Fusion Product of Positive Level Representations and Lie Algebras Homology

SHILPA N. KUMAR
Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA.

Introduction

Let \(g \) be a finite-dimensional simple Lie algebra (with the associated simply-connected complex simple Lie group \(G \)) and let \(\mathfrak{a} \) be the corresponding affine Kac-Moody Lie algebra. Fix a positive integer \(
\alpha \), and let \(\mathfrak{a}_+ \) be the root lattice generated by the set of nonnegative weight vectors \(\rho \) of the lie algebra \(\mathfrak{g} \). We recall the definition of the tensor product \(\otimes \) in \(\mathfrak{g}(\mathfrak{g}) \) and of the standard tensor product \(\otimes \) in \(\mathfrak{g}(\mathfrak{g}) \) of the finite-dimensional irreducible modules \(V \) of \(\mathfrak{g} \) (cf. Definition 2.2). Our definition of the product \(\otimes \) is very similar and geometric in nature.

A comprehensive study of tensor products \(\otimes \) with \(g \) is given in [1]. The authors of this manuscript are partially supported by grants from the NSF. We first establish some lemmas and technical results relevant for the fusion product \(\mathfrak{g}(\mathfrak{g}) \) of \(\mathfrak{g} \). We then use these results to prove Theorem 2.1, which states that the fusion product \(\mathfrak{g}(\mathfrak{g}) \) is isomorphic to the Lie algebra \(\mathfrak{g}(\mathfrak{g}) \) of the Lie algebra \(\mathfrak{g} \).
is completely determined by Kostant's "homology result" for the affine Kac-Moody algebra g (proved by Gindikin-Lepowsky).

Validity of the above-mentioned Conjecture 2.5 will immediately imply that the two products Δ and Δ' in $R(g)$ are the same. In fact, a much weaker result will imply these equalities (cf. Lemma 4.3). We prove this weaker result for the simple case of g of type A_n, B_n, C_n, D_n and G_2 (cf. Theorem 4.4). This provides an alternative (more uniform) proof of a result of Fuchs (cf. Remark 4.2.5); see also Remark 4.4.5. In fact, we are also able to characterize the full homology $H_i(g)$ only for the group $G=SL(2)$.

This is only an announcement of results without proofs.

1. Preliminaries and Notation

Definition 1.1. Let g be a finite-dimensional complex simple Lie algebra. We also fix a fixed subspace h and a Cartan submodule $h \leq \mathfrak{g}$ of g. Then the associated affine Kac-Moody Lie algebra is defined by the space

$$\hat{g} \cong g \otimes \mathbb{C}[t, t^{-1}]$$

which is the direct sum of g with the one-dimensional complex vector space \mathbb{C}.

Definition 1.2. The Killing form on g is the bilinear form $\kappa : g \times g \to \mathbb{C}$ defined by

$$\kappa(\xi, \eta) = \mbox{tr}(\theta(\xi) \cdot \eta),$$

where θ is the inner automorphism of g induced by the Cartan subalgebra h.

Definition 1.3. The Levi subalgebra $\mbox{Levi}(g)$ of g is the direct sum of the subalgebra \mathfrak{h} of g and the subalgebra of all the elements of g which are in \mathfrak{h}.

2. A Certain Complex and Lie Algebra Homology

Definition 2.1. (Definition of a complex). Fix a positive integer m and a finite-dimensional m-dimensional complex representation $V = V(\lambda)$ of g with highest weight λ in the root lattice of g. Recall the parabolic subalgebra of Kac-Moody Lie algebras (cf. [6] and [10], Theorem (3.22))

$$\hat{g} = \mathfrak{g} \oplus \mathbb{C} \cdot 1,$$

where 1 is the identity element of g, and the associated complex, \hat{g}, is the direct sum of the space \mathfrak{g} with the complex vector \mathbb{C}.

Therefore, we have the following definition:

$$\hat{g}^\wedge = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \otimes \mathbb{C},$$

and the Cartan subalgebra \mathfrak{h} of \hat{g} is the direct sum of the subalgebra \mathfrak{h} of g and the subalgebra of all the elements of g which are in \mathfrak{h}.

Definition 2.2. (Definition of a complex). Fix a positive integer m and a finite-dimensional m-dimensional complex representation $V = V(\lambda)$ of g with highest weight λ in the root lattice of g. Recall the parabolic subalgebra of Kac-Moody Lie algebras (cf. [6] and [10], Theorem (3.22))

$$\hat{g} = \mathfrak{g} \oplus \mathbb{C} \cdot 1,$$

where 1 is the identity element of g, and the associated complex, \hat{g}, is the direct sum of the space \mathfrak{g} with the complex vector \mathbb{C}.

Thus, we have the following definition:

$$\hat{g}^\wedge = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \otimes \mathbb{C},$$

and the Cartan subalgebra \mathfrak{h} of \hat{g} is the direct sum of the subalgebra \mathfrak{h} of g and the subalgebra of all the elements of g which are in \mathfrak{h}.
Take any \(\mu \in \text{P}^3 \), realize \(V(\mu) \) as a module for \(\mathfrak{g} \) via evaluation at \(1 \), consider it as a module for \(\mathfrak{g} \) by letting \(\mathfrak{g} \) act trivially on \(V(\mu) \) via the Lie algebra structure by \(V(\mu) \). Then:

\[
\text{Tr}(\mathfrak{g}) \otimes V(\mu) \to \mathfrak{g} \otimes V(\mu) \to V(\mu)
\]

we get a resolution:

\[
\cdots \to F_2 \otimes V(\mu) \to F_1 \otimes V(\mu) \to F_0 \otimes V(\mu) \to V(\mu) \to 0.
\tag{2.12}
\]

Torsion the complex (2.12) with \(C \) over \(\mathbb{Z}_l \) [19] and using the Hopf algebra principle [cf. [7], Proposition 1.15] we obtain a complex of \(\mu \)-modules and \(\mu \)-module maps:

\[
\cdots \to F_2 \otimes \mathbb{Z}_l \rightarrow F_1 \otimes \mathbb{Z}_l \rightarrow F_0 \otimes \mathbb{Z}_l \rightarrow 0,
\tag{3.32}
\]

where \(F_K \otimes \mathbb{Z}_l \rightarrow \mathbb{Z}_l \otimes V(\mu) \).

The maps \(d_\mu \) are quite covariant, e.g. the map \(d_1 : F_1 \rightarrow F_0 \) can be explicitly described as below:

Pick an \(\alpha \), \(F_1 \rightarrow F_0 \) can be explicitly described as below:

\[
\text{Tr}(\mathfrak{g}) \otimes V(\mu) \to \mathfrak{g} \otimes V(\mu) \to V(\mu) \to 0.
\tag{2.12}
\]

Then for each \(\mu \in \text{P}^3 \), there is a tensor product:

\[
L(V(\mu), \phi) = L(V(\mu), \sigma),
\]

which is again an integrable representation of \(\mathfrak{g} \) with the same central charge \(\ell \), in the following sense:

\[
L(V(\mu), \phi) = \bigoplus_{\sigma} \bigoplus_{\mathbf{c}(\sigma) \in \mathbb{Z}_l} R(V(\mu), \sigma),
\]

where \(\mathbf{c}(\sigma) \) is the dimension of the space of vacua for the Riemann surface \(\mathbb{P}^2 \) with three punctures \(k, l, m \) and the representation \(V(\mu), \phi \) and \(V(k) \) attached to them respectively (cf. [30]).

Let \(\mathcal{G} \) be the affine Kac-Moody group associated to the Lie algebra \(\mathfrak{g} \) and \(\tilde{\mathcal{G}} \) be the \(\mathfrak{g} \)-module associated to the Lie algebra \(\mathfrak{g} \) (cf. [31]). Then \(\tilde{\mathcal{G}} \) is a projective limit. Now, given a finite-dimensional \(\mathfrak{g} \)-module \(V \), we can consider the associated homogeneous vector bundle \(V \otimes \mathcal{O} \) on \(X \) and the corresponding Euler-Poincaré characteristic (which is a virtual \(\mathbb{Z} \)-module):

\[
\chi(X, V) = \sum_{j=0}^{\infty} (-1)^j \dim H_j(X, V).
\]

Recall that \(\chi(X, V) \) is determined in [9]. Corollary 2.15 (and also in [13]). We give a new definition of a fusion product \(\text{F} \) following the following:

Definition 3.3. For any positive integer \(\ell \) and \(\mu \in \text{P}^3 \), define

\[
\text{F}_\mu(\ell) \otimes \text{F}_\mu(\ell) \equiv \chi(X, V).
\]

As virtual \(\mathbb{Z} \)-modules, where the \(\mu \)-module \(V = \text{F}_\mu(\ell) \otimes \text{F}_\mu(\ell) \) and the notation \(\ell \).
Let $R[G]$ be the free Abelian group generated by $\{LV(u) : u \in P]\}$. Then $G\otimes^\alpha R[G]$ gives rise to a product in $R[G]$.

Let G be the (singly-)monochromatic complex algebraic group with Lie algebra \mathfrak{g}, and let $R[G]$ be its representation ring. $R[G]$ is the free Abelian group generated by the G-modules $L(V) : \alpha \in \mathfrak{g}^*$, which is a ring under the usual tensor product of G-modules. Define the α-linear map $R: R[G] \rightarrow R[G]$ by $R(V) = V(X^\alpha)$, where X is the homogeneous vector bundle on X associated to the \mathbb{P}-module $L(W)$ and Y^α is the dual vector bundle on X.

We have the following lemma.

Lemma 3.2. The kernel of α is an ideal of $R[G]$. Moreover, α is a homomorphism with respect to the product $G\otimes^\alpha R[G]$.

In particular, $R[G]$ is an associative (and commutative) algebra under $G\otimes^\alpha$.

4. Comparison of the Two Fusion Products

We denote $R_\beta[G]$ equipped with the fusion product $G\otimes^\beta R[G]$ (see [10, 12]) by $(R[G], G\otimes^\beta)$. Recall that the associativity of $(R[G], G\otimes^\beta)$ follows from the Schur-Weyl duality [10] for P with parameters.

Let $\alpha \in \mathfrak{g}$ be a regular vector, $\alpha \neq 0$.

$L(V,\alpha) = \sum_{x \in G} \text{dim} \left(H_{\text{L}}(V,\alpha,\text{L}(L(V,\alpha),\alpha \in \mathfrak{g}^*)) \right)$.

For any $x \in G$ let L_x be the 4th fundamental weight corresponding to x. We have the following lemma.

Lemma 4.1. The products $G\otimes^\alpha R[G]$ coincide if and only if for all $x, y, v \in P^\alpha$, $L_x(v, \alpha) = 0$.

In particular, if $G\otimes^\alpha R[G]$ is associative then one must have $L_x(v, \alpha) = 0$.

As a consequence of the above lemma, together with some results of [1, Corollary 4.3], [2] and some partial determinations of $L_x(L(V,\alpha),\alpha \in \mathfrak{g}^*)$ for those α such that $(\alpha, P^\alpha) \neq 0$, we obtain the following result.

Theorem 4.2. For any simply-connected group G of type A_n, B_n, C_n, D_n or G_2, the products $G\otimes^\alpha R[G]$ coincide, and in particular, for those groups, the α-linear map $R: R[G] \rightarrow R[G]$ (cf. Definitions 3.1) is an algebra homomorphism with respect to the product $G\otimes^\alpha R[G]$.

Theorem 4.3. For any vector $(x, \alpha) \neq 0$, for all $x, y, v \in P^\alpha$, if α is integer, $\alpha \in \mathbb{Z}$, then $L_x(v, \alpha) = 0$.

The “in particular” statement of the above theorem is due to Pakings [5, Appendix].

References

