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Introduction

Let G be a simple simply-connected connected complex a�ne algebraic group
and let C be a smooth irreducible projective curve of genus = 2 over the �eld
of complex numbers C. Let M be the moduli space of semistable principal G-
bundles on C and let Pic M be its Picard group, i.e., the group of isomorphism
classes of algebraic line bundles on M. Following is our main result (which
generalizes a result of Drezet-Narasimhan for G = SL(N ) [DN] to any G).

(A) Theorem. With the notation as above; Pic (M) ≈ Z.
A more precise result is obtained in Theorem (2.4) together with Theorem

(4.9).
We use the above result and a result of Grauert-Riemenschneider to prove

the following second main result of this paper.

(B) Theorem. The dualizing sheaf ! of the moduli space M is locally free.
In particular; M is a Gorenstein variety.
Further; for any �nite dimensional representation V of G; H i(M; �(V )) =

0; for all i ¿ 0; where �(V ) is the theta bundle on the moduli space M. In
particular;

X(M; �(V )) = dimH 0(M; �(V )) ;

where X is the Euler-Poincar�e characteristic.

In fact, we have a sharper result than the above (cf. Theorem 2.8).
We make essential use of the generalized 
ag variety X associated to the

a�ne Kac-Moody group corresponding to G, which (i.e. X ) parametrizes an
algebraic family of G-bundles on C, and the fact that Pic X ' Z. We also
need to make use of the explicit construction of the moduli space M via GIT.
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1. Notation

Let G be a simple simply-connected connected complex a�ne algebraic group
and let C be a smooth irreducible projective curve of genus = 2 over the �eld
of complex numbers C. As in [KNR, Theorem 3.4], let M be the moduli space
of semistable principal G-bundles on C. Also, �x a point p ∈ C and recall
the de�nition of the generalized 
ag variety X = G=P (associated to the a�ne
Kac-Moody group G corresponding to the group G) from [KNR, Sect. 2.1], its
open subset X s and the morphism  : X s →M from [loc. cit., De�nition 6.1].
Also, recall the notation � from [loc. cit., Sect. 1.1] and the notation W̃;W; Xw

from [loc. cit., Sect. 2.1].
For any ind-variety Y , by an algebraic vector bundle of rank r over Y ,

we mean an ind-variety E together with a morphism � : E → Y such that
(for any n) En → Yn is an algebraic vector bundle of rank r over the (�nite
dimensional) variety Yn, where {Yn} is the �ltration of Y giving the ind-variety
structure and En := �−1(Yn). If r = 1, we call E an algebraic line bundle over
Y . For an introduction to ind-varieties, see [Ku2, Appendix B].
Let E and F be two algebraic vector bundles over Y . Then a morphism (of

ind-varieties) ’ : E → F is called a bundle morphism if the following diagram
is commutative:

E
’−→F

↘ ↙
Y

and moreover ’|En : En → Fn is a bundle morphism for all n. In particular, we
have the notion of isomorphism of vector bundles over Y .
We de�ne Pic Y as the set of isomorphism classes of algebraic line bundles

on Y . It is clearly an abelian group under the tensor product of line bundles.
For any set Y , IY denotes the identity map of Y .

2. Statement of the main theorems

We follow the notation from Sect. 1.

(2.1) Lemma. The morphism  : X s →M induces an injective map

 ∗ : Pic (M) −→ Pic (X s) :

Proof. Let L ∈ Pic (M) be in the kernel of  ∗, i.e.,  ∗(L ) admits a nowhere-
vanishing regular section � on the whole of X s. Fix m ∈M and a triv-
ialization for L|m . This canonically induces a trivialization for the bundle
 ∗(L )| −1(m). In particular, the section �| −1(m) can be viewed as a (regu-
lar) map �m :  −1(m) → C∗. But  −1(m) is a certain union of �-orbits say
 −1(m) = ∪

i∈I
�xi, for xi ∈ X and moreover �xi∩�xj-∅, for any i; j ∈ I , where

�xi is the closure of �xi in X s (cf. [KNR, Proof of Proposition 6.4]). Fixing
i ∈ I , we get a regular map �m; i : � → C∗, de�ned as �m; i(
) = �m(
xi), for
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 ∈ �. Now by [Ku2, Proposition 2.4], �m; i is a constant map for any i ∈ I ,
and hence �m :  −1(m) → C∗ itself is a constant map. Thus the section �
descends to a set theoretic section �̂ of the line bundle L , which is regular
by [KNR, Proposition 4.1 and Lemma 6.2]. Of course, the section �̂ does
not vanish anywhere on M (since � was chosen to be nowhere-vanishing on
X s). This proves that L is a trivial line bundle on M, thereby proving the
lemma.

It is clear that for any ind-variety Y , we have a natural map � : Pic Y →
←−n
lim Pic (Yn) :

(2.2) Lemma. Pic X ≈ lim←−w∈W̃ =W
Pic(Xw) ≈ Z :

Proof. We will freely follow the notation from [KNR, Sect. 2.3]. Since the
line bundles L (d�0) (for d ∈ Z) (denoted in loc. cit. by L(d�o)) are, by
construction, algebraic line bundles on X and moreover, for any w = so,
L (�0)|Xw

freely generates Pic(Xw), the surjectivity of the map � follows. Now
we come to the injectivity of �:
Let L ∈ Ker �. Fix a non-zero vector vo in the �ber of L over the base

point e ∈ X . Then L|Xw
being a trivial line bundle on each Xw, we can choose a

nowhere-vanishing section sw of L|Xw
such that sw(e ) = vo: We next show that

for any v = w; sv|Xw
= sw: Clearly sv|Xw

= fsw; for some algebraic function
f : Xw → C∗. But Xw being projective and irreducible, f is constant and in
fact f ≡ 1 since sv(e ) = sw(e ): This gives rise to a nowhere-vanishing regular
section s of L on the whole of X such that s|Xw

= sw. From this it is easy
to see that L is isomorphic with the trivial line bundle on X . This proves
that � is an isomorphism. Now the second isomorphism is proved in [KNR,
Proposition 2.3].

We state the following very crucial ‘lifting’ result, the proof of which will
be given in the next section.

(2.3) Proposition. There exists a map  ∗ : Pic (M) → Pic (X ); making the
following diagram commutative:

Pic(M)
 ∗ ↙ ↘  ∗

Pic (X ) →
i∗

Pic (X s) ;

where i∗ is the canonical restriction map.

As an easy consequence of the above proposition, Lemmas (2.1) and (2.2),
we get the following main result of this paper.

(2.4) Theorem. For any smooth projective irreducible curve C of genus = 2
and simple simply-connected connected a�ne algebraic group G; the map  ∗
(as in the above proposition) is an injective group homomorphism.
In particular; Pic (M) ≈ Z.
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Proof. Injectivity of  ∗ follows from the injectivity of  ∗ (cf. Lemma 2.1) and
the commutativity of the diagram in Proposition (2.3). By Proposition (2.3),
Image  ∗ ⊂ Image i∗. But since Pic X ≈ Z (by Lemma 2.2), Image i∗ is either
�nite or else Image i∗ ≈ Z. Now since M is a projective variety of dim ¿ 0
(cf. [R1, Theorem 4.9]) and  ∗ is injective, Image i∗ can not be �nite, in parti-
cular, i∗ is injective. Since  ∗ and i∗ are group homomorphisms and i∗ is inject-
ive, we get that  ∗ is a group homomorphism. This proves the theorem.

(2.5) De�nition. Let nC;G ¿ 0 be the least (positive) integer such that
L (nC;G�0) ∈ Image  ∗. Then of course

Image  ∗ = {L (dnC;G�0)}d∈Z
We will be concerned with determining the number nC;G in Sect. 4.

(2.6) Remark. In the case when G = SL(n;C), it is a result of Drezet–
Narasimhan [DN] that Pic (M) ≈ Z.

We recall the following well known result. (We include a proof since we
did not �nd it in the literature in this form.)

(2.7) Lemma. Let Y be a Cohen–Macaulay projective variety and let U ⊂ Y
be an open subset such that codimY (Y\U ) = 2. Now let S1 and S2 be
two re
exive sheaves on Y such that S1|U

≈S2|U
. Then the sheaf S1 is

isomorphic with S2 on the whole of Y .

Proof 1. We recall the following two facts from Commutative Algebra.

Fact 1: If M;N are modules over a noetherian local ring with depth M;N ¿ 1,
and 0→ M → N → K → 0 is an exact sequence, then depth K ¿ 0.

Fact 2: If M is re
exive, then for any localisation Mp of M at a prime ideal
p, depth Mp ¿ 1, unless the dimension of the local ring itself is less than 2
(i.e. M satis�es the ‘Serre condition’ S2).
Let i : U ,→ Y be the inclusion. Then from the above facts (and the as-

sumptions of the lemma), one can check that i∗i∗Sj = Sj (for j = 1; 2).
Thus any homomorphism i∗S1 → i∗S2 on U gives rise to a homomorphism
S1 → S2, i.e., Hom (S1;S2)→ Hom (i∗S1; i∗S2) is surjective. Injectivity
is clear using re
exivity. This proves the lemma.

We come to the following second main result of this paper.

(2.8) Theorem. The dualizing sheaf ! of the moduli space M is locally free.
Moreover;  ∗(!) = L (−2g�0); where g is the dual Coxeter number of the
Lie algebra g of G (cf. [KNR, Remark 5.3]).
In particular; M is a Gorenstein variety. Further; for any line bundle L

on M such that  ∗(L ) = L (d�0) for some d ¿ −2g; H i(M;L ) = 0; for all
i ¿ 0 So; for any �nite dimensional representation V of G; H i(M; �(V )) = 0;
for all i ¿ 0; where �(V ) is the theta bundle on the moduli space M.

1 This proof is due to N. Mohan Kumar.
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Proof. Let Mo := {E ∈ M;E is a stable G-bundle and Aut E = centre of
G}: Then Mo is an open subset of the smooth locus of M and, for any E ∈Mo,
the tangent space TE(Mo) can be identi�ed with H 1(C;AdE), where AdE
is the vector bundle on C associated to the principal G-bundle E via the
adjoint representation Ad of G in its Lie algebra g. Also, on the set of stable
bundles in the moduli space there are no identi�cations, i.e., if E1 and E2
are two stable G-bundles on C such that E1 is S-equivalent to E2, then E1 is
isomorphic with E2 (as follows from the de�nition of S-equivalence, cf. [KNR,
Sect. 3.3]). Moreover, for any E ∈Mo, H 0(C;AdE) = 0. In particular, the �ber
of the canonical bundle of Mo at E can be identi�ed with ∧top(H 1(C;AdE)∗),
where ∧top is the top exterior power. This gives, from the de�nitions of the
determinant bundle and the �-bundle (cf. [KNR, Sect. 3.8]), that

Det (Ad)∗|Mo = �(Ad)∗|Mo = !|Mo :

But �(Ad)∗ is a line bundle on the whole of M (cf. [loc. cit., Sect. 3.8]). Since
any line bundle is a re
exive sheaf (cf. [H, Exercise 5.1, p. 123]), �(Ad)∗

is a re
exive sheaf on M. Since the dualizing sheaf ! of a normal variety is
always re
exive; the moduli space M is Cohen–Macaulay and normal (cf. [R1,
Theorem 4.9]); and codimM(M\Mo) = 2 (unless the curve C is of genus 2
and G = SL(2)) (cf. [F, Theorem II.6]); we obtain from Lemma (2.7):

! ≈ �(Ad)∗; on the whole of M :(1)

(In the case of G = SL(2) the validity of (1) is well known.) This of course
gives that M is a Gorenstein variety (by de�nition). Now the assertion that
 ∗(!) = L (−2g�0) follows from [KNR, Theorem 5.4 and Lemma 5.2].
Finally we come to the proof of cohomology vanishing: By Serre duality

[H, Corollary 7.7, Chap. III] (denoting dim M = n),

Hi(M;L )∗ ≈ Hn−i(M;L ∗ ⊗ !)

= Hn−i(M;L ∗ ⊗�(Ad)∗); by (1) :(2)

But  ∗(L ∗⊗�(Ad)∗) = L ((−d− 2g)�0). Now since Pic (M) ≈ Z (by Theo-
rem 2.4), we get that the line bundle L⊗�(Ad) is ample on M (by assumption
d ¿ −2g).

The moduli space M has rational singularities, as follows from [R1, Proof
of Theorem 4.9] and a result of Boutot [Bo]. Now the vanishing of Hi(M;L )
(for i ¿ 0) follows from (2) and a result of Grauert-Riemenschneider [GR].
So the proof of the theorem is complete in view of [KNR, Theorem 5.4].

(2.9) Corollary. For any �nite dimensional representation V of G;

X(M; �(V )) = dimH 0(M; �(V )) ;

where X is the Euler-Poincar�e characteristic:

X(M; �(V )) =
∑
i
(−1)i dimHi(M; �(V )) :
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3. Extension of line bundles. Proof of Proposition (2.3)

(3.1). Recall the de�nition of the map ’ : G → X0 from [KNR, Sect. 1]
(where X0 denotes the set of isomorphism classes of principal G-bundles on
C which are algebraically trivial restricted to C∗ := C\p). Fix an embedding
G ,→ SL(n), for some n. In particular, any principal G-bundle E on C gives rise
to a vector bundle E of rank n on C (associated to the standard representation
of SL(n)). For any integer d= 1, de�ne

Xd = {gP ∈ X : H 1(C; ’(g)⊗ O(−x + dp)) = 0 for all x ∈ C} ;
where p ∈ C is the �xed base point. Then

X1 ⊂ X2 ⊂ · · · :
(3.2) Lemma. Each Xd is open in X . Moreover X s ⊂ X2h; where X s := {gP ∈
X : ’(g) is a semistable G-bundle}; and h is the genus of the curve C.

Proof. It su�ces to prove that Xd ∩ Xw is open in Xw, for each w ∈ W̃ =W :
Recall the de�nition of the family of G-bundles U→ C × X from [KNR,

Proposition 2.8]. Consider the restriction Uw of the G-bundle U → C × X to
C × Xw and let Uw be the associated rank-n vector bundle (corresponding to
the embedding G ,→ SL(n)). De�ne a vector bundle Ũw on C × C × Xw such
that Ũw|x×C×Xw

= O(−x+dp)⊗Uw for each x ∈ C; and let �:C×C×Xw →
C×Xw be the projection on the two extreme factors. Applying the upper semi-
continuity theorem [H, Chapter III, Sect. 12] to the morphism � and the locally
free sheaf Ũw on C × C × Xw, we get that the set

S := {(x; gP) : H 1(C; ’(g)⊗ O(−x + dp))-0}
is a closed subset of C × Xw. In particular, �2(S) is a closed subset of Xw,
where �2 : C × Xw → Xw is the projection on the second factor. It is easy to
see that Xd ∩ Xw = Xw \ �2(S). This proves that Xd is open in X .
For gP ∈ X s; ’(g) is a semistable vector bundle (cf. [RR, Theorem 3.18]),

and hence the dual vector bundle ’(g)
∗
is also semistable. Now, by the Serre

duality,

H 1(C; ’(g)⊗ O(−x + dp)) ≈ H 0(C; ’(g)
∗ ⊗ O(x − dp)⊗ K)∗ :

Since ’(g)
∗
is semistable, H 0(C; ’(g)

∗⊗O(x−dp)⊗K)-0 implies that d−1−
deg K 5 0. In particular, if d = 2 + deg K; then gP ∈ Xd. This proves the
lemma since deg K = 2h− 2.

We have
∪

d=1
Xd = X ;

since each Schubert variety Xw is contained in some large enough Xd (d of
course depending upon w). This follows by the upper semi-continuity theo-
rem (using an argument similar to the one used in the proof of the above
lemma).
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(3.3). Fix any d= 2h. For all m= d and gP ∈ Xd, we have

(1) H 1(C; ’(g)⊗ O(mp)) = 0, and
(2) H 0(C; ’(g)⊗ O(mp)) generates the vector bundle ’(g)⊗ O(mp) at every

point of C.

Let qd := dimH 0(C; ’(g) ⊗ O(dp)). Then by Riemann-Roch theorem, qd =
n(d+1−h). Denote by �d :Fd → Xd the GL(qd)-bundle such that for gP ∈ Xd,
�−1d (gP) is the set of all the frames of the vector space H 0(C; ’(g)⊗O(dp)).
We call Fd the frame bundle associated to the family U|Xd (parametrized by
Xd). Similarly, de�ne the frame bundle �d+1 : Fd+1 → Xd+1. Consider the
parabolic subgroup P = {� ∈ GL(qd+1) : �Cqd = Cqd} of GL(qd+1), where
(for de�niteness) Cqd ,→ Cqd+1 is sitting in the �rst qd coordinates. We de�ne
the principal P-subbundle Qd of Fd+1|Xd by

Qd = ∪
gP∈Xd

{s = (s1; : : : ; sqd+1) a frame of H 0(C; ’(g)⊗ O((d+ 1)p))

such that (s1; : : : ; sqd) is a frame of H
0(C; ’(g)⊗ O(dp))} :

(Observe that H 0(C; ’(g)⊗O(dp)) sits canonically inside H 0(C; ’(g)⊗O((d+
1)p)) induced from the embedding ’(g)⊗O(dp) ,→ ’(g)⊗O((d+1)p).) Then
we have the following commutative diagram:

Fd
�d
� Qd ,→ Fd+1

�d ↓ ↓ �d+1

Xd ,→ Xd+1;

where �d takes any s = (s1; : : : ; sqd+1) ∈ Qd to the frame (s1; : : : ; sqd) of
H 0(C; ’(g) ⊗ O(dp)). It is clear that �d is a principal U -bundle, where
U := {� ∈ GL(qd+1) : �|Cqd

= I } ⊂ P. Clearly U is a normal subgroup
of P.
As in [KNR, Sect. 7.8], we have an irreducible smooth quasi-projective vari-

ety Rd with an action of GL(qd), a familyWd of G-bundles on C parametrized
by Rd and a lift of the GL(qd)-action to Wd (as bundle automorphisms),
such that there exists a GL(qd)-equivariant morphism ’d : Fd → Rd with
the property that the families �∗d(U|Xd ) and ’∗d(Wd) are isomorphic. More-
over, let Rs

d = {x ∈ Rd :Wd(x) :=Wd|C×x
is a semistable G-bundle} be the

GL(qd)-invariant open subset of Rd. Then the canonical map �d : Rs
d → M is

surjective. Moreover, �d is GL(qd)-equivariant with respect to the trivial action
of GL(qd) on the moduli space M (of semistable G-bundles on C). We recall
the construction of Rd for its use in the sequel [R1, Sects. 3.8, 3.13.3]:
Let Ro

d be the set of locally free quotients E of Cqd ⊗C OC of rank n and
degree nd such that the canonical map Cqd ≈ H 0(Cqd ⊗C OC) → H 0(E) is
an isomorphism. Then Ro

d supports the tautological family Ŵd
o
of rank-n vector
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bundles on C. Set Wo
d = Ŵd

o ⊗OC×R o
d
OC(−dp). Now let

Rd = {(x; �) : x ∈ Ro
d and � is a reduction of the structure group

of Wo
d|C×x to G} :

Then clearly Rd supports a canonical family Wd of G-bundles on C and more-
over GL(qd) acts on Wd via its action on Cqd .

Using H 1(C; E) = 0, one proves that Rd is smooth and that the in�nitesimal
deformation map Tt(Rd)→ H 1(C;Ad (Wd|C×t)) is surjective, where Tt(Rd) is
the tangent space at t to Rd.

(3.4) Proposition. For any d = 2h; the codimension of Rd\Rs
d in Rd is at

least 2; where Rd is explicitly constructed as above.

To prove the above proposition, we need the notion of the canonical reduc-
tion (or �ltration) of a principal G-bundle on C. We choose a Borel subgroup
B of G and a maximal torus T ⊂ B. By a standard parabolic subgroup we
mean a parabolic subgroup P containing B. The following result is due to
Ramanathan [R2, Proposition 1] (see also [Be]).

(3.5) Theorem. Let E be a principal G-bundle on C. Then there exists a
unique standard parabolic subgroup P of G and a unique reduction EP of E
to the subgroup P such that the following conditions hold:

(1) If U is the unipotent radical of P; then the P=U -bundle EP=U ; obtained
from EP by extension of the structure group via P → P=U; is semistable.
(Observe that P=U is reductive.)

(2) For any non-trivial character � of P which is a non-negative linear com-
bination of simple roots of B; the line bundle on C associated to EP by �
has strictly positive degree.

The unique reduction EP of E as above is called the canonical reduction.

(3.6) Lemma. Let EP be the canonical reduction of a principal G-bundle E
on C. Let g and p be the Lie algebras of G and P respectively. Denote by
Es the vector bundle associated to EP by the natural representation of P on
the vector space s := g=p. Then we have

H 0(C; Es ) = 0 :

Proof. We may assume that P-G. Let 0 = V0 ⊂ V1 ⊂ : : : ⊂ Vk = s be
a �ltration of s by P-submodules Vi such that, for any 1 5 i 5 k, the P-
module Wi := Vi=Vi−1 is irreducible. In particular, U acts trivially on Wi (cf.
[Ku, Lemma 1]). If Vi is the vector bundle on C associated to EP by the
representation of P on Vi, then Es is �ltered by the subbundles Vi. We now
show that H 0(C;Wi) = 0 for all 15 i 5 k, where Wi :=Vi=Vi−1. This will
of course prove the lemma.
Since the action of U on Wi is trivial, we obtain an (irreducible) repre-

sentation of the reductive group P=U on Wi. Since EP=U is semistable, the
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vector bundles Wi are semistable (cf. [RR, Theorem 3.18]), and hence it is
su�cient to show that deg(Wi) ¡ 0: Now the weights of T on s are of the
form

∑
c�� with c� 5 0 and c� ¡ 0 for at least one � =∈ I , where I is the

subset of the set of simple roots � = {�} de�ning the parabolic subgroup
P (i.e. I is the set of simple roots for P=U ). It follows from this that the
character of P de�ned by the determinant of the representation of P on Wi is
non-trivial and is a non-positive linear combination of {�}�∈�. By Condition
(2) of Theorem (3.5), we see that deg(Wi)¡ 0. This completes the proof of
the lemma.

Let P be a standard parabolic subgroup of G and EP be a reduction of the
G-bundle E to P. For any character � of P, denote by EP;� the line bundle
on C associated to EP by �. Let X (P) (resp. X (T )) denote the character
group of P (resp. T ). Then X (T ) = ⊕�∈�Z!�, where !� is the fundamental
weight de�ned by !�(�∨) = ��;�, for any simple coroot �∨. Moreover (since
G is simply-connected) X (P) = ⊕� =∈IZ!�. The map � 7→ deg(EP;�) de�nes an
element of HomZ(X (P);Z), which in turn can be lifted to the element � of
HomZ(X (T );Z) de�ned by �(!�) = deg (EP;!�) if � =∈ I and �(!�) = 0 if
� ∈ I . We call � the type of the reduction EP .

Using the above lemma, one can prove the following proposition; the proof
being similar to that of [PV, Theorem 4, p. 90].

(3.7) Proposition. Let W be a family of G-bundles on C parametrized by a
smooth variety S. Assume that at each point t ∈ S the in�nitesimal deforma-
tion map

Tt(S)→ H 1(C;Ad(Wt))

is surjective; where Wt =W|C×t and Tt(S) is the tangent space at t to S. For
� ∈ Hom(X (T );Z); let S� be the subset of S consisting of those points t ∈ S
such that the canonical reduction of Wt is of type �. Then S� is non-empty
only for �nitely many �. Moreover; S� is locally closed and smooth; and the
normal space at t ∈ S� is given by H 1(C;Wt;s ); where Wt;s is the vector
bundle associated to the canonical reduction Wt; P by the representation of P
on s := g=p.

(3.8) Proof of Proposition (3.4). The family W = Wd parametrized by Rd

satis�es the hypothesis of the above proposition (3.7). So it su�ces to prove
that for t ∈ Rd\Rs

d, we have dimH 1(C;Wt;s )= 2:
By Lemma (3.6), H 0(C;Wt;s ) = 0 and hence by Riemann-Roch theorem,

dimH 1(C;Wt;s) = − degWt;s + dim(s)(h− 1) ;(1)

where recall that h is the genus of C. Further, since t ∈ Rd\Rs
d, we have g-p.

By the same argument, used in the proof of Lemma (3.6), degWt;s ¡ 0. This
gives (using 1 and the assumption that h¿2) that dimH 1(C;Wt;s )= 2, proving
Proposition (3.4).
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(3.9) Lemma. Let H be an a�ne algebraic group acting algebraically on a
smooth variety Y and let U be a H -stable open subset such that
codimY (Y\U ) = 2: Then the canonical restriction map PicH (Y ) → PicH (U )
is an isomorphism; where PicH (Y ) denotes the set of isomorphism classes of
H -equivariant line bundles on Y .

Proof. Let L be an H -equivariant line bundle on U . Since Y is smooth and
codimY (Y\U ) = 2, L extends uniquely to a line bundle L̃ on Y . We show
that L̃ is H -equivariant:
Fix h ∈ H and an open subset V ⊂ Y such that L̃|V is a trivial line

bundle. In particular, the line bundle L̃|hV also is trivial (since by the H -
equivariance of L, L̃|h(U∩V ) is trivial and moreover codimV (V\U )= 2). Take
a nowhere-vanishing section s1 of L̃|V and s2 of L̃|hV . Now for any x ∈
U ∩ V , fh(x)s2(hx) = h(s1(x)), for some (unique) fh(x) ∈ C∗. Clearly the
map U ∩ V → C∗, taking x 7→ fh(x) is a regular map, which extends to a
regular map f̃h : V → C∗ (since codimV (V\U ) = 2). De�ne an action of h
on L̃|V by

h(s1(x)) = f̃h(x)s2(hx); for all x ∈ V :

By the uniqueness of extension, this action of h on L̃|V patches-up to give an
action of h on the whole of L̃. Further, as can be easily seen, this is a regular
action of H on L̃.
The injectivity of PicH (Y ) → PicH (U ) is easy to see: An H -equivariant

section, which does not vanish anywhere on U , extends to a nowhere-vanishing
section on Y (and by uniqueness of extension it is H -equivariant).

(3.10) Lifting of line bundles from M to Xd. Take any d = 2h. Let L be
a line bundle on M. Pull back the line bundle L via the GL(qd)-equivariant
morphism �d : Rs

d →M to get a GL(qd)-equivariant line bundle �∗d(L ) on Rs
d

(cf. Sect. 3.3). By the above Lemma (3.9) and Proposition (3.4), �∗d(L ) extends
to a GL(qd)-equivariant line bundle [�∗d(L ) on Rd. Consider the diagram, where
all the maps are GL(qd)-equivariant morphisms (the map id is the inclusion,
’d and �d are as in Sect. 3.3, and GL(qd) acts trivially on Xd):

Fd
’d−→Rd

id←- Rs
d

�d ↓ ↓ �d

Xd M

Now ’∗d( [�
∗
d(L )) being a GL(qd)-equivariant line bundle (and �d being a

principal GL(qd)-bundle) descends to give a line bundle (denoted) Ld on Xd

(cf. [Kr, Proposition 6.4]).

(3.11) Lemma. For any line bundle L on M and d= 2h

Ld+1|Xd ≈ Ld ; and Ld|X s ≈  ∗(L) ;

where  : X s →M is the morphism as in Sect. 1 (cf. Lemma 3.2).
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Proof. We will freely use the notation from Sect. 3.3. Let Xw be a �xed
Schubert variety; and denote the (reduced) variety Xw ∩ Xd by Y = Yd;w. Then
Y s := Y ∩X s is an open non-empty (irreducible) subvariety of Xw. We denote
by Fd;Y , Fd+1;Y and Qd;Y the restrictions of Fd; Fd+1 and Qd to Y , where
Qd is the P-subbundle of Fd+1|Xd

as in Sect. 3.3. We show that Ld|Y ≈ Ld+1|Y
and Ld|Y s ≈  ∗(L )|Y s . This will of course prove the lemma.
We �rst show that

Ld|Y s ≈  ∗(L )|Y s :(1)

From the commutativity of the diagram (where Fs
d;Y := �−1d (Y s), and �d; ’d;

and  are the corresponding maps got by restriction, which we denote by the
same symbols)

Fs
d;Y

�d ↙ ↘ ’d

Y s Rs
d

 ↘ ↙ �d

M

(D1)

we see that the GL(qd)-linearizations on �∗d( 
∗L ) and ’∗d(�

∗
dL ) are the same.

This shows that Ld|Y s ≈  ∗(L )|Y s (since �d is a principal GL(qd)-bundle).
If H is an a�ne algebraic group and H an H -linearized line bundle on a

principal H -bundle, we denote by HH the line bundle on the base space (of
the H -bundle) obtained by descending H.
Let W̃o

d be the vector bundle on C × Rd which is the pull-back of Ŵo
d by

the map IC × � : C × Rd → C × Ro
d, where � : Rd → Ro

d is the canonical map.
Let �′′d : F

′′
d → Rd (resp. �′d : F

′
d → Rd) be the frame bundle of the vector

bundle (pRd)∗(W̃
o
d ⊗ O(p)) (resp. (pRd)∗(W̃

o
d)), where pRd : C × Rd → Rd is

the projection on the second factor. Just as in Sect. 3.3, the inclusion

(pRd)∗(W̃
o
d) ,→ (pRd)∗(W̃

o
d ⊗ O(p))

de�nes a P-subbundle Q′d ⊂ F′′d on Rd and a morphism �′d : Q′d → F′d.
Further, analogous to the map ’d : Fd → Rd there is a GL(qd+1)-equivariant
morphism ’′d :F

′′
d → Rd+1. Thus we have the diagram:

Q′d
�′d ↙ {
F′d F′′d
�′d ↓ ↓ ’′d

Rd Rd+1 :

(D2)

(Observe that �′d is a principal U -bundle, �′d is a principal GL(qd)-bundle
and �′′d is a principal GL(qd+1)-bundle.) Considering the commutative diagram
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(where F′′ sd := �′′−1d (Rs
d))

F′′ sd
�′′d ↙ ↘ ’′d

Rs
d Rs

d+1
�d ↘ ↙ �d+1

M

(D3)

we see, as above, that

(’′ ∗d �∗d+1L )
GL(qd+1) ≈ �∗d(L ) :

Since codimRd(Rd\Rs
d)= 2 and Rd is smooth, we have

�̂∗dL ≈ (’′∗d ( [�∗d+1L ))GL(qd+1) :
Now

(’′ ∗d ( [�∗d+1L ))
GL(qd+1)

≈ (
∗d( [�∗d+1L ))P

≈ ((
∗d( [�∗d+1L ))U )GL(qd)

≈ �∗((
∗d( [�∗d+1L ))
U ) ;

where 
d : Q′d → Rd+1 is the restriction of ’′d to Q′d and � : Rd → F′d is the
canonical section, given by the isomorphism

Cqd = H 0(C;Cqd ⊗ OC)→̃H 0(C;W̃o
d|C×t)

for t ∈ Rd. Thus

�̂∗dL ≈ �∗((
∗d( [�∗d+1L ))
U ) :(2)

Consider the following commutative diagram

Qd;Y
�−→ Q′d ,→ F′′d

�d ↓ ↓ �′d ↘ 
d ↓ ’′d

Fd;Y
�−→ F′d Rd+1

�d ↓ ’d
↘ ↓ �′d

Y Rd

(D4)

where � := � ◦ ’d, and the map � is de�ned as follows: Let gP ∈ Y and let
s = (s1; : : : ; sqd ; : : : ; sqd+1) be a frame of H 0(C; ’(g) ⊗ O((d + 1)p)) such that
s := (s1; : : : ; sqd) is a frame of H 0(C; ’(g)⊗ O(dp)). We have a commutative
diagram:

0 −→ H 0(C; ’(g)⊗ O(dp)) −→ H 0(C; ’(g)⊗ O((d+ 1)p))y y
0 −→ H 0(C;W̃o

d|C×’d(s)
) −→ H 0(C;W̃o

d|C×’d(s)
⊗ O(p)) ;
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where the vertical maps are isomorphisms. Observe that, under the �rst vertical
isomorphism, the frame s is mapped to the frame �(s). Now de�ne �(s) to be
the frame in H 0(C;W̃o

d|C×’d(s)
⊗ O(p)) which is the image of the frame s

under the second vertical isomorphism. Then � is a U -equivariant morphism.
We claim that (as line bundles on Fd;Y )

’∗d(�̂∗dL ) ≈ (�∗
∗d( [�∗d+1L ))U :(3)

This follows since

(�∗
∗d( [�∗d+1L ))
U

≈ �∗((
∗d( [�∗d+1L ))
U )

≈ ’∗d�
∗((
∗d( [�∗d+1L ))

U )

≈ ’∗d(�̂∗dL ) ; using (2) :

Now the bundle ’∗d(�̂
∗
dL ) has a GL(qd)-linearization coming from the action

of GL(qd) on �̂∗dL and (by de�nition of Ld) the bundle on Y obtained by
descent is Ld|Y . On the other hand, the bundle (�∗
∗d( [�

∗
d+1L ))

U has a GL(qd)-
action given by the action of P=U ≈ GL(qd) arising from the action of P on
�∗
∗d( [�

∗
d+1L ) (which in turn comes from the action of GL(qd+1), in particular,

P on [�∗d+1L ; observe that even though � is only U -equivariant, 
d◦� is P-
equivariant) and the bundle on Y obtained by descent via �d is Ld+1|Y . Now
over Fs

d;Y := �−1d (Y s), these two actions of GL(qd) coincide (i.e. the isomor-
phism � of line bundles on Fd;Y as guaranteed by (3) is GL(qd)-equivariant
on Fs

d;Y ), as is seen from the following commutative diagram (got from the
diagrams D1 and D4) (where Qs

d;Y := �−1d (Fs
d;Y )):

Qs
d;Y

�d↙ ↘ 
d◦�
Fs

d;Y
’d−→ Rs

d Rs
d+1

�d

y �d

y ↙ �d+1

Y s  −→ M:

Since Y s is dense in Y , we have that Fs
d;Y is dense in Fd;Y ; in particular,

the isomorphism � is GL(qd)-equivariant on the whole of Fd;Y . Hence Ld|Y ≈
Ld+1|Y . Denote this isomorphism by �. Then the restriction of � to Y s is
the identity map under the identi�cation (1). From this it is easy to see that
Ld ≈ Ld+1|Xd

. This completes the proof of the lemma.

Finally we come to the

(3.12) Proof of Proposition (2.3). For any Schubert variety Xw, there exists
a large enough d(w) such that Xw ⊂ Xd(w): Fix a line bundle L on M. Let L̂w

be the line bundle on Xw de�ned by L̂w = Ld(w)|Xw
: By Lemma (3.11), L̂w is
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well de�ned and L̂w|X s
w
≈  ∗(L )|X s

w
, where  : X s →M is the morphism as in

Sect. 1. Moreover, for v 5 w ; L̂w|Xv
≈ L̂v : In particular, by Lemma (2.2), we

get a line bundle L̂ on X with L̂|X s ≈  ∗(L ). This proves the proposition.

4. Determination of Pic(M)

(4.1) De�nition [D, Sect. 2]. Let g1 and g2 be two (�nite dimensional) com-
plex simple Lie algebras and ’ : g1 → g2 be a Lie algebra homomorphism.
There exists a unique number m’ ∈ C; called the Dynkin index of the homo-
morphism ’; satisfying

〈’(x); ’(y)〉 = m’〈x; y〉 ; for all x; y ∈ g1 ;

where 〈; 〉 is the Killing form on g1 (and g2) normalized so that 〈�; �〉 = 2 for
the highest root �.
It is easy to see from [KNR, Lemma 5.2] that for a �nite dimensional

representation V of g1 given by a Lie algebra homomorphism ’ : g1→ sl(V );
we have m’ = mV ; where mV is as in [KNR, Sect. 5.1] and sl(V ) is the Lie
algebra of trace 0 endomorphisms of V .

By taking a representation V of G2 such that mV-0, and using [KNR,
Corollary 5.6], the following proposition follows easily.

(4.2) Proposition. Let G1; G2 be two connected complex simple algebraic
groups. Then for any algebraic group homomorphism � : G1 → G2; the in-
duced map at the third homotopy group level

�∗ : �3(G1) ≈ Z −→ �3(G2) ≈ Z
is given by the multiplication via the Dynkin index md� of the induced Lie
algebra homomorphism d� : g1 → g2; where g1 (resp. g2) is the Lie algebra
of G1 (resp. G2).

In particular; md� is an integer.

(4.3) Remark. The integrality of m� is proved by Dynkin [D, Theorem 2.2],
and so is the following lemma [D, Theorem 2.5], by a quite di�erent (and
long) argument.

(4.4) Lemma. Let g be a complex simple Lie algebra and let V (�) be an
irreducible representation of g with highest weight �. Then the Dynkin index
mV (�) of the representation V (�) is given by

mV (�) = (‖�+ �‖2 − ‖�‖2)dimC V (�)
dimC g

;

where � is the half sum of positive roots and the Killing form on g is nor-
malized (as earlier) so that ‖�‖2 = 2 for the highest root �.
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Proof. The representation V = V (�) of course gives rise to a Lie algebra
homomorphism ’ = ’V : g → sl(V ). Since mV = m’ (cf. Sect. 4.1), for any
x; y ∈ g

mV 〈x; y〉 = trace (’(x) ◦ ’(y)) :(1)

Choose a basis {ei} of g and let {ei} be the dual basis of g with respect to
the Killing form 〈; 〉. Consider the Casimir element 
 :=∑i eie

i ∈ U (g). Then

 acts on V via


V :=
∑
i
’(ei) ◦ ’(ei) :(2)

But V being irreducible of highest weight �,


V = (‖�+ �‖2 − ‖�‖2)IV ;(3)

where IV is the identity operator of V . In particular,

mV =
1

dim g

∑
i
trace (’(ei) ◦ ’(ei)) ; by (1)

=
1

dim g
trace 
V ; by (2)

=
1

dim g
(‖�+ �‖2 − ‖�‖2) dim V ; by (3) :

This proves the lemma.

We also need the following

(4.5) Lemma. Let g be a complex simple Lie algebra and let V and W be
two �nite dimensional representations of g. Then

mV⊗W = mV dimW + mW dim V :

Proof. Write the characters

ch V =
∑
�
n�e� ; and

ch W =
∑
�

m�e� ; for some n�; m� ∈ Z+ :

Then

ch (V ⊗W ) =
∑
�; �

n�m�e�+� :
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Hence by [KNR, Lemma 5.2],

2mV⊗W =
∑
�; �

n�m�〈�+ �; �∨〉2

=
∑

n�m�〈�; �∨〉2 +
∑

n�m�〈�; �∨〉2

+2
∑

n�m�〈�; �∨〉〈�; �∨〉

= 2

(∑
�

m�

)
mV + 2

(∑
�
n�

)
mW

+2
(∑

�
n�〈�; �∨〉

)(∑
�

m�〈�; �∨〉
)

= 2(dimW )mV + 2(dim V )mW(1)

+2
(∑

�
n�〈�; �∨〉

)(∑
�

m�〈�; �∨〉
)

:

For any h ∈ h, de�ne �V (h) =
∑

� n�〈�; h〉. Then the map �V : h→ C; h 7→
�V (h) is W -equivariant (with the trivial action of W on C). Hence, h being
an irreducible W -module,

�V ≡ 0 :(2)

Combining (1) and (2), the lemma follows.

(4.6) De�nition. Let g be a complex simple Lie algebra and let � be the highest
root (with respect to some choice of the set of positive roots). Express the
associated coroot �∨ in terms of the simple coroots:

�∨ =
‘∑

i=1
mi�∨i :

Now de�ne d = d(g) to be the least common multiple of {mi}i=1; :::; ‘. Then
the number d is given as follows:

Type of g d(g)

A‘ (‘= 1) , C‘ (‘= 2) 1
B‘ (‘= 3) 2
D‘ (‘= 4) 2

G2 2
F4 6
E6 6
E7 12
E8 60

(4.7) Proposition. For any �nite dimensional representation V of g; the num-
ber d(g) divides mV . Moreover; there exists an irreducible representation Vo

of g such that d(g) = mVo .
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Proof. Unfortunately, our proof is case by case. We follow the indexing
convention as in [B, Planche I-IX]. We denote the i-th fundamental weight
(15 i 5 ‘) by !i.

Case 1. A‘(‘ = 1); C‘(‘ = 2): As in [KNR, Lemma 5.2], mVo = 1, for the
standard (‘+1)-dimensional representation Vo of A‘. Similarly for the standard
2‘-dimensional representation Vo of C‘ (with highest weight !1), mVo = 1 (as
can be seen from Lemma 4.4).
For a simply-connected group G, since the fundamental representations

{V (!i)}15i5‘ generate the representation ring R(G) as an algebra (cf. [A,
Theorem 6.41]), to prove that d(g) divides mV for any g-module V , it su�ces
to show that d(g) divides mi := mV (!i) for all 1 5 i 5 ‘ (cf. Lemma 4.5).
In the following calculations, we make use of Lemma (4.4) and [B, Planche
I-IX] freely.

Case 2. B‘ (‘ = 3): For 1 5 i 5 ‘ − 1, mi = 2
( 2‘ − 1

i − 1
)
, since

dimV (!i) =
( 2‘ + 1

i
)
; and m‘ = 2‘−2.

In particular, m1 = 2, so take Vo = V (!1).

Case 3. D‘ (‘ = 4): For 1 5 i 5 ‘ − 2, mi = 2
( 2‘ − 2

i − 1
)
, since

dimV (!i) =
( 2‘

i
)
; and m‘−1 = m‘ = 2‘−3.

In particular, m1 = 2.
In the following calculations, dimV (!i) is taken from [BMP].

Case 4. G2: m1 = 2; m2 = 8.
(Observe that V (!2) is the adjoint representation of G2 and hence m2 can

be calculated from [KNR, Lemma 5.2 and Remark 5.3].)

Case 5. F4: m1; : : : ; m4 are respectively 18, 9×98, l26, and 6.
Case 6. E6: m1; : : : ; m6 are respectively 6, 24, 150, 1800, 150, and 6.

Case 7. E7: m1; : : : ; m7 are respectively 36, 360, 65×72, 2750×108, 104×165,
8×81, and 12.

Case 8. E8: m1; : : : ; m8 are respectively 12×125, 4750×18, 49×108000, 75×
111275472, 30×4720170, 45×39520, 15×980, and 60.

(4.8) Remark. The values of mi given above are also contained in [D], but
some of his values are incorrect.

Combining Proposition (4.7) and Theorem (2.4) with the chart in De�nition
(4.6), we get the following strengthening of Theorem (2.4).

(4.9) Theorem. With the notation and assumptions as in Theorem (2.4), con-
sider the injective map  ∗ : Pic (M) ,→ Pic (X ) ≈ Z: Then
(1)  ∗ is surjective in the case where G is of type A‘ (‘= 1); and C‘(‘= 2):
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(2) The order 
 = 
G of the cokernel of  ∗ is bounded as follows:
(a) G = B‘ (‘ = 3) ; 
5 2
(b) G= D‘ (‘= 4) ; 
5 2
(c) G = G2 ; 
5 2
(d) G= F4 ; 
5 6
(e) G = E6 ; 
5 6
(f) G = E7 ; 
5 12
(g) G= E8 ; 
5 60 :

(4.10) Remarks (added at the time of revision). (a)Wehavereceivedapreprint
by Y. Laszlo and C. Sorger “ The line bundles on the stack of parabolic G-
bundles over curves and their sections”, which has some overlap with our
paper. In particular, they calculate the Picard group of the moduli stack of
parabolic G-bundles for the classical groups and G2.
(b) We have shown that the order 
 = 
G of the cokernel of  ∗ is precisely
equal to 2 in the cases of G = B‘ (‘= 3) and G = D‘ (‘= 4), i.e., the theta
bundle �(Vn) on the moduli space M = M(n) of semistable Spin(n)-bundles
(n= 7) on the curve C does not admit a square root as a line bundle on the
whole of M, where the standard SO(n)-representation Vn is to be considered as
a representation of Spin(n) via SO(n). We are not including the proof here as
we have been informed that this has also been obtained recently by Beauville-
Laszlo-Sorger (and prior to us). It is very likely that the bounds for 
 given in
Theorem (4.9) for all the other groups (G of type G2; F4; E6; E7; and E8) are
sharp as well.
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