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Associated to Kac-Moody Groups
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Let G be a semisimple complex algebraic group with a Borel subgroup B and the asso-
" ciated Weyl group W. Then the cohomology with integral coefficients H*{G/B) of the flag
variety G/B has the Schubert basis {€"}wew (cf. §7). Now, as it is well known, the cup
product in this basis has nonnegative coefficients. The aim of this note is to extend this
‘nonnegativity’ result to the flag variety of an arbitrary (not necessarily even symmetriz-
able) Kac-Moody group G (cf. Theorem 8). To our knowledge, this nonnegativity result
was not known for any Kac-Moody group beyond the (finite dimensional) semisimple
group. The main difficulty in extending the proof from the finite dimensional case to an
arbitrary Kac-Moody case lies in the fact that (unlike the finite dimensional case) there is
no algebraic group which acts transitively on the flag variety of an infinite dimensional -
Kac-Moody group G. _

In our attempt to prove this result, we obtained Theorem (4), which is more gen-
eral.
By a variety, we mean a reduced (but not necessarily irreducible} separated

scheme of finite type over the complex numbers C.

(1) Assumption

We take X to be a complete (e.g., projective) variety over C, and H to be a unipotent (in
particular, connected) complex affine algebraic group which acts algebraically on X with

finitely many orbits.

Received 6 April 1998. Revision received 25 June 1998.



758 Xumar and Nori

{(2) Topology of X

Let {Csloes be the set of all the (distinct) H-orbits in X. Then each C, is a (Zariski) locally-
closed subset of X (cf. [H, Proposition 8.3]) and, moreover, H being unipotent, each C; is
isomorphic (as a variety) with the affine space A% for some nonnegative integer d,.

Let Cs be the closure of C,. Then, C, being a complete irreducible variety of
dim d,, the singular homology sz(,(éo, Z) with integral coefficients is freely generated by
the fundamental class 1(Cs). Let Cl(C,) denote its image in Haq, (X, Z).

Using connected solvable group actions and Borel's fixed point theorem as an
aid to relate the Chow group and the singular homology of a variety is, of course, quite
old. For a modern account, see [Fu], where the authors prove Lemma (3) below under
the additional assumption of smoothness. For our purpose, it is essential to avoid this

hypothesis, and hence we have included an indication of its proof.

(3) Lemma. The total homology H.(X,Z) is freely generated (over Z) by the homology
classes {C1(Cs)}ges (under the assumptions (1) on X). In particular, Hany1(X, Z) = O for any
neZ;:=1{0,1,2,...}. O

Proof. Define the filtration of X:
XoCXiC---CXn=X

by H-stable closed subsets, where
Xi = U Co’.
. dg=i
Now the lemma follows by induction on 1 and the long exact homology sequence
associated to the pair (Xi+1, Xi). (Observe that each X; satisfies the assumption (1) as well.)
|

' Let {x%}ses be the dual Z-basis of the singular cohomology
H*(X, Z) = Homgz(H,(X, Z), Z), i.e., x°(C1(C,)) = 8,,, for any o, € S.

Express the cup product for any o1, o9:
[ [ c c
= Y a0
oes

for some (unique) integers ng, ; . With this notation, we have the following theorem.

(4) Theorem. Under assumption (1),

o2

- for any 0,0;,072 € S. O

n
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As a preparation, we first prove the following.

(5) Proposition. Let a unipotent algebraic group H act algebraically on a variety X (not
necessarily with finitely many orbits), and let Y ¢ X be any closed irreducible subva-
riety (of dim d). Then there exists a cycle D = } , n;[D;l, satisfying the following three
conditions:

{1) D is an effective cycle, i.e., each n; > 0.

{2) Each D; is an irreducible H‘-s'gable closed subvariety of X of dim d.

(3) D is rationally equivalent to the cycle [Y]. O

Proof. We first considerthecase H = G, = A': Embed G, ¢ P! = AlU{cco}. Themorphism
0: Gy x X = G4 x X given by (t,x) = (t, t - x) is a Gy-equivariant isomorphism, where‘
G, acts on the domain of 8 by t - (t;,x) = {t + t1,x), and it acts on the range of 8 by
t O (t),x} = (t +t1,t-x). Let Z be the Zariski closure of the image 8(G, x Y) inside the
product variety P! x X, and let 7w : P! x X — P! be the projection on the first factor. We

denote by 7z the restriction of 7t to Z. Then, as is easy to see,
n;10) =Y.

The action ® of G, on G, x X clearly extends to an action of G, on P! x X. Since
oo € P! is fixed and Z is stable under Gg, and moreover 71z is G,-equivariant, we get that
the fibre D := 7r£1(oo) is Gq-stable. Moreover, since dim Z = d + 1, and each irreducible
component D; of D is of dim at least d (cf. [S, Chapter I, §6.3, Theorem 7]), in particular,
dimD; = d for each i. Further, D being G,-stable, each D; is G,-stable. Now taking .
the cycle D determined by the scheme theoretic fibre 7, !(c0), we get the proposition for
H = G,.

The general case can be obtained, by induction on dim H, from the above case by

considering a filtration of H by closed subgroups H;:

H=H; DHy D--- D> H = (e,

such that each H;,, is normal in H; and H;/H;+; = G, as algebraic groups. Consider the
H;-varieties H; xn,,, X and (H;/H;41) x X, where H; acts on the first variety via the left
multiplication on the first factor and on the second variety via the diagonal action. Then
there is an Hj-equivariant isomorphism oj: H; xn,11 X — (H;/H;11) x X taking (h,x)
(hmod H;,;, hx). Now if we start with Y being H;,;-stable, the same argument as above
(replacing o by o) allows us to construct D satisfying (1)-(3) with each D; being H;-stable.

This completes the induction and here proves the proposition. [ |



760 Kumar and Nori'

(6) Proof of Theorem (4)

Let A {X) = @40 AalX) denote the total Chow group of X (cf. [F, Chapter 1]}. Then the proper
morphism A: X - Xx X, x = (x,x), induces a group homomorphism A,: A.{X) = A (XxX).
Let [C,l € A4,(X) denote the element corresponding to the irreducible subvariety Coc X
of dim d,. Let Y, be the (irreducible) subvariety A(Cy) of X x X.

The group H x H acts on X x X factorwise and, moreover, the H x H orbits are
precisely {Cqs, x Cq,}6,,05es. In particular, the complete variety X x X (cf. [M, §1.9]) under
the action of H x H satisfies assumption {1). In particular, applying Proposition (5) to the

H x H variety X x X, we get (as elements of A4, (X x X))
Yol =) m? ,,ICs, x Coyl, | : ()

for some nonnegative integers mg, . Consider the natural map (cf. [F, §19.1])

Cl = Clxxx: A*(X X X) d HZ*(X X X,Z),

which takes a cycle 3 ni[Vil = 3 n; C1(V;), where C1(V;) denotes the image of the funda-
mental homology class (Vi) of V; in H,(X x X, Z).
Taking the image of (*) under Cl, we get

CllYol =Y mg ,, C1(Co) ® C1(Co,).

[ — o2
o102 = Ty and hence the theorem

follows. | |

From the above, we easily obtain that m

(7} Flag varieties associated to Kac-Moody groups

We refer the reader to [X, §1], the notation of which we shall follow freely. In particular,
G is the Kac-Moody group (associated to any, not necessarily symmetrizable, Kac-Moody
Lie algebra g) with standard maximal torus T, U C G is the prounipotent proalgebraic
group as in [K], and B := T o« U C G is the standard Borel subgroup. Let W := N(T)/T
be the Weyl group associated to G, where N(T) is the normalizer of T in G. Then W is a
Coxeter group. We have the Bruhat decomposition
X:=G/B= | JUwB/B),
weW
where the union is disjoint. For any n > 0, set

Xn= | (UwB/B),

wew
thvl<n
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where £(w) is the length of w. Then each X, acquires the structure of a projective variety,
called the ‘stable’ variety structure on X,,. Under this structure, the inclusion i,: Xn<—>Xn41
is a closed embedding. In particular, X becomes a projective ind-variety. We endow X with
the inductive limit Zariski and Hausdorff topologies and refer to them as the Zariski and
Hausdorff topologies on X, respectively. Each UwB/B is a locally closed subset of X under
both the topologies and, moreover, under the induced variety structure, it is isomorphic

with the affine space A™. Define the Schubert variety (for any w € W)
Xw = UWB/B C X, '

where the ‘bar’ denotes the closure under the Zariski topology. Then X,, is an irreducible
projective variety of dim = (w) (under the subvariety structure inherited from any X,,
n > {(w)). _ '

Now we consider X with the Hausdorff topology. By an argument similar to that
of the proof of Lemma (3), we see that the elements {Cl(X.,) € Hapu(X, Z)}yew form a
Z-basis of H.(X, Z). Let {¢"},vew be the dual basis of H*(X, Z) = Homz(H.(X, Z), Z); i.e.,

e'(Cl(Xw) = dyy for viwe W.

Write
UV wow
g'eY = E MyvE
weW

for some (unique) n}}, € Z. We call the numbers ny, the cup product coefficients.

As a consequence of Theorem (4), we obtain the following.

(8) Theorem. With the notation and assumptions as in the above section (7), we have
ny, € Zy forall u,v,weW. O

Proof. For any n > 0, as is easy to see, {i:‘l(se)}g(e,sn is a Z-basis of H*(X,, Z), where
in: Xn—Xis the inclusion and i¥: H*(X,Z) — H*(X,, Z) is the induced map in cohomology.
Further, i*(e%) = 0, if £(6) > .

Now fix u,v,w and choose n > max({(u), £(v), £(w)). Then the theorem follows im-
mediately by applying Theorem (4) to the projective variety X, and using the following

lemma. .
The following lemma is well known and follows from [S], §1.11, Lemma 2].

{9) Lemma. For any n > 0, there exists a (finite dimensional) unipotent algebraic group

Un, which is a quotient group of U, such that the action of U on X, (given by the left
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multiplication) factors through the action of U, on X,, to give an algebraic action of U,

on X,. In particular, the U,-variety X, satisfies assumption (1). -0

(10) Remarks. (a) There is a ‘combinatorial’ formula for the cup product coefficients
given by Kostant and Kumar (cf. [KK, Corollary 5.13(a)]) in terms of the ‘Nil Hecke ring,’
more specifically, the ‘matrix D.” (A simpler expression for the matrix D is given by Billey
in the finite case and extended to the arbitrary Kac-Moody case by Kumar; cf. (B, Theorem 3
and the Appendix].) But the formula involves summation of certain positive and negative
terms. We have not been able to deduce the nonnegativity of the cup product coefficients
ny, from this formula. It may be mentioned that even in the case when G is a (finite
dimensional) semisimple algebraic group, to our knowledge, there are no combinatorial
proofs for the nonnegativity of the cup product coefficients.

(b) Theorem (4) can easily be generalized to the case when X is an arbitrary (not
necessarily complete) variety with an action of a unipotent group with finitely many
orbits, provided we replace the singular cohomology H*(X,Z) by the singular cohomol-
ogy with compaét supports H(X,Z), and replace the singular homology H.(X,Z}) by the
Borel-Moore homology. The necessary prerequisites for evaluating cycle classes in the
Borel-Moore homology can be found in [F, Chaptef.lgl. The precise formulation of this
generalization (and its proof) is straightforward and hence is left to the interested reader.

(c) As mentioned by Dale Peterson, the nonnegativity of the cup product coeffi-
cients, in the case when G is an affine Kac-Moody group, gives rise to a certain ‘nonneg-
ativity result’ for the quantum cohomology of the finite dimensional flag varieties. .

(d) In Theorem (4}, both the hypotheses—that H is unipotent, and H has finitely
many orbits in X—are essential. This can easily be seen by considering the blow-up of

P? at a point.
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