the com-
mutative diagram:

H 2(Mg(G),Z)
i∗g← H 2(Mg+1(G),Z)

ρ̄∗ ↑ ρ̄∗ ↑
H 2(Mg(SL(V )),Z)

i∗g← H 2(Mg+1(SL(V )),Z).

Therefore, using the commutativity of the above diagram and equation (1) of
Proposition 1.6, supposing that i∗g(c(�V (g + 1, SL(V )))) = c(�V (g, SL(V ))),
we get i∗g(c(�V (g + 1,G))) = c(�V (g,G)). Hence, Proposition 1.8 is estab-
lished for anyG provided we assume its validity forG = SL(V ) and its standard
representation in V .

We further reduce the proposition from SL(n) to SL(2). As in the proof of
Proposition 1.6, consider the mappings

ρ̄ : Mg(SL(2))→ Mg(SL(n)), and

ρ̂ : MCg (SL(2))→MCg (SL(n))

induced by the inclusions

SU(2)→ SU(n) and SL(2)→ SL(n),

given by m �→ diag(m, 1, . . . , 1).
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The maps ρ̄ and ρ̂ induce the commutative diagram:

H 2(Mg(SL(n)),Z)
ρ̄∗→ H 2(Mg(SL(2)),Z)

↑ || ↑ ||
H 2(MCg (SL(n)),Z)

ρ̂∗→ H 2(MCg (SL(2)),Z).

By the construction of the �-bundle, ρ̂∗
(

�V (Cg, SL(n))
) = �V2(Cg, SL(2)),

where V2 is the standard 2-dimensional representation of SL(2).
Thus, using the functoriality of the Chern class, we get

ρ̂∗(c(�V (Cg, SL(n)))) = c(�V2(Cg, SL(2))). (1)

Using one more time the result of Drezet-Narasimhan that c(�V (Cg, SL(n)))
is the unique positive generator ofH 2(MCg (SL(n))) for any n (cf. Proof of Prop-
osition 1.6), we see that ρ̂∗ is surjective and hence an isomorphism by Lemma 1.4.

Consider the following commutative diagram:

H 2(Mg(SL(n)),Z)
i∗g← H 2(Mg+1(SL(n)),Z)

ρ̄∗ ↓ ρ̄∗ ↓
H 2(Mg(SL(2)),Z)

i∗g← H 2(Mg+1(SL(2)),Z).

Suppose that the proposition is true forG = SL(2) and the standard representation
V2, i.e.,

i∗g(c(�V2(g + 1, SL(2)))) = c(�V2(g, SL(2))). (2)

Then, using the commutativity of the above diagram and (1) together with the fact
that ρ̄∗ is an isomorphism, we get that

i∗g(c(�V (g + 1, SL(n)))) = c(�V (g, SL(n))).

Finally, (2) follows from the result of Drezet-Narasimhan cited above and Proposi-
tion 1.7. Hence the proposition is established for any G (once we prove
Proposition 1.7). ��
Proposition 1.9. For g = 1, Theorem 1.3 is true.

The proof of this proposition will be given in Section 3.

Proof of Theorem 1.3. Denote the subgroup < �V (Cg,G), V ∈ R(G) > of
Pic(MCg (G)) by Pic�(MCg (G)).

Set H 2
�(Mg(G)) := c(Pic�(MCg (G))). By virtue of Proposition 1.6, this is

well defined, i.e., H 2
�(Mg(G)) does not depend upon the choice of the projective

variety structure Cg on Cg. Moreover, by Proposition 1.8, i∗g(H
2
�(Mg+1(G))) =

H 2
�(Mg(G)).
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Thus, we get the following commutative diagram, where the upward arrows
are inclusions and the maps in the bottom horizontal sequence are induced from
the maps i∗g .

H 2(M1(G))
i∗1← H 2(M2(G))

i∗2← H 2(M3(G))
i∗3← · · ·

↑ ↑ ↑
H 2
�(M1(G))← H 2

�(M2(G))← H 2
�(M3(G))← · · · .

By Proposition 1.9 and Lemma 1.4, H 2(M1(G)) = H 2
�(M1(G)). Then, i∗1 is

surjective and hence an isomorphism (by using Lemma 1.4 again). Thus, by the
commutativity of the above diagram, the inclusion H 2

�(M2(G)) ↪→ H 2(M2(G))

is an isomorphism.Arguing the same way, we get thatH 2(Mg(G))= H 2
�(Mg(G))

for all g. This completes the proof of the theorem by virtue of the isomorphism c

of Lemma 1.4. ��

2. Comparison of the Picard groups of MCg
and the infinite Grassmannian

As earlier, letG be a connected, simply-connected, simple affine algebraic group
over C. We fix a Borel subgroup B of G and a maximal torus T ⊂ B. Let h
(resp. b) be the Lie algebra of T (resp. B). Let �+ ⊂ h∗ be the set of positive
roots (i.e., the roots of b with respect to h) and let {ωi}1≤i≤k ⊂ h∗ be the set of
fundamental weights, where k is the rank ofG. As earlier, R(G) denotes the set of
isomorphism classes of all the finite dimensional algebraic representations of G.
This is a semigroup under the direct sum of two representations. LetR(G) denote
the associated Grothendieck group. Then, R(G) is a ring, where the product is
induced from the tensor product of two representations. Then, the fundamental
representations {V (ωi)}1≤i≤k generate the representation ringR(G) as a ring [A].

LetX be the infinite Grassmannian associated to the affine Kac-Moody group
G corresponding to G, i.e., X := G/P , where P is the standard maximal para-
bolic subgroup of G (cf. [K2, §13.2.12]; in loc cit., X is denoted by Y = X Y ). It
is known that Pic(X) is isomorphic to Z and is generated by the homogenous line
bundle Lχ0 (cf. [K2, Proposition 13.2.19]).

We recall the following definition from [D,§2].

Definition 2.1. Let g1 and g2 be two (finite dimensional) complex simple Lie alge-
bras and ϕ : g1 → g2 be a Lie algebra homomorphism. There exists a unique
number mϕ ∈ C, called the Dynkin index of the homomorphism ϕ, satisfying

〈ϕ(x), ϕ(y)〉 = mϕ〈x, y〉, for all x, y ∈ g1,

where 〈, 〉 is the Killing form on g1 (and g2) normalized so that 〈θ, θ〉 = 2 for the
highest root θ .



832 A. Boysal, S. Kumar

For a Lie algebra g1 as above and a finite dimensional representation V of
g1, by the Dynkin index mV of V , we mean the Dynkin index of the Lie alge-
bra homomorphism ρ : g1 → sl(V ), where sl(V ) is the Lie algebra of trace 0
endomorphisms of V .

Then, for any two finite dimensional representations V andW of g1, we have,
by [D, Chap. 1, §2] or [KN, Lemma 4.5],

mV⊗W = mV dimW +mW dim V. (1)

We recall the following main result of Kumar-Narasimhan [KN, Theorem 2.4].
In loc cit., it is proved under the assumption g ≥ 2. But it remains true for g = 1
by virtue of Theorem 1.1 and the following identity (1) which is proved in [KNR]
for any g ≥ 0.

Theorem 2.2. There exists a ‘natural’ injective group homomorphism

β : Pic(MCg (G)) ↪→ Pic(X).

Moreover, by [KNR, Theorem 5.4] (see also [Fa]), for any V ∈ R(G),
β(�V (Cg,G)) = L⊗mVχ0

, (1)

where V is thought of as a module for g under differentiation andmV is its Dynkin
index.

We also recall the following result from [D, Table 5], [KN, Proposition 4.7],
or [LS, §2]. We follow the indexing convention as in [B, Planche I-IX].

Proposition 2.3. For any simple Lie algebra g, there exists a (not unique in gen-
eral) fundamental weightωd such thatmV(ωd) divides each of {mV(ωi)}1≤i≤k. Thus,
by (1) of Definition 2.1, mV(ωd) divides mV for any V ∈ R(G).

The following table gives the list of all suchωd’s and the corresponding Dynkin
index mV(ωd).

Type of G ωd mV (ωd)
Ak (k ≥ 1) ω1, ωk 1
Ck (k ≥ 2) ω1 1
Bk (k ≥ 3) ω1 2
Dk (k ≥ 4) ω1 2

G2 ω1 2
F4 ω4 6
E6 ω1, ω6 6
E7 ω7 12
E8 ω8 60.

For B3, ω3 also satisfies mV(ω3) = 2; for D4, ω3 and ω4 both have mV(ω3) =
mV(ω4) = 2.
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Let θ be the highest root of G. Observe that, for any G, mV(ωd) is the least
common multiple of the coefficients of the coroot θ∨ written in terms of the simple
coroots. We shall denote mV(ωd) by mG.

Combining the above result with Theorem 1.3, we get the following.

Theorem 2.4. For any Cg with g ≥ 1 and G as in Section 1, the Picard group
Pic(MCg (G)) is freely generated by the�-bundle�V(ωd)(Cg,G), whereωd is any
fundamental weight as in the above proposition.

In particular,

Im(β) is freely generated by L⊗mGχ0
. (1)

Proof. By Theorem 1.3,

Pic(MCg (G)) =< �V (Cg,G), V ∈ R(G) > .

Thus, by Theorem 2.2 and Proposition 2.3,

Im(β) =< L⊗mVχ0
, V ∈ R(G) >=< L⊗mGχ0

> .

This proves (1).
Since β is injective, by the above description of Im(β), �V(ωd)(Cg,G) freely

generates Pic(MCg (G)), proving the theorem. ��
Following the same argument as in [So, §4], using Theorem 2.4 and Proposition

2.3, we get the following corollary for genus g ≥ 2. For genus g = 1, use
Theorems 3.1 and 3.3 together with [BR, Theorem 7.1.d]. This corollary is due to
[BLS], [So].

Corollary 2.5. LetG be any group and Cg be any curve as in Section 1. Then, the
moduli space MCg (G) is locally factorial if and only if G is of type Ak (k ≥ 1)
or Ck (k ≥ 2).

3. Proof of Proposition 1.9

Let G be as in the beginning of Section 1. In this section, we identify MC1(G)

with a weighted projective space and show that the generator of Pic(MC1(G)) is
�V(ωd)(C1,G) as claimed.

We recall the following theorem due independently to Laszlo [La, Theorem
4.16] and Friedman-Morgan-Witten [FMW, §2].

Theorem 3.1. Let C1 be a smooth, irreducible projective curve of genus 1. Then,
there is a natural variety isomorphim between the moduli space MC1(G) and
(C1 ⊗Z Q

∨)/W , where Q∨ is the coroot lattice of G and W is its Weyl group
acting canonically on Q∨ (and acting trivially on C1).
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Definition 3.2. Let N = (n0, . . . , nk) be a k + 1-tuple of positive integers. Con-
sider the polynomial ring C[z0, . . . , zk] graded by deg zi = ni . The scheme
Proj(C[z0, . . . , zk]) is said to be the weighted projective space of type N and we
denote it by P(N).

Consider the standard (nonweighted) projective space Pk := Proj
(C[w0, . . . , wk]), where each degwi = 1. Then, the graded algebra homo-
morphism C[z0, . . . , zk] → C[w0, . . . , wk], zi �→ w

ni
i , induces a morphism

δ : Pk → P(N).

The following theorem is due to Looijenga [Lo]. His proof had a gap; a com-
plete proof of a more general result is outlined by Bernshtein-Shvartsman [BS].

Theorem 3.3. Let C1 be an elliptic curve. Then, the variety (C1⊗ZQ
∨)/W is the

weighted projective space of type (1, a∨1 , a
∨
2 , . . . , a

∨
k ), where a∨i are the coeffi-

cients of the coroot θ∨ written in terms of the simple coroots {α∨i } (and, as earlier,
k is the rank of G).

The following table lists the weighted projective space isomorphic to MC1(G)

corresponding to anyG. In this table the entries beyond 1 are precisely the numbers
(a∨1 , a

∨
2 , . . . , a

∨
k ) following the convention as in Bourbaki [B, Planche I-IX].

Type of G Type of the weighted projective space
Ak(k ≥ 1), Ck (k ≥ 2) (1, 1, 1, . . . , 1)

Bk (k ≥ 3) (1, 1, 2, . . . , 2, 1)
Dk (k ≥ 4) (1, 1, 2, . . . , 2, 1, 1)

G2 (1, 1, 2)
F4 (1, 2, 3, 2, 1)
E6 (1, 1, 2, 2, 3, 2, 1)
E7 (1, 2, 2, 3, 4, 3, 2, 1)
E8 (1, 2, 3, 4, 6, 5, 4, 3, 2).

We recall the following result from the theory of weighted projective spaces
(see, e.g., Beltrametti-Robbiano [BR, Lemma 3B.2.c and Theorem 7.1.c]).

Theorem 3.4. LetN = (n0, . . . , nk) and assume gcd{n0, . . . , nk} = 1. Then, we
have the following.
(a) Pic(P(N)) � Z. In fact, the morphism δ of Definition 3.2 induces an injective
map δ∗ : Pic(P(N))→ Pic(Pk).

Moreover, the ample generator of Pic(P(N)) maps to OPk (s) under δ∗, where
s is the least common multiple of {n0, . . . , nk}. We denote this ample generator
by OP(N)(s).
(b) For any d ≥ 0,

H 0(P(N),OP(N)(s)
⊗d) = C[z0, . . . , zk]ds,

where C[z0, . . . , zk]ds denotes the subspace of C[z0, . . . , zk] consisting of homo-
geneous elements of degree ds.
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Using Theorems 3.1, 3.3 and 3.4 and the fact that the least common multiple
of the numbers {1, a∨1 , a∨2 , . . . , a∨k } for eachG is the Dynkin indexmG = mV(ωd),
we have

�V(ωd)(C1,G) = OP(1,a∨1 ,a
∨
2 ,... ,a

∨
k )
(mG)

⊗p (∗)
for some positive integer p. The value of mG is given in Proposition 2.3 for any
G.

We recall the following basic result, the first part of which is due indepen-
dently to Beauville-Laszlo [BL], Faltings [Fa] and Kumar-Narasimhan-Ramana-
than [KNR]. The second part of the theorem as in (1) is the celebrated Verlinde
formula for the dimension of the space of conformal blocks essentially due to
Tsuchiya-Ueno-Yamada [TUY] (together with works [Fa, Appendix] and [T1]).

Theorem 3.5. For any ample line bundle L ∈ Pic(MCg (G)) and 
 ≥ 0, there is
an isomorphism (canonical up to scalar multiples):

H 0(MCg (G),L
⊗
) � L(Cg, 
mL),

where L(Cg, 
) is the space of conformal blocks corresponding to the one marked
point on Cg and trivial representation attached to it with central charge 
 (cf., e.g.,
[TUY] for the definition of conformal blocks) andmL is the positive integer such
that β(L) = L⊗mLχ0

, β being the map as in Theorem 2.2.
Moreover, the dimension Fg(
) of the space L(Cg, 
) is given by the following

Verlinde formula:

Fg(
) = tg−1



∑

µ∈P


∏

α∈�+

∣
∣
∣
∣
2 sin

(
π


+ h < α,µ+ ρ >
)∣
∣
∣
∣

2−2g

, (1)

where

< , >:= Killing form on h∗ normalized so that < θ, θ >= 2 for the highest
root θ,

�+ := the set of positive roots,
P
 := {dominant integral weights µ| < µ, θ >≤ 
},
ρ := half sum of positive roots,
h :=< ρ, θ > +1, the dual Coxeter number,

t
 := (
+ h)rankG(#P/Qlg),

andP is the weight lattice andQlg is the sublatttice of the root latticeQ generated
by the long roots.

In fact, we only need to use the above theorem for the case of genus g = 1.
For g = 1, the Verlinde formula (1) clearly reduces to the identity:

F1(
) = #P
.
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Of course,

P
 = {(n1, . . . , nk) ∈ (Z+)k :
k
∑

i=1

nia
∨
i ≤ 
}.

Proof of Proposition 1.9. Using the specialization of Theorem 3.5 to g = 1, we
see that

dim H 0(MC1(G),�V (ωd)(C1,G)) = #PmG.

On the other hand, by Theorems 3.1, 3.3 and 3.4(b),

dim H 0(MC1(G),OP(1,a∨1 ,a
∨
2 ,... ,a

∨
k )
(mG)

⊗p) = dim(C[z0, . . . , zk]pmG) = #PpmG.

Hence, in the equation (∗) following Theorem 3.4, p = 1 and �V(ωd)(C1,G) is
the (ample) generator of Pic(MC1(G)). This proves Proposition 1.9. ��

4. Proof of Proposition 1.7

In this section, we take G = SL(2) and abbreviate MCg (SL(2)) by MCg etc. Let
Mred

Cg be the closed subvariety of the moduli space MCg consisting of decomposable
bundles on Cg (which are semistable of rank-2 with trivial determinant). Let JCg
be the Jacobian of Cg. Recall that the underlying set of the variety JCg consists
of all the isomorphism classes of line bundles on Cg with trivial first Chern class.
Then, there is a surjective morphism ξ = ξCg : JCg → Mred

Cg ⊂ MCg , taking

L �→ L ⊕ L−1. Moreover, ξ−1(ξ(L)) = {L,L−1}. The Jacobian JCg admits the
involution τ taking L �→ L−1.

Let T be a maximal torus of the maximal compact subgroup SU(2) of SL(2),
which we take to be the diagonal subgroup of SU(2). Similar to the identification
θCg as in Theorem 1.5, setting Jg := T 2g, there is an isomorphism of real analytic
spaces θ̄Cg : Jg → JCg making the following diagram commutative:

Jg
θ̄Cg→ JCg

fg ↓ ↓ ξCg
Mg

θCg→MCg ,

(E)

where fg : Jg → Mg is induced from the standard inclusion T 2g ⊂ SU(2)2g.We
will explicitly describe the isomorphism θ̄Cg in the proof of the following lemma.

Recall the definition of the map ig : Mg → Mg+1 from Section 1 and let
rg : Jg → Jg+1 be the map (t1, . . . , t2g) �→ (t1, . . . , t2g, 1, 1). Then, we have the
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following commutative diagram:

Jg
fg→ Mg

rg ↓ ↓ ig
Jg+1

fg+1→ Mg+1.

(F)

Let xg+1 denote the positive generator ofH 2(Mg+1,Z). Then, by Lemma 1.4 and
Theorem 1.5,

i∗g(xg+1) = dgxg,
for some integer dg. We will prove that dg = 1, which will of course prove
Proposition 1.7. Set yg := f ∗g (xg); f ∗g : H 2(Mg,Z)→ H 2(Jg,Z) being the map
in cohomology induced from fg.

Lemma 4.1. yg �= 0 and r∗g (yg+1) = yg as elements of H 2(Jg,Z).

Proof. There exists a unique universal line bundle P , called the Poincaré bundle
on Cg×JCg such that, for each L ∈ JCg , P restricts to the line bundle L on Cg×L,
and P restricted to xo × JCg is trivial for a fixed base point xo ∈ Cg (cf. [ACGH,
Chap. IV, §2]).

Let F be the rank-2 vector bundle P ⊕ τ̂ ∗(P) over the base space Cg × JCg ,
and think of F as a family of rank-2 bundles on Cg parametrized by JCg , where
τ̂ : Cg × JCg → Cg × JCg is the involution I × τ .

By Drezet-Narasimhan [DN], we have xg = c1(�V2(Cg, SL(2))) for the stan-
dard representation V2 of SL(2). Using the functoriality of Chern class,

ξ∗Cg (xg) = c1(Det F), (1)

where Det F denotes the determinant line bundle over JCg associated to the family
F (cf. Definition 1.2). Recall that the fiber of Det F at any L ∈ JCg is given by
the expression

Det F |L = ∧top
(

H 0(Cg,L⊕ L−1)∗
)⊗∧top(H 1(Cg,L⊕ L−1)

)

= ∧top(H 0(Cg,L)∗ ⊕H 0(Cg,L−1)∗
)

⊗∧top (H 1(Cg,L)⊕H 1(Cg,L−1)
)

= ∧top(H 0(Cg,L)∗
)⊗∧top(H 0(Cg,L−1)∗

)⊗∧top(H 1(Cg,L)
)

⊗∧top (H 1(Cg,L−1))

= (Det P)|L ⊗
(

τ ∗(Det P))|L. (2)

Applying the Grothendieck-Riemann-Roch theorem (cf. [F, Example 15.2.8])
for the projection Cg × JCg

π→ JCg gives

ch(Rπ∗P) = π∗(ch P · Td Tπ), (3)
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where ch is the Chern character and Td Tπ denotes the Todd genus of the relative
tangent bundle of Cg × JCg along the fibers of π . By the definition of Det P and
Rπ∗P ,

c1(Det P) = − ch(Rπ∗P)[2], (4)

where, for a cohomology class y, y[n] denotes the component of y inHn. Since P
restricted to xo × JCg is trivial and for any L ∈ JCg , P restricts to the line bundle
L on Cg × L (with the trivial Chern class), we get

c1(P) ∈ H 1(Cg)⊗H 1(JCg ). (5)

Thus, using (3)–(4),

−c1(Det P) = π∗
(

(ch P · Td Tπ)[4]
)

= π∗
(
c1(P)2

2
+ c1(P) · c1(Tπ)

2

)

= π∗
(

c1(P)2
)

/2.

(6)

The last equality follows from (5), since the cup product c1(P) · c1(Tπ) vanishes,
c1(Tπ) being in H 2(Cg)⊗H 0(JCg ).

Recall the presentation of π1(Cg) given just above Theorem 1.5. Then,
H1(Cg,Z) = ⊕gi=1Zai⊕⊕gi=1Zbi . Moreover, the Z-module dual basis {a∗i , b∗i }gi=1
of H 1(Cg,Z) = HomZ(H1(Cg,Z),Z) satisfies a∗i · a∗j = 0 = b∗i · b∗j , a∗i · b∗j =
δij [Cg], where [Cg] denotes the positive generator of H 2(Cg,Z).

Having fixed a base point xo in Cg, define the algebraic map

ψ : Cg → JCg , x �→ O(x − xo).
Of course, JCg is canonically identified as H 1(Cg,OCg )/H 1(Cg,Z). Thus, as

a real analytic space, we can identify

JCg � H 1(Cg,R)/H 1(Cg,Z) � H 1(Cg,Z)⊗Z (R/Z)

� HomZ

(

H1(Cg,Z),R/Z
) = Jg (7)

obtained from the R-vector space isomorphism

H 1(Cg,R) � H 1(Cg,OCg ),

induced from the inclusion R ⊂ OCg , where the last equality in (7) follows by
using the basis {a1, b1, . . . , ag, bg} of H1(Cg,Z). The induced map, under the
identification (7),

ψ∗ : H1(Cg,Z)→ H1(JCg ,Z) � H 1(Cg,Z)
is the Poincaré duality isomorphism. To see this, identify

HomZ

(

H1(Cg,Z),R/Z
) � HomZ

(

H 1(Cg,Z),R/Z
)

(8)
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using the Poincaré duality isomorphim:H1(Cg,Z) � H 1(Cg,Z). Then, under the
identifications (7)–(8), the map

ψ : Cg → HomZ

(

H 1(Cg,Z),R/Z
)

can be described as

ψ(x)([ω]) = e2πi
∫ x
xo
ω
,

for any closed 1-formω on Cg representing the cohomology class [ω] ∈ H 1(Cg,Z)
(cf. [M, Theorem 2.5]), where

∫ x

xo
ω denotes the integral of ω along any path in

Cg from xo to x.
Since

ψ∗ : H1(Cg,Z)→ H1(JCg ,Z) � H 1(Cg,Z)
is the Poincaré duality isomorphism, it is easy to see that the cohomology map
induced form ψ :

ψ∗ : H 1(JCg ,Z) � H1(Cg,Z)→ H 1(Cg,Z)
is given by

ψ∗(ai) = b∗i , ψ∗(bi) = −a∗i for all 1 ≤ i ≤ g. (9)

In particular, ψ∗ is an isomorphism. Moreover, the isomorphism does not depend
on the choice of xo.

Consider the map

Cg × Cg I×ψ→ Cg × JCg .

Let P ′ := (I×ψ)∗(P). Then, P ′ is the unique line bundle over Cg×Cg satisfying
the following properties:

P ′|Cg×x = O(x − xo) and P ′|xo×Cg is trivial.

Consider the following line bundle over Cg × Cg:

OCg×Cg (�)⊗ (O(−xo)� 1)⊗ (1 � O(−xo)),
where � denotes the diagonal in Cg × Cg. One sees that this bundle also satisfies
the restriction properties mentioned above and hence it must be isomorphic with
P ′. Consequently,

c1(P ′) = c1(OCg×Cg (�))+ c1(O(−xo)� 1)+ c1(1 � O(−xo)).
Using the definition of P ′ and the functoriality of the Chern classes,

c1(P ′) = c1((I × ψ)∗(P)) = (I × ψ)∗c1(P). (10)
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By (5), c1(P) ∈ H 1(Cg) ⊗ H 1(JCg ), and hence c1(P ′) ∈ H 1(Cg) ⊗ H 1(Cg).
Moreover,

c1(O(−xo)� 1)+ c1(1 � O(−xo)) ∈ H 2(Cg)⊗H 0(Cg)⊕H 0(Cg)⊗H 2(Cg).
Thus, c1(P ′) is the component of c1(OCg×Cg (�)) inH 1(Cg)⊗H 1(Cg). Hence, by
Milnor-Stasheff [MS, Theorem 11.11],

c1(P ′) = −
g
∑

i=1

a∗i ⊗ b∗i +
g
∑

i=1

b∗i ⊗ a∗i .

Therefore, by (10),

c1(P) = −
g
∑

i=1

a∗i ⊗ ψ∗−1
(b∗i )+

g
∑

i=1

b∗i ⊗ ψ∗−1
(a∗i ),

and thus, by (6),

c1(Det P) = −1

2
π∗(c1(P)2)

= −1

2
π∗
(
(−

g
∑

i=1

a∗i ⊗ ψ∗−1
(b∗i )+

g
∑

i=1

b∗i ⊗ ψ∗−1
(a∗i )

)2
)

= −1

2
π∗

(
g
∑

i=1

a∗i · b∗i ⊗ ψ∗−1
(b∗i ) · ψ∗−1

(a∗i )

+
g
∑

i=1

b∗i · a∗i ⊗ ψ∗−1
(a∗i ) · ψ∗−1

(b∗i )

)

= −
g
∑

i=1

ψ∗−1
(b∗i ) · ψ∗−1

(a∗i ) ∈ H 2(JCg ,Z).

Now, the involution τ of JCg induces the map−I onH 1(JCg ,Z) (since, under the
identification θ̄Cg : Jg → JCg , τ corresponds to the map x �→ x−1 for x ∈ Jg).
Therefore,

τ ∗(c1(Det P)) = c1(Det P).
Hence, by the identities (1)–(2),

ξ ∗Cg (xg) = c1(Det F)
= 2c1(Det P)

= 2
g
∑

i=1

ψ∗−1
(a∗i ) · ψ∗−1

(b∗i ), (11)
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which is clearly a nonvanishing class in H 2(JCg ,Z). Moreover, for any g ≥ 2,
under the last equality of (7), the map rg−1 : Jg−1 → Jg corresponds to the map
H1(Cg,Z)→ H1(Cg−1,Z), ai �→ ai, bi �→ bi for 1 ≤ i ≤ g − 1, ag �→ 0, bg �→
0. Thus, by (9) and (11), ξ ∗Cg (xg) restricts, via r∗g−1, to the class ξ∗Cg−1

(xg−1) for
any g ≥ 2. But, by the commutative diagram (E), ξ∗Cg (xg) = yg. This proves
Lemma 4.1. ��
Proof of Proposition 1.7. By the above Lemma 4.1 and the commutative diagram
(F), we see that

f ∗g (dgxg) = f ∗g i∗g(xg+1) = r∗g (f ∗g+1(xg+1)), i.e., dgyg = yg.
Since the cohomology of Jg is torsion free and yg is a nonvanishing class, we get
dg = 1. This concludes the proof of Proposition 1.7. ��
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J. 36, 269–291 (1984)
[R1] Ramanathan, A.: Stable principal bundles on a compact Riemann surface- Construc-

tion of moduli space. Thesis, University of Bombay, 1976
[R2] Ramanathan,A.: Stable principal bundles on a compact Riemann surface. Math.Ann.

213, 129–152 (1975)
[So] Sorger, C.: On moduli of G-bundles on a curve for exceptional G. Ann. Scient. Éc.
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