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Introduction

Let G be a simple simply-connected connected complex affine algebraic group
and let C be a smooth irreducible projective curve of genus = 2 over the field
of complex numbers C. Let 9t be the moduli space of semistable principal G-
bundles on C and let Pic 9t be its Picard group, i.e., the group of isomorphism
classes of algebraic line bundles on M. Following is our main result (which
generalizes a result of Drezet-Narasimhan for G = SL(V) [DN] to any G).

(A) Theorem. With the notation as above, Pic () ~ Z.

A more precise result is obtained in Theorem (2.4) together with Theorem
(4.9).

We use the above result and a result of Grauert-Riemenschneider to prove
the following second main result of this paper.

(B) Theorem. The dualizing sheaf  of the moduli space M is locally free.
In particular, I is a Gorenstein variety.

Further, for any finite dimensional representation V of G, H (I, O(V)) =
0, for all i > 0, where O(V) is the theta bundle on the moduli space . In
particular,

Z(M,0(V)) =dimH' (M, 0(V)),
where X is the Euler-Poincaré characteristic.

In fact, we have a sharper result than the above (cf. Theorem 2.8).

We make essential use of the generalized flag variety X associated to the
affine Kac-Moody group corresponding to G, which (i.e. X) parametrizes an
algebraic family of G-bundles on C, and the fact that Pic X ~ Z. We also
need to make use of the explicit construction of the moduli space 9t via GIT.
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1. Notation

Let G be a simple simply-connected connected complex affine algebraic group
and let C be a smooth irreducible projective curve of genus = 2 over the field
of complex numbers C. As in [KNR, Theorem 3.4], let M be the moduli space
of semistable principal G-bundles on C. Also, fix a point p € C and recall
the definition of the generalized flag variety X = %/% (associated to the affine
Kac-Moody group ¢ corresponding to the group G) from [KNR, Sect. 2.1], its
open subset X* and the morphism t : X* — I from [loc. cit., Definition 6.1].
Also, recall the notation I' from [loc. cit., Sect. 1.1] and the notation W, W, X,
from [loc. cit., Sect. 2.1].

For any ind-variety Y, by an algebraic vector bundle of rank r over Y,
we mean an ind-variety £ together with a morphism 6 : £ — Y such that
(for any n) E, — Y, is an algebraic vector bundle of rank » over the (finite
dimensional) variety Y,, where {Y,} is the filtration of ¥ giving the ind-variety
structure and E, := 0~ '(¥,). If » = 1, we call E an algebraic line bundle over
Y. For an introduction to ind-varieties, see [Ku2, Appendix B].

Let E and F be two algebraic vector bundles over Y. Then a morphism (of
ind-varieties) ¢ : E — F is called a bundle morphism if the following diagram
is commutative:

E-LF
NS
Y

and moreover @z, : E, — F, is a bundle morphism for all n. In particular, we
have the notion of isomorphism of vector bundles over Y.
We define Pic Y as the set of isomorphism classes of algebraic line bundles
on Y. It is clearly an abelian group under the tensor product of line bundles.
For any set Y, Iy denotes the identity map of Y.

2. Statement of the main theorems

We follow the notation from Sect. 1.
(2.1) Lemma. The morphism  : X* — I induces an injective map
Y™ Pic () — Pic (X7).

Proof. Let £ € Pic (M) be in the kernel of y*, i.e., Y*(£) admits a nowhere-
vanishing regular section ¢ on the whole of X*. Fix m € 9t and a triv-
ialization for &, . This canonically induces a trivialization for the bundle
W (2)y-1(om)- In particular, the section g1, can be viewed as a (regu-
lar) map o, : Yy~ '(m) — C*. But y~!(m) is a certain union of I'-orbits say
Y (m) = igIFx,-, for x; € X and moreover I'x;NI'x; %0, for any i,/ € I, where

I'x; is the closure of I'x; in X* (cf. [KNR, Proof of Proposition 6.4]). Fixing
i €1, we get a regular map a,,; : I' — C*, defined as a,,;(y) = om(yx;), for
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y € I'. Now by [Ku2, Proposition 2.4], 7,,; is a constant map for any i € /,
and hence o, : Yy~ !(m) — C* itself is a constant map. Thus the section ¢
descends to a set theoretic section ¢ of the line bundle £, which is regular
by [KNR, Proposition 4.1 and Lemma 6.2]. Of course, the section ¢ does
not vanish anywhere on 9t (since ¢ was chosen to be nowhere-vanishing on
X?*). This proves that £ is a trivial line bundle on 9N, thereby proving the
lemma.

It is clear that for any ind-variety Y, we have a natural map « : Pic ¥ —
lim Pic (Y,).

(2.2) Lemma. Pic X ~Ilim _ Pic(Xy)~Z.

—wel /W
Proof- We will freely follow the notation from [KNR, Sect. 2.3]. Since the
line bundles £(dyo) (for d € Z) (denoted in loc. cit. by ZL(dy,)) are, by
construction, algebraic line bundles on X and moreover, for any w = s,,
L (x0)x, freely generates Pic(Xy,), the surjectivity of the map o follows. Now
we come to the injectivity of o:

Let & € Ker «. Fix a non-zero vector v, in the fiber of £ over the base
point ¢ € X. Then £y, being a trivial line bundle on each X,,, we can choose a
nowhere-vanishing section s, of 53‘ x, such that sy(e) = v,. We next show that
for any v = w, Sopy, = Sw! Clearly Sopy, = fsw, for some algebraic function
f Xy — C*. But X, being projective and irreducible, f is constant and in
fact f =1 since s,(e ) = sp(e ). This gives rise to a nowhere-vanishing regular
section s of € on the whole of X such that S|x, = Sw- From this it is easy
to see that € is isomorphic with the trivial line bundle on X. This proves
that o is an isomorphism. Now the second isomorphism is proved in [KNR,
Proposition 2.3].

We state the following very crucial ‘lifting’ result, the proof of which will
be given in the next section.

(2.3) Proposition. There exists a map y* : Pic(I) — Pic(X), making the
following diagram commutative:

Pic(M)

v/ v
Pic(X) — Pic(X?),

where i* is the canonical restriction map.

As an easy consequence of the above proposition, Lemmas (2.1) and (2.2),
we get the following main result of this paper.

(2.4) Theorem. For any smooth projective irreducible curve C of genus = 2
and simple simply-connected connected affine algebraic group G, the map *
(as in the above proposition) is an injective group homomorphism.

In particular, Pic (M) ~ Z.
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Proof. Injectivity of y* follows from the injectivity of * (cf. Lemma 2.1) and
the commutativity of the diagram in Proposition (2.3). By Proposition (2.3),
Image y* C Image i*. But since Pic X ~ Z (by Lemma 2.2), Image i* is either
finite or else Image i* ~ Z. Now since I is a projective variety of dim > 0
(cf. [R1, Theorem 4.9]) and y* is injective, Image i* can not be finite, in parti-
cular, i* is injective. Since y* and i* are group homomorphisms and i* is inject-
ive, we get that ¥* is a group homomorphism. This proves the theorem.

(2.5) Definition. Let n.. > 0 be the least (positive) integer such that
L(n.;20) € Imagey*. Then of course

Image y* = {Q (dnC.GXO)}dEZ
We will be concerned with determining the number 7., in Sect. 4.

(2.6) Remark. In the case when G = SL(n,C), it is a result of Drezet—
Narasimhan [DN] that Pic () ~ Z.

We recall the following well known result. (We include a proof since we
did not find it in the literature in this form.)

(2.7) Lemma. Let Y be a Cohen—Macaulay projective variety and let U C Y
be an open subset such that codimy(Y\U) = 2. Now let & and &, be
two reflexive sheaves on Y such that S, =S, T hen the sheaf 9\ is
isomorphic with &, on the whole of Y.

Proof'. We recall the following two facts from Commutative Algebra.

Fact I: If M, N are modules over a noetherian local ring with depth M,N > 1,
and 0 = M — N — K — 0 is an exact sequence, then depth K > 0.

Fact 2: If M is reflexive, then for any localisation M, of M at a prime ideal
p, depth M, > 1, unless the dimension of the local ring itself is less than 2
(i.e. M satisfies the ‘Serre condition’ S).

Let i : U Y be the inclusion. Then from the above facts (and the as-
sumptions of the lemma), one can check that i,i*%; = &; (for j = 1,2).
Thus any homomorphism i*.%| — i*%, on U gives rise to a homomorphism
S — S, ie.,, Hom (¥, %) — Hom (i*¥,i*.%,) is surjective. Injectivity
is clear using reflexivity. This proves the lemma.

We come to the following second main result of this paper.

(2.8) Theorem. The dualizing sheaf o of the moduli space I is locally free.
Moreover, Yy*(w) = L(—2gyo), where g is the dual Coxeter number of the
Lie algebra g of G (c¢f- [KNR, Remark 5.3]).

In particular, I is a Gorenstein variety. Further, for any line bundle L
on M such that y*(R) = L(dyo) for some d > —2g, H(M, L) =0, for all
i > 0 So, for any finite dimensional representation V of G, H'(M, O(V)) = 0,
for all i > 0, where O(V') is the theta bundle on the moduli space IN.

' This proof is due to N. Mohan Kumar.
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Proof. Let M° := {E € VL E is a stable G-bundle and Aut £ = centre of
G}. Then 9 is an open subset of the smooth locus of 9 and, for any E € IN°,
the tangent space Tz(9°) can be identified with H'(C,AdE), where AdE
is the vector bundle on C associated to the principal G-bundle £ via the
adjoint representation Ad of G in its Lie algebra g. Also, on the set of stable
bundles in the moduli space there are no identifications, i.e., if E; and E;
are two stable G-bundles on C such that F; is S-equivalent to Ej, then E; is
isomorphic with E, (as follows from the definition of S-equivalence, cf. [KNR,
Sect. 3.3]). Moreover, for any E € M, H(C,AdE) = 0. In particular, the fiber
of the canonical bundle of 9i° at E can be identified with AP(H'(C,AdE)*),
where AP is the top exterior power. This gives, from the definitions of the
determinant bundle and the @-bundle (cf. [KNR, Sect. 3.8]), that

Det (Ad)rimn = @(Ad)T;](O = Oy -

But ©@(Ad)* is a line bundle on the whole of 9t (cf. [loc. cit., Sect. 3.8]). Since
any line bundle is a reflexive sheaf (cf. [H, Exercise 5.1, p. 123]), @(Ad)*
is a reflexive sheaf on 9. Since the dualizing sheaf w of a normal variety is
always reflexive; the moduli space 9t is Cohen—Macaulay and normal (cf. [R1,
Theorem 4.9]); and codimgy(M\Ni?) = 2 (unless the curve C is of genus 2
and G = SL(2)) (cf. [F, Theorem I1.6]); we obtain from Lemma (2.7):

(D) o ~ O(Ad)*, on the whole of M .

(In the case of G = SL(2) the validity of (1) is well known.) This of course
gives that 9t is a Gorenstein variety (by definition). Now the assertion that
U (w) = L(—2gyo) follows from [KNR, Theorem 5.4 and Lemma 5.2].

Finally we come to the proof of cohomology vanishing: By Serre duality
[H, Corollary 7.7, Chap. III] (denoting dim I = n),

Hi(, Q) H'™(, 2 ® o)
(2) = H'"'(M, 2" @ O(Ad)"), by (1).

Q

But y*(L*® O(Ad)*) = L((—d — 29)y0)- Now since Pic (M) ~ Z (by Theo-
rem 2.4), we get that the line bundle £ ® @(Ad) is ample on i (by assumption
d > —2g).

The moduli space 9t has rational singularities, as follows from [R1, Proof
of Theorem 4.9] and a result of Boutot [Bo]. Now the vanishing of H'(9, L)
(for i > 0) follows from (2) and a result of Grauert-Riemenschneider [GR].
So the proof of the theorem is complete in view of [KNR, Theorem 5.4].

(2.9) Corollary. For any finite dimensional representation V of G,
ZOM, O(V)) = dim H'(M, 0(V)),
where X is the Euler-Poincaré characteristic:

ZON,OV)) = S(—1) dim HI(I, O(V))..

i
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3. Extension of line bundles. Proof of Proposition (2.3)

(3.1). Recall the definition of the map ¢ : ¥ — 2 from [KNR, Sect. 1]
(where Zy denotes the set of isomorphism classes of principal G-bundles on
C which are algebraically trivial restricted to C* := C\ p). Fix an embedding
G — SL(n), for some n. In particular, any principal G-bundle £ on C gives rise
to a vector bundle £ of rank » on C (associated to the standard representation
of SL(n)). For any integer d = 1, define

X;={g? € X :H'(C,0(9)® O(—x +dp)) =0 for all x € C},
where p € C is the fixed base point. Then
XicXxC---.

(3.2) Lemma. Each X, is open in X. Moreover X* C Xo;, where X* := {gP €
X : ¢(g) is a semistable G-bundle}, and h is the genus of the curve C.

Proof. 1t suffices to prove that X; N X, is open in Xy, for each w € W/ w:

Recall the definition of the family of G-bundles # — C x X from [KNR,
Proposition 2.8]. Consider the restriction %, of the G-bundle # — C x X to
C x Xy and let %, be the associated rank-n vector lzlindle (corresponding to
the egbedding G — SL(n)). Define a vector bundle %, on C x C x X, such
that %w|yxcxx, = O(—x+dp)@ Uy for each x € C; and let 1: C x C x Xy —
C x Xy be the projection on the two extreme factors. Applying the upper semi-
continuity theorem [H, Chapter III, Sect. 12] to the morphism = and the locally
free sheaf UEJV,D on C x C x Xy, we get that the set

S = {(x,92) : H'(C, ¢(9) ® O(—x + dp))+0}

is a closed subset of C x X,,. In particular, 7,(S) is a closed subset of X,
where 7, : C X X, — Xy, is the projection on the second factor. It is easy to
see that X; N Xy = Xy \ m2(S). This proves that X, is open in X.

For g2 € X*, ¢(g) is a semistable vector bundle (cf. [RR, Theorem 3.18]),
and hence the dual vector bundle (p(g)* is also semistable. Now, by the Serre
duality,

H'(C,p(g) ® O(—x +dp)) =~ H'(C,p(g)" © O(x —dp) @ K)* .

Since (p(g)* is semistable, H°(C, (p(g)*®@(x7dp)®K):|:0 implies that d —1—
deg K < 0. In particular, if d = 2 + deg K, then g2 € X;. This proves the
lemma since deg K = 2h — 2.

We have
UX;,=X,
dz1

since each Schubert variety X,, is contained in some large enough X; (d of
course depending upon w). This follows by the upper semi-continuity theo-
rem (using an argument similar to the one used in the proof of the above
lemma).
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(3.3). Fix any d = 2h. For all m = d and g2 € X;, we have

(1) H'(C,¢(g) @ O(mp)) = 0, and
(2) H(C,p(g) ® O(mp)) generates the vector bundle ¢(g) ® O(mp) at every
point of C.

Let g; := dim H°(C, ¢(g) ® O(dp)). Then by Riemann-Roch theorem, g; =
n(d+1—h). Denote by n; : #; — X, the GL(g,)-bundle such that for g2 € Xy,
n;l(gﬂ) is the set of all the frames of the vector space H°(C, p(g) ® O(dp)).
We call %, the frame bundle associated to the family %Xd (parametrized by
Xyz). Similarly, define the frame bundle n;y : %441 — Xyo1. Consider the
parabolic subgroup P = {0 € GL(q441) : 0C% = €%} of GL(g411), wWhere
(for definiteness) C% — C%+' is sitting in the first g; coordinates. We define
the principal P-subbundle Q,; of # dri)y, by

Oi= U {s=(s1,...,54,,) a frame of H(C,p(g) ® O((d + 1)p))

9P € Xy

such that (si,...,s,,) is a frame of H(C, ¢(g) ® ((dp))} .

(Observe that H(C, ¢(g)® ((dp)) sits canonically inside H°(C, ¢(g)® O((d +
1) p)) induced from the embedding ¢(g)R0(dp) — ¢(g)R0O((d+1)p).) Then
we have the following commutative diagram:

B
Fy & Ou — Fan
7 l l Td+1
Xy — Xit1,
where f; takes any s = (s1,...,84,, ) € Oy to the frame (si,...,5,,) of

H(C,p(g9) ® O(dp)). Tt is clear that f,; is a principal U-bundle, where
U = {0 € GL(ga+1) : Oj,, = 1} C P. Clearly U is a normal subgroup
of P.

As in [KNR, Sect. 7.8], we have an irreducible smooth quasi-projective vari-
ety R; with an action of GL(g,), a family ¥, of G-bundles on C parametrized
by R; and a lift of the GL(gy,)-action to ¥, (as bundle automorphisms),
such that there exists a GL(gy,)-equivariant morphism ¢, : %#; — R; with
the property that the families 7;(%), ) and ¢z(#) are isomorphic. More-
over, let R} = {x € Ry : Wa(x) := W4, is a semistable G-bundle} be the
GL(gq)-invariant open subset of R;. Then the canonical map 04 : R, — 9N is
surjective. Moreover, 0, is GL(g4)-equivariant with respect to the trivial action
of GL(g4) on the moduli space 9t (of semistable G-bundles on C). We recall
the construction of R, for its use in the sequel [R1, Sects. 3.8, 3.13.3]:

Let R be the set of locally free quotients E of €% ®¢ O¢ of rank n and
degree nd such that the canonical map C% ~ H(C% @¢ Oc) — HOE) is
an isomorphism. Then R supports the tautological family %O of rank-n vector
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bundles on C. Set #7 = Wy ®0cg Oc(—d p). Now let

Ri={(x,6):x€Rj and 6 is a reduction of the structure group
of Wgcx, to G}

Then clearly R; supports a canonical family #; of G-bundles on C and more-
over GL(g4) acts on #; via its action on C%.

Using H'(C,E) = 0, one proves that R, is smooth and that the infinitesimal
deformation map T,(Ry) — H'(C,Ad (Wa|cx.)) is surjective, where Ti(Ry) is
the tangent space at z to R;.

(3.4) Proposition. For any d = 2h, the codimension of R;\R} in Ry is at
least 2, where Ry is explicitly constructed as above.

To prove the above proposition, we need the notion of the canonical reduc-
tion (or filtration) of a principal G-bundle on C. We choose a Borel subgroup
B of G and a maximal torus T C B. By a standard parabolic subgroup we
mean a parabolic subgroup P containing B. The following result is due to
Ramanathan [R2, Proposition 1] (see also [Be]).

(3.5) Theorem. Let E be a principal G-bundle on C. Then there exists a
unique standard parabolic subgroup P of G and a unique reduction Ep of E
to the subgroup P such that the following conditions hold:

(1) If U is the unipotent radical of P, then the P/U-bundle Ep;y, obtained
from Ep by extension of the structure group via P — P/U, is semistable.
( Observe that P/U is reductive. )

(2) For any non-trivial character y of P which is a non-negative linear com-
bination of simple roots of B, the line bundle on C associated to Ep by x
has strictly positive degree.

The unique reduction Ep of E as above is called the canonical reduction.

(3.6) Lemma. Let Ep be the canonical reduction of a principal G-bundle E
on C. Let g and p be the Lie algebras of G and P respectively. Denote by
Es the vector bundle associated to Ep by the natural representation of P on
the vector space s = g/p. Then we have

H%CE)=0.

Proof. We may assume that P+G. Let 0 = Vy, C V; C ... C V; = s be
a filtration of s by P-submodules V; such that, for any 1 < i < k, the P-
module W; := V;/V;_, is irreducible. In particular, U acts trivially on W; (cf.
[Ku, Lemma 1]). If ¥ is the vector bundle on C associated to Ep by the
representation of P on V;, then E, is filtered by the subbundles 7;. We now
show that Ho(C, #;) =0 for all 1 < i < k, where #; := ¥;/¥"i_1. This will
of course prove the lemma.

Since the action of U on W; is trivial, we obtain an (irreducible) repre-
sentation of the reductive group P/U on W;. Since Epy is semistable, the
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vector bundles #; are semistable (cf. [RR, Theorem 3.18]), and hence it is
sufficient to show that deg(#;) < 0: Now the weights of T on s are of the
form > cyo with ¢, < 0 and ¢, < 0 for at least one a ¢ I, where / is the
subset of the set of simple roots II = {oa} defining the parabolic subgroup
P (i.e. I is the set of simple roots for P/U). It follows from this that the
character of P defined by the determinant of the representation of P on W; is
non-trivial and is a non-positive linear combination of {«},c,. By Condition
(2) of Theorem (3.5), we see that deg(#;) < 0. This completes the proof of
the lemma.

Let P be a standard parabolic subgroup of G and Ep be a reduction of the
G-bundle £ to P. For any character y of P, denote by Ep, the line bundle
on C associated to Ep by y. Let X(P) (resp. X(T')) denote the character
group of P (resp. T). Then X(T) = ByenZw,, where m, is the fundamental
weight defined by w,(fY) = d,4, for any simple coroot /¥. Moreover (since
G is simply-connected) X (P) = ®ye;Zw,. The map y — deg(£p,) defines an
element of Homgz(X(P),Z), which in turn can be lifted to the element u of
Homgz(X(T),Z) defined by w(w,) = deg(Epy,) if o ¢ I and u(w,) = 0 if
o€ l. We call p the type of the reduction Ep.

Using the above lemma, one can prove the following proposition; the proof
being similar to that of [PV, Theorem 4, p. 90].

(3.7) Proposition. Let W be a family of G-bundles on C parametrized by a
smooth variety S. Assume that at each point t € S the infinitesimal deforma-
tion map

T(S) — H'(C,Ad(#7))

is surjective, where W, = W' .., and T/(S) is the tangent space at t to S. For
u € Hom(X(T),Z), let S, be the subset of S consisting of those points t € S
such that the canonical reduction of W; is of type p. Then S, is non-empty
only for finitely many p. Moreover, S, is locally closed and smooth, and the
normal space at t € S, is given by HY\(C,,s), where W,s is the vector
bundle associated to the canonical reduction W, p by the representation of P

on s = g/p.

(3.8) Proof of Proposition (3.4). The family #" = #; parametrized by R,
satisfies the hypothesis of the above proposition (3.7). So it suffices to prove
that for ¢ € R;\R’,, we have dim H'(C, ;) = 2:

By Lemma (3.6), H ¢, #4is) =0 and hence by Riemann-Roch theorem,

(1) dim H'(C, ;) = — deg #;s + dim(s)(h — 1),

where recall that % is the genus of C. Further, since ¢ € R;\R?,, we have g+p.
By the same argument, used in the proof of Lemma (3.6), deg #;s < 0. This
gives (using 1 and the assumption that #>2) that dim H'(C, #;s) = 2, proving
Proposition (3.4).
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(3.9) Lemma. Let H be an affine algebraic group acting algebraically on a
smooth wvariety Y and let U be a H-stable open subset such that
codimy(Y\U) = 2. Then the canonical restriction map Pic*(Y) — Pic!(U)
is an isomorphism, where Pic''(Y) denotes the set of isomorphism classes of
H-equivariant line bundles on Y.

Proof. Let ¥ be an H-equivariant line bundle on U. Since Y is smooth and
codimy(Y\U) = 2, & extends uniquely to a line bundle Z on Y. We show
that & is H-equivariant:

Fix # € H and an open subset ¥ C Y such that & |, s a trivial line
bundle. In particular, the line bundle QW also is trivial (since by the H-
equivariance of ¥, & lnwnr, 18 trivial and moreover codimy(V\U) = 2). Take
a nowhere-vanishing section s; of @h/ and s, of I?W. Now for any x €
Uunv, fux)s(hx) = h(si(x)), for some (unique) f(x) € C*. Clearly the
map U NV — C*, taking x — f(x) is a regular map, which extends to a
regular map f : ¥V — C* (since codimy(V\U) = 2). Define an action of 4
on ¥ I, by

h(si(x)) = fa(x)sa(hx),  forallx e V .

By the uniqueness of extension, this action of 4 on % |, patches-up to give an
action of 4 on the whole of .#. Further, as can be easily seen, this is a regular
action of H on Z.

The injectivity of Pic”(Y) — Pic/(U) is easy to see: An H-equivariant
section, which does not vanish anywhere on U, extends to a nowhere-vanishing
section on Y (and by uniqueness of extension it is H-equivariant).

(3.10) Lifting of line bundles from M to X;. Take any d = 2h. Let £ be
a line bundle on 9. Pull back the line bundle £ via the GL(g,)-equivariant
morphism 8, : R, — 9 to get a GL(g,)-equivariant line bundle 673(2) on R
(cf. Sect. 3.3). By the above Lemma (3.9) and Proposition (3.4), 87(2 ) extends
to a GL(g,)-equivariant line bundle 0;‘,/(3) on R;. Consider the diagram, where
all the maps are GL(gq,)-equivariant morphisms (the map i; is the inclusion,
@q and m; are as in Sect. 3.3, and GL(g,) acts trivially on Xj):

Fe 2R RY
] 1o
Xy m

—

Now ¢(05(£)) being a GL(g4)-equivariant line bundle (and m; being a
principal GL(g,)-bundle) descends to give a line bundle (denoted) £, on X,
(cf. [Kr, Proposition 6.4]).

(3.11) Lemma. For any line bundle & on I and d = 2h
Lavry, = La, and L), = Y7 (L),

where  : X* — I is the morphism as in Sect. 1 (cf. Lemma 3.2).
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Proof. We will freely use the notation from Sect. 3.3. Let X, be a fixed
Schubert variety, and denote the (reduced) variety X, N X; by ¥ = Y. Then
Y®:= Y NX® is an open non-empty (irreducible) subvariety of X,,. We denote
by Fay, Zar1y and Quy the restrictions of #,, F 441 and Qy to Y, where
0Oy, is the P-subbundle of 97[”1‘)([’ as in Sect. 3.3. We show that £,y ~ 2d+1|y
and L4y ~ Y*(¥))ys. This will of course prove the lemma.

We first show that

(1) Lapys R YT (L)yys

From the commutativity of the diagram (where 77, 1= nd_l(Y ), and w4, @g,
and s are the corresponding maps got by restriction, which we denote by the

same symbols)

Ty
LI N\ oa
(Dy) e R
AN /0
m

we see that the GL(q, )-linearizations on 7;(¥*£ ) and ¢}(0;L) are the same.
This shows that £4)ys &~ y*(£)|ys (since m, is a principal GL(g,)-bundle).

If H is an affine algebraic group and # an H-linearized line bundle on a
principal H-bundle, we denote by #7 the line bundle on the base space (of
the H-bundle) obtained by descending 7.

Let #~ ¢ be the vector bundle on C x Ry which is the pull-back of W g by
the map Ic x f: C x Ry — C x RY, where f: R; — RY is the canonical map.
Let o : #] — Ry (resp. ©; : !, — Ry) be the frame bundle of the vector
bundle (pr,)«(#G® O(p)) (resp. (pr,)«(W3)), where pg, : C X Rg — Ry is
the projection on the second factor. Just as in Sect. 3.3, the inclusion

(Pr)(W9) = (pr) (W @ O(p))

defines a P-subbundle O, C #! on R; and a morphism f, : Q) — F/.
Further, analogous to the map ¢, : %, — Ry there is a GL(g441)-equivariant
morphism ¢/, : #!/ — Ry.1. Thus we have the diagram:

o
RN
(Ds) 7, Ty
] Lol
Ry Ray1 -

(Observe that 3/, is a principal U-bundle, 7/, is a principal GL(g,)-bundle

and 7] is a principal GL(g4+1)-bundle.) Considering the commutative diagram
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(where Z'1% .= n//"'(R%))

Fs
nd 1/ \ <Pd
(D3) Ry R
04 \ ./ 0a11
m

we see, as above, that
(07" 01 € )00 = 03(2) .
Since codimg,(Rs\R5) = 2 and R, is smooth, we have
052 =~ (@ (05,2 )T
Now
(90 (@ L))GL(‘]dH)
(Vd(9d+1>3))
~ ((7(07,, €)Y )OHa)
~ a (75(05,, 2 )Y,

where y4 : Q) — R4y is the restriction of ¢/, to Q) and ¢ : Ry — 7, is the
canonical section, given by the isomorphism

C% = H(C,C% @ Oc)ySH(C, W | oxr)
for t € R;. Thus
(2) 9,’; o ((yd(9d+1i' NY).

Consider the following commutative diagram

Oay - Qé/ — «7’5

Ba | VB, N Lo

(Da4) Fdy L T Ryt
rl edN L
Y R,

where 0 := ¢ o ¢4, and the map « is defined as follows: Let g2 € Y and let
S = (S1,..-58¢y>---15¢,,,) be a frame of H(C,p(g9) ® O((d + 1)p)) such that
5 :=(S1,...,54,) is a frame of H°(C, ¢(9) ® ((dp)). We have a commutative
diagram:

0— HC,9(9)® U(dp)) — HC,0(9)® O((d+1)p))

0— HYC,W® — HYCH s i) @ O(D))

|C><(('i(b))
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where the vertical maps are isomorphisms. Observe that, under the first vertical

isomorphism, the frame s is mapped to the frame J(s). Now define o(s) to be

the frame in H°(C, “// AICx guts) © O(p)) which is the image of the frame s

under the second vertical isomorphism. Then o is a U-equivariant morphism.
We claim that (as line bundles on Z,y)

(3) Q052 ) ~ (0707, €)Y

This follows since

(@305, 2)Y
~ 3 (7305, 2 DY)
~ @50 (7505, 2 NY)
=~ (pd(H[’;Q) , using (2).

Now the bundle qo;((?/[’;ﬁ) has a GL(gq,)-linearization coming from the action
of GL(qq) on 032 and (by definition of £,) the bundle on Y obtained by

descent is £4|y. On the other hand, the bundle (oc*y;j((?dHL )Y has a GL(gq)-
action glven by the action of P/U ~ GL(q,) arising from the action of P on

yd(Qd +153) (which in turn comes from the action of GL(g4.1), in particular,
P on Hd +1¥; observe that even though o is only U-equivariant, ygox is P-
equivariant) and the bundle on Y obtained by descent via 7y is Lq41)y. Now

over 7y 1= nd_l(Y ), these two actions of GL(g,) coincide (i.e. the isomor-
phism 7 of line bundles on %,y as guaranteed by (3) is GL(g,)-equivariant
on 77 y), as is seen from the following commutative diagram (got from the

diagrams Dy and Dy) (where Q3 := ;' (75 ,)):

Ouy
Ba N 7a0%

TS $d S s
Tay — Ry Ry

T l 04 l ./ 0a11

Y - I
Since Y* is dense in Y, we have that 73 0y is dense in Z#,y; in particular,
the isomorphism 7 is GL(g4)-equivariant on the whole of #,y. Hence €4y ~
L41)y. Denote this isomorphism by u. Then the restriction of u to Y* i

the identity map under the identification (1). From this it is easy to see that
Q= £d+1‘ X, This completes the proof of the lemma.

Finally we come to the

(3.12) Proof of Proposition (2.3). For any Schubert variety X,,, there exists
a large enough d(w) such that X, C Xy(w). Fix a line bundle £ on 9. Let £,
be the line bundle on X, defined by &, = Qd(m)l Xy By Lemma (3.11), £, is
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well defined and Q;‘X& ~ (8 )x;, where ¥ : X* — I is the morphism as in
Sect. 1. Moreover, for v < ,E;| X, R E: . In particular, by Lemma (2.2), we
get a line bundle € on X with 53‘ xs = Y*(L). This proves the proposition.

4. Determination of Pic(9)t)

(4.1) Definition [D, Sect. 2]. Let g; and g, be two (finite dimensional) com-
plex simple Lie algebras and ¢ : g; — g be a Lie algebra homomorphism.
There exists a unique number m, € C, called the Dynkin index of the homo-
morphism ¢, satisfying

(p(x), p(y)) = my(x,y), forall x,y € gy,

where (,) is the Killing form on g; (and g,) normalized so that (6, 0) =2 for
the highest root 0.

It is easy to see from [KNR, Lemma 5.2] that for a finite dimensional
representation V' of g; given by a Lie algebra homomorphism ¢ : g1 — si{(V),
we have m, = my, where my is as in [KNR, Sect. 5.1] and s/(}') is the Lie
algebra of trace 0 endomorphisms of V.

By taking a representation V' of G, such that my +0, and using [KNR,
Corollary 5.6], the following proposition follows easily.

(4.2) Proposition. Let G1,G, be two connected complex simple algebraic
groups. Then for any algebraic group homomorphism ¢ : Gy — G, the in-
duced map at the third homotopy group level

s m(G1) RZ — m3(Gr) R Z

is given by the multiplication via the Dynkin index mgy of the induced Lie
algebra homomorphism d¢ : g1 — gz, where gy (resp. ) is the Lie algebra
of Gy (resp. Gy).

In particular, mqy IS an integer.

(4.3) Remark. The integrality of mg is proved by Dynkin [D, Theorem 2.2],
and so is the following lemma [D, Theorem 2.5], by a quite different (and
long) argument.

(4.4) Lemma. Let g be a complex simple Lie algebra and let V(1) be an
irreducible representation of g with highest weight A. Then the Dynkin index
myyy of the representation V() is given by

dimge V(1)
dimc g

s

myy = (124 o[> — [lpl*)

where p is the half sum of positive roots and the Killing form on g is nor-
malized (as earlier) so that ||0||* =2 for the highest root 0.
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Proof. The representation ¥ = V(A) of course gives rise to a Lie algebra
homomorphism ¢ = ¢y : g — s/{(V'). Since my = m, (cf. Sect. 4.1), for any
X,y€Eg

(1) my(x,y) = trace (@(x) o @(y)).

Choose a basis {e¢;} of g and let {¢'} be the dual basis of g with respect to
the Killing form (,). Consider the Casimir element €2 := ", e;e’ € U(g). Then
Q acts on V via

(2) Qy = ;qo(ei)ow(ei)-
But V' being irreducible of highest weight 4,

(3) Q= (|12 +plI* = o)y ,
where Iy is the identity operator of V. In particular,

1

dim g Z trace (p(e;) o (e')), by (1)

1
= dim g trace 2y , by (2)

_ 1 1 2 YAWEH
= gimg (12 AP = loPydmy . by ).

This proves the lemma.

We also need the following

(4.5) Lemma. Let g be a complex simple Lie algebra and let V and W be
two finite dimensional representations of g. Then

Mygow = My dim W + my dimV .
Proof. Write the characters
ch V= Y nmet, and

ch w

>omyet, for some n;, m, € Z .
u

Then
ch (VW)=Y nme .
ot
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Hence by [KNR, Lemma 5.2],

2mygw = > nimu{A+ u,0Y)?

At

= Ymimy(2,0V): + 3" nimy(u, 0Y)?
+2> nym(2,0V){(u, 0Y)

=2 (%:mu> mV+2<%:7’l/1> my

12 (%j n (2 0V>> <Xﬂj my (s 0V>>

(1) = 2(dim W ymy + 2(dim V my
+2 (Zm(l,()\/)) <Zmﬂ<u,9v>> .
A Iz

For any i € b, define fy(h) = >, n;(/,h). Then the map fy : h — C, h+—
By(h) is W-equivariant (with the trivial action of W on C). Hence, Iy being
an irreducible W -module,

(2) Br=0.
Combining (1) and (2), the lemma follows.

(4.6) Definition. Let g be a complex simple Lie algebra and let 6 be the highest
root (with respect to some choice of the set of positive roots). Express the
associated coroot 0V in terms of the simple coroots:

4
Hv = Zmiociv .
i=1

Now define d = d(g) to be the least common multiple of {m;};—1 _,. Then
the number d is given as follows:

Type of g d(g)

ALz 1), C/ (£ z2) 1
B, (£ = 3) 2
D, (£ = 4) 2
G, 2
F, 6
Es 6
E 12
Es 60

(4.7) Proposition. For any finite dimensional representation V of g, the num-
ber d(g) divides my. Moreover, there exists an irreducible representation V,
of g such that d(g) = my,.
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Proof. Unfortunately, our proof is case by case. We follow the indexing
convention as in [B, Planche I-IX]. We denote the i-th fundamental weight
(1=i=7)by .

Case 1. A)(/ =z 1), C/(¢ =z 2): As in [KNR, Lemma 5.2], my, = 1, for the
standard (/ + 1 )-dimensional representation V, of A,. Similarly for the standard
2/-dimensional representation V, of C, (with highest weight w,), my, =1 (as
can be seen from Lemma 4.4).

For a simply-connected group G, since the fundamental representations
{V(wi)}1<i<s generate the representation ring R(G) as an algebra (cf. [A,
Theorem 6.41]), to prove that d(g) divides my for any g-module V, it suffices
to show that d(g) divides m; 1= my,, for all 1 < i £ / (cf. Lemma 4.5).
In the following calculations, we make use of Lemma (4.4) and [B, Planche
[-IX] freely.

Case 2. B (/ =z 3). Forl £ i £ /-1, m = 2( 21./__11 ), since
dim V)= (% T ) and my =202,

In particular, m; = 2, so take V, = V(w).
Case 3. D, ({ 2 4): For 1 =i < /-2, m = 2 21./:12 ), since

dim V(w;) = ( 21./ ); and my_y =m, =2/73.
In particular, m; = 2.
In the following calculations, dim V' (w;) is taken from [BMP].

Case 4. Gy: my =2, mpy = 8.
(Observe that V' (w;) is the adjoint representation of G, and hence m; can
be calculated from [KNR, Lemma 5.2 and Remark 5.3].)

Case 5. Fy: my,...,my are respectively 18, 9x98, 126, and 6.
Case 6. Eg: my,...,mg are respectively 6, 24, 150, 1800, 150, and 6.

Case 7. E7: my,...,m; are respectively 36, 360, 65x72, 2750x 108, 104x 165,
8% 81, and 12.

Case 8. Es: my,...,mg are respectively 12x125, 4750x 18, 49x 108000, 75x
111275472, 30x4720170, 45x39520, 15x980, and 60.

(4.8) Remark. The values of m; given above are also contained in [D], but
some of his values are incorrect.

Combining Proposition (4.7) and Theorem (2.4) with the chart in Definition
(4.6), we get the following strengthening of Theorem (2.4).

(4.9) Theorem. With the notation and assumptions as in Theorem (2.4), con-
sider the injective map y* : Pic (M) — Pic(X) ~ Z. Then
(1) > is surjective in the case where G is of type Ay (¢ = 1), and C,({ = 2).
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(2) The order y = yg of the cokernel of Y* is bounded as follows:

@G=8,(/23), y=2

(b)G=D,(/24), y=2

() G=0Gy, y=2

(d)G=F4, 76

() G=Es, =6

f) G=E;, y< 12

(g) G=Es, y= 60 .

(4.10) Remarks (added at the time of revision). (a)Wehavereceivedapreprint
by Y. Laszlo and C. Sorger “ The line bundles on the stack of parabolic G-
bundles over curves and their sections”, which has some overlap with our
paper. In particular, they calculate the Picard group of the moduli stack of
parabolic G-bundles for the classical groups and G5.

(b) We have shown that the order y = ys of the cokernel of y* is precisely
equal to 2 in the cases of G =B, (/ =2 3) and G =D, (/ = 4), i.e., the theta
bundle @(V,) on the moduli space M = M(n) of semistable Spin(n)-bundles
(n = 7) on the curve C does not admit a square root as a line bundle on the
whole of I, where the standard SO(n)-representation V, is to be considered as
a representation of Spin(n) via SO(n). We are not including the proof here as
we have been informed that this has also been obtained recently by Beauville-
Laszlo-Sorger (and prior to us). It is very likely that the bounds for y given in
Theorem (4.9) for all the other groups (G of type Gy, F4,Eq, E7, and Eg) are
sharp as well.
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