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Introduction.

These are notes for my eight lectures given at the C.I.M.E. session on “Vector
bundles on curves. New directions” held at Cetraro (Italy) in June 1995. The
work presented here was done in collaboration with M.S. Narasimhan and A. Ra-
manathan and appeared in [KNR]. These notes differ from [KNR] in that we have
added three appendices (A)-(C) containing basic definitions and results (we need)
on ind-varieties, affine Kac-Moody Lie algebras, the associated groups and their
flag varieties. We also have modified the proof (given in §7) of the basic extension
result (Proposition 6.5), and we hope that it is more transparent than the one given
in [KNR, §7]. We now describe the main result of this note.

Let C be a smooth projective irreducible algebraic curve over C of any genus
and G a connected simply-connected simple affine algebraic group over C. In this
note we elucidate the relationship between

(1) the space of vacua (“conformal blocks”) defined in Conformal Field Theory,
using an integrable highest weight representation of the affine Kac-Moody
algebra associated to G and

(2) the space of regular sections (“generalized theta functions”) of a line bundle
on the moduli space 9 of semistable principal G-bundles on C.

Fix a point p in C and let O, (resp. 12,,) be the completion of the local ring O,
of C at p (resp. the quotient field of (5,,). Let G := G(IA(,,) (the f(,,-rai:ional points of
the algebraic group G) be the loop group of G and let P := G’(@,) be the standard
maximal parahoric subgroup of G. Then the generalized flag variety X := G/P is
an inductive limit of projective varieties, in fact, of generalized Schubert varieties.
One has a basic homogeneous line bundle £(x,) on X (cf. §C.6), and the Picard
group Pic(X) is isomorphic to Z which is generated by £(x,) (Proposition C.13).
There is a central extension G of G by the multiplicative group C* (cf. §C.4), which
acts on the line bundle £(x,). By an analogue of the Borel-Weil theorem proved in
the Kac-Moody setting by Kumar (and also by Mathieu), the space H%(X, £(dx,))
of the regular sections of the line bundle £(dx,) :=£(x,)®? (for any d > 0) is
canonically isomorphic with the full vector space dual L(C,d)* of the integrable
highest weight (irreducible) module L(C, d) (with central charge d) of the affine
Kac-Moody Lie algebra § (cf. §A.2).

Using the fact that any principal G-bundle on C \ p is trivial (Proposition 1.3),
one sees easily that the set of isomorphism classes of principal G-bundles on C
is in bijective correspondence with the double coset space I'\G/P, where I' :=
Mor(C\ p, G) is the subgroup of G consisting of all the algebraic morphisms C'\ p —
G. Moreover, X parametrizes an algebraic family I of principal G-bundles on C
(cf. Proposition 2.8). As an interesting byproduct of this parametrization and
rationality of the generalized Schubert varieties, we obtain that the moduli space
DN of semistable principal G-bundles on C is a unirational variety (cf. Corollary
6.3). Now, given a finite dimensional representation V of G, let U(V) be the
family of associated vector bundles on C parametrized by X. We have then the
determinant line bundle Det(i/(V)) on X, defined as the dual of the determinant
of the cohomology of the family (V) of vector bundles on C (cf. §3.7). As
we mentioned above, Pic (X) is freely generated by the homogeneous line bundle



£(xo) on X, in particular, there exists a unique integer my (depending on the
choice of the representation V') such that Det(U(V)) ~ £(mvx,). We determine
this number explicitly in Theorem (5.4), the proof of which makes use of Riemann-
Roch theorem. It is shown that the number my coincides with the Dynkin index of
the representation V. For example, if we take V to be the adjoint representation of
G, then my =2x dual Coxeter number of G (cf. Lemma 5.2 and Remark 5.3). The
number my is also expressed in terms of the induced map at the third homotopy
group level m3(G) = n3(SL(V)) (cf. Corollary 5.6).

The action of T" on X via left multiplication lifts to an action on the line bundle
L(mvx,) (cf. §2.7). Suggested by Conformal Field Theory, we consider the space
HO(X, Q(dmvxo))r of I'-invariant regular sections of the line bundle £{dmy x,)
(for any d > 0). This space of invariants is called the space of vacua. More
precisely, in Conformal Field Theory, the space of vacua is defined to be the space
of invariants of the Lie algebra g ® R in L(C,d)*, where R is the ring of regular
functions on the affine curve C'\ p and g is the Lie algebra of the group G. We have
(by Proposition 6.7) [L(C,dmy )*]' = [L(C, dmy)*]®®% and, as already mentioned
above, H%(X, £(dmvx,)) = L(C,dmy)*. The main result of this note (Theorem
6.6) asserts that (for any d > 0) the space H°(9,©(V)®?) of regular sections
of the d-th power of the ©-bundle ©(V) (cf. §3.7) on the moduli space M is
isomorphic with the space of vacua [L(C,dmy )*|' = [L(C, dmy )*]9®E. Moreover,
this 1somorphism is canonical up to scalar multiples. This is the connection, alluded
to in the beginning of the introduction, between the space of vacua and the space
of generalized theta functions. This result has also independently been obtained
by Faltings [Fa] and in the case of G = SLy by Beauville-Laszlo [BL], both by
different methods.

We make crucial use of a ‘descent’ lemma (cf. Proposition 4.1), and an extension
result (¢f. Proposition 6.5) in the proof of Theorem (6.6). The proof of Proposition
(6.5) is given in §7, and relies on the explicit GIT construction of the moduli space
of vector bundles.

Our Theorem (6.6) can be generalized to the situation where the curve C has n
marked points {py, ..., pn} together with finite dimensional G-modules {V1,...,V,.}
attached to them respectively, by bringing in moduli space of parabolic G-bundles
onC.

A purely algebro-geometric study (which does not use loop groups) of generalized
theta fuctions on the moduli space of (parabolic) rank two torsion-free sheaves on a
nodal curve is made by Narasimhan-Ramadas [NRa]. A factorization theorem and
a vanishing theorem for the theta line bundle are proved there. In addition, several
other mathematicians (A. Bertram, S. Bradlow, S. Chang, G. Daskalopoulos, B.
van Geemen, E. Previato, A. Szenes, M. Thaddeus, R. Wentworth, D. Zagier, - -- )
and physicists have studied the space of generalized theta functions (from different
view points) in the case when G = SL(2), in the last few years.

Even though we have taken the base field to be the field C of complex numbers
throughout the note, all the results of the note hold good over any algebraically
closed field of char 0 (with minor or no modifications in the proofs).

The organization of the note is as follows:
Apart from introducing some notation in §1, we realize the affine flag variety



X as a parameter set for G-bundles. In section (2) we prove that X supports an
algebraic family of G-bundles on the curve C (cf. Proposition 2.8). We also realize
the group I as an ind-group, calculate its Lie algebra, and prove its splitting in this
section. Section (3) is devoted to recalling some basic definitions and results on the
moduli space of semistable G-bundles, including the definition of the determinant
line bundle and the ®-bundle on the moduli space. We prove a curious result (cf.
Proposition 4.1) on algebraic descent in §4. Section (5) is devoted to identifying the
determinant line bundle on X with a suitable power of the basic homogeneous line
bundle on X. Section (6) contains the statement and the proof of the main result
(Theorem 6.6). Finally in Section (7) we prove the basic extension result (Proposi-
tion 6.5), using Geometric Invariant Theory. Appendix (A) is devoted to recalling
the definition of affine Kac-Moody Lie algebras and its representations. Appendix
(B) is an introduction to ind-varieties and ind-groups. Finally in appendix (C), we
recall the basic theory of affine Kac-Moody groups and their flag varieties.

1. Affine flag variety as parameter set for G-bundles.

(1.1) Notation. Throughout the note we take the field C of complex numbers as
the base field. By a scheme we will mean a scheme over C. Let us fix a smooth
irreducible projective curve C over C, and a point p € C. Let C* denote the open
set C \ p. We also fix an affine algebraic connected simply-connected simple group
G over C.

For any C-algebra A, by G(A) we mean the A-rational points of the algebraic
group G. We fix the following notation to be used throughout the note:

G =Gz = G(kp),

P =Pz = G(O,), and

' =Tz = G(C[C*]),
where (5,, is the completion of the local ring O, of C at p, IA(,, is the quotient
field of O,, C[C*] is the ring of regular functions on the affine curve C* (which
can canonically be viewed as a subring of IA(,), and ¥ is the triple (G,C,p). We
will freely use the notation and the results from the three appendices throughout
Sections (1)-(7).

We recall the following
(1.2) Definition. Let H be any (not necessarily reductive) affine algebraic group.
By a principal H-bundle (for short H-bundle) on an algebraic variety X, we mean
an algebraic variety E on which H acts algebraically from the right and an H-
equivariant morphism 7 : E — X (where H acts trivially on X), such that = is
isotrivial (i.e. locally trivial in the étale topology).

Let H act algebraically on a quasi-projective variety F from the left. We can
then form the associated bundle with fiber F, denoted by E(F). Recall that E(F) is
the quotient of E x F under the H-action given by g{e, f) = (eg™,gf), for g € H,
e€c Eand feF.

Reduction of structure group of E to a closed algebraic subgroup K- C H is, by
definition, a K-bundle Ex such that Ex(H) = E, where K acts on H by left



multiplication. Reduction of structure group to K can canonically be thought of
as a section of the associated bundle E(H/K) — X.

Let X = X(H, C) denote the set of isomorphism classes of H-bundles on the base
C, and X, C X denote the subset consisting of those H-bundles on C' which are
algebraically trivial restricted to C*. We recall the following proposition essentially
due to Harder [H,, Satz 3.3 and the remark following it].

(1.3) Proposition. Let H be a connected reductive algebroic group. Then the
structure group of any H-bundle on a smooth affine curve Y can be reduced to the
connected component Z°(H) of the centre Z(H) of H.

In particular, if H as above is semi-simple, then any H-bundle on Y is trivial.

The following map is of basic importance for us in this note. This provides a
bridge between the moduli space of G-bundles and the affine (Kac-Moody) flag
variety, where G is as in §1.1.

(1.4) Definition (of the map ¢ : G — A&,). Consider the canonical morphisms
1 ¢ Spec(@p) — C and i3 : C* = C. Let us take the trivial G-bundles on both
the schemes Spec (@,) and C*. The fiber product

F := Spec(O,) x ct

of i; and iz can canonically be identified with Spec (1},,). This identification F' ~
Spec (k) is induced from the natural morphisms

Spec (1},,)

By an analogue of “glueing”lemma of Grothendieck ([G, §§2.6, 2.7], [BL2]), to
give a G-bundle on C, it suffices to give an automorphism of the trivial G-bundle
on Spec (I}P), i.e., to give an element of G := G(f(,,). {Observe that since we have a
“cover of C by only two schemes, the cocycle condition is vacuously satisfied.) This
is, by definition, the map ¢ : G = X,,.

(1.5) Proposition. The map ¢ (defined above) factors through the double coset
space to give a bijective map (denoted by)
#:T\G/P =+ X,.
(Observe that, by Proposition (1.3), X, = X since G is assumed to be connected
and semi-simple.)

Proof. From the above construction, it is clear that for g,¢' € G, ©(g) is isomor-
phic with ¢{g") (written ©{g) =~ (@) if and onlv if there aviet tnn (7100



isomorphisms :
Spec (8,) x G 22 Spec (5,) x G
N v
Spec (Oy)
and

such that the following diagram is commutative:

- 1 ec i -
Spec (k) x G —157E), soec (k) x @

(*) G |s

~ e ec k ~
Spec(k,) x G _2|sp_(k,,)_) Spec(kp)} x G .

Any G-bundle isomorphism 8; (resp. §;) as above is given by an element » € P
(resp. v € I'). In particular, from the commutativity of the above diagram (+),
©(g) = ¢(g') if and only if there exist h € P and v € T such that gh = 74/, i.e,
v~ 1gh = g'. This shows that the map ¢ factors through I'\G /P to give an injective
map @. The surjectivity of @ follows immediately from the definition of A,, and
the fact that any G-bundle on Spec (5,) is trivial. O

(1.6) Remark. G/P should be thought of as a parameter space for G-bundles E
together with a trivialization of E|_, (cf. Proposition 2.8).

2. Affine flag variety parametrizing an algebraic family and realizing T’
as an ind-group.

Recall the definition of the group I' C G from §1.1.
(2.1) Lemma. The group T i3 an ind-group.

Proof.! Embed G — SLy C My, where My is the space of N x N matrices over C.
This induces an injective map ¢ : I' < Mor(C*, Mn ), where Mor (C*, Mn) denotes
the set of all the morphisms from C* to My . Take a C—basis {fi, f2, f3,* -} of
C[C*] (the ring of regular functions) such that ord, f < ordy fry; for any n > 1,
where ord, f, denotes the order of the pole of f, at p. The set Mor (C*,My) hasa
filtration Morg C -+ - € Mor,, C ..., where Mor,, is the (finite dimensional) vector

11 thank R. Hammack for some simplification in my original argument.



space of all those morphisms 8 : C* —+ My such that all its matrix entries have
poles of order < n. Set I’y = i~!(Mor,). Any 8 = (8;;) € Mor, can be written
k(n)
as 0;; = sz‘,jfk (for some k(n)). We take (zf;) as the coordinates on Mor,. It
k=1 '
is easy to see that ', < Mor, is given by the vanishing of some polynomials in
(z!" ;) » in particular, Ty is a closed subvariety of the affine space Mor,. (We put
the reduced structure on TI',.) This gives rise to the ind-variety structure on I' as
a closed ind-subvariety of Mor (C*, My). It is easy to see (from the definition of
the ind-variety structure on T') that T’ in fact is an ind-group. Moreover, this ind-
variety structure on I' does not depend upon the particular choice of the embedding
G—SLy. O

The following lemma determines the Lie algebra of the ind-group I'.

(2.2) Lemma. The Lie algebra Liel is isomorphic with g ®c R , where g := Lie
G, R := C[C*], and the bracket in g® R 1s defined as [X Qp,Y ®q] = [X,Y]®pq, for
X,Y € g and p,q € R. The isomorphism Liel ~ g® R is obtained by considering
the differential of the evaluation map at each point of C*.

Proof. Choose an embedding G «—+ SLy C My as in the proof of Lemma (2.1).
This gives rise to a closed immersion 7 : I' — Mor (C*,My). In particular, it
induces an injective map di : T(T') = LieI' — Tj(Mor) ~ Mor at the Zariski
tangent space level (where I is the identity matrix and Mor = Mor {C*, My)). We
claim that di is a Lie algebra homomorphism, if we endow Mor ~ My(R) with
the standard Lie algebra structure, where My (R) is the space of N x N matrices
over R. To prove this, consider the following commutative diagram (for any fixed
zeC*):

T.[) & My(R)

1 1
g=T.,(G) = Mn,

where the vertical maps are induced by the evaluation map e; : R — C given by
p — p(z). Since the bottom horizontal map is a Lie algebra homomorphism, and
so are the vertical maps, we obtain that di itself is a Lie algebra homomorphism.
It is further clear, from the above commutative diagram, that the image of di is
contained in g ® R, where g is identified with its image in Mn.

Next, we prove that the image of di contains at least the set g ® R:

Fix any vector X € g C My such that X is a nilpotent matrix and take p € R,
and define a morphism A — I’ by 2 = ezp(zX ® p). (Since X is nilpotent, the
image is indeed contained in I'.) It is easy to see that the image of the induced
map (at the tangent space level at 0) is precisely the space C(X ® p). But since the
nilpotent matrices X € g span g, the assertion follows. This completes the proof of
the lemma. 0O

We prove the following interesting lemma (even though we do not make use of
it).



(2.3) Lemma. Let Y be a connected variety (over C). Then any regular map
Y — C*, which 13 null-homotopic in the topological category, is a constant.

(Observe that if the singular cohomology H'(Y,Z) = 0, then any continuous
map Y — C* is null-homotopic.)

Proof. Assume, if possible, that there exists a null-homotopic non-constant regular
map A : Y — C*. Since ) is algebraic, there exists a number N > 0 such that the
number of irreducible components of A71(z) < N, for all z € C*. Now we consider
the N’-sheeted covering 7n+ : C* — C*(z — zV'), for any N’ > N. Since X is
null-homotopic, there exists a (regular) lift A : Y — C* (cf. [Se;, Proposition 20}),
making the following diagram commutative:

C
L
Y - c.

Since X is regular and non-constant, by Chevalley’s theorem, Im X (being a con-
structible set) misses only finitely many points of C*. In particular, there exists a
z, € C* (in fact a Zariski-open set of points) such that 7y’ (zo) C Im X. But then
the number of irreducible components of A71(z,) = A~ (751)(z,) > N' > N, a
contradiction to the choice of N. This proves the lemma. O

We will use the following proposition in the proof of assertion (c) contained in
the proof of Theorem (6.6).

(2.4) Proposition. There does not exist any non-constant regular map A : T' —
C.

Proof. Fix a Borel subgroup B C G and let U be its unipotent radical. Fix any
g € G. Consider the subgroup Mor{C*, gUg™!) C I" consisting of all the regular
maps f : C* —+ gUg~!. We put the ind-group structure on Mor(C*, gUg™!) similar
to that of T' as in the proof of Lemma (2.1). We denote the inclusion (which is a
regular map) by

6 =8, : Mor(C*, gUg™") > T.

Let A: T — C* be a regular map, and consider the regular map
Aof: Mor(C*,gUg™ ') > C".

The exponential map induces an isomorphism of the ind-varieties Mor(C*, gUg™!) =
Mor (C*,n) = n @¢ C[C*], where n := Lie U. In particular, Mor(C*, gUg™?")
is an inductive limit of (finite dimensional) affine spaces and hence the regular
map Ao @ is constant. So the derivative map at the tangent level d() o §) :
Te( Mor (C*,gUg™ 1)) = T()(C*) is the zero map.



As seems to be well known, the group T is connected. I do not know to whom
this result should be attributed, but there is an interesting proof of this due to
Drinfeld.

Now assume (if possible) that X is non-constant. Then (using connectedness of
T') there exists a positive integer n and a point k € T, such that the derivative map
d(Ar,) : Ta(T'n) = Taw)(C*) is non-zero (where I', is the filtration of T" as in the
proof of Lemma 2.1). In particular, the derivative map (dA)s : Tp(T') = Ty)(C*)
is non-zero. By translating the map ), if necessary, we can assume that h = e. But
since T ( Mor (C*,gUg™ ) = gng™* ®@cC[C*] (by the same proof as of Lemma 2.2),
we obtain that (d)). vanishes on the sum s := 3 ;(9ng™!) ®c C[C*]. Further
Y. gng™! = g and hence T.(T') = 5 (by Lemma 2.2). In particular, (d)), vanishes
9€G
on the whole tangent space T¢(T'), a contradiction! This proves that the map A is

constant on I', proving the proposition. O

Remark. Simple-connectedness of I' of course will imply the above proposition (in
view of Lemma 2.3). In fact, it is very likely that the space I' is homotopically
equivalent to the corresponding space I'iop consisting of all the continuous maps
C* — G under the compact-open topology. This of course will give the connected
and simple-connectedness of I', by using a result of Thom [GK, Theorem 5.10]. A
student of mine R. Hammack is trying to give a proof of this homotopy equivalence
by using some ideas similar to [PS, Proof of Proposition 8.11.6], albeit in the al-
gebraic category, together with a variant of a result of Hurtubise [Hur, Theorem
1.3].

Recall from Proposition (C.12) that X = X, = X),¢ is a projective ind-variety.
(2.5) Lemma. The left multiplication of T on X is a morphism §:T'x X — X.

Proof. We will consider the X}, description of X (cf. §C.9). It is clear that for any
non-negative integers m,n , §(I',, x X,,) C f(k(,,,m), for some k(n,m). Now from
the explicit description of the variety structures (on I’ and Xj,), it is easy to check
that &, m := 6]1*,.x/\"’,,. is a morphism.

This proves the lemma. O

Restrict the central extension (1) of §(C.4) to get a central extension

1) 19C 53T o1,

where T is by definition =~1(T').

(2.8) Splitting of the central extension over I' (SLy case). The basic ref-

erence for this subsection is [PS, §7.7]. We first consider the case of G = SLy and

follow the same notation as in §(C.7). In particular, G° := SLn(C((?))), P° =

SLn(CI)), X° = G°/P°, V = OV, V() = V ®c C{(#)), and L, = V @¢ Cli]).

Let GL{W) denote the group of C-linear isomorphisms of a vector space W.
Define the subgroup H of G° x GL(L,) by

H={(9,E) € G° x GL(L,) : g* — E : L, = L, has finite rank},
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+
where g = (g* :) with respect to the decomposition
(1) V(®) =Los (Vat ' C').

Let N C H be the normal subgroup defined as /' = {(},E) € H : det E = 1}.
(Observe that since I ~ E : L, —+ L, has finite rank, i.e., has finite dimensional
image, the determinant of E is well defined.)

It is not difficult to see that the projection on the first factor gives rise to a
central extension:

(2) 1oC S5 H/N G~ 1.

We now give an alternative description of the line bundle £(x,) on X° (cf. §C.6):

Recall the definition of the set F and the map 3 : X° — F from §(C.7). For
any W € F, define Sw as the set of C-linear isomorphisms 8 : L, — W such that
m6 —~I: L, = L, has finite rank, where m, : V((t)) = L, is the projection on the
L, factor with respect to the decomposition (1).

Define the vector space Vw over C with basis parametrized by the set Sw, i.e.,
an element of Vi is of the form ), ¢ 266, where all but finitely many z¢ € C are
zero. Let Vi, C Vw be the subspace spanned by {8 — det(6'~16)6'}¢ 0:¢5, and let
Lw =Vw/Vi,. (Note that ¢ =16 — I has finite rank as an endomorphism of L, and
hence det(6 ~16) is well defined.) Then Ly is a 1-dimensional vector space. Now
define the line bundle £ % F, where (W) = Lw for any W € F. As proved in
[PS, §7.7], the line bundle £ is an algebraic line bundle on F (with respect to the
ind-variety structure on F as in §C.7). It is easy to see that £, Is the restriction
of the basic (negative ample) line bundle on Gr(N,2N) under the identification
F1 3 Gr(N,2N)**4 (cf. §C.7). Let £, be the pull-back of the line bundle £ to
X° via the isomorphism 8 : X° 53 F. In view of Proposition (C.13), it is easy to
see that the dual line bundle £} is isomorphic with the line bundle £(x,).

Now we define an action o of the group #/N on £ as follows: For (¢9,F) € H,
define

a(g’ E)[Z, 0]W = [Z,gOE_l]yw,

where for z € C and § € Sw, [z, 0]w denotes the equivalence class of z§. This action
factors through an action of H/A and moreover for any fixed (g, E) € H, a(g, E)
is an algebraic automorphism of the line bundle £ (and hence of £,) inducing the
map L, on the base (cf. §C.6). Using this, the group H/A can canonically be
identified with the Mumford group Aut(£,) defined in §(C.6). In particular, the
central extension H/N is isomorphic with §.

Finally we construct a splitting of H/N over T as follows:

Choose an element g, € G° such that the associated rank-N vector bundle $(g,)
on C twisted by O((g—1)p), E := $(g,)((g—1)p) (where g is the genus of the curve
C) has all its cohomology 0. Then considering the local cohomology sequence (for
the curve C with support in p) with coefficients in the vector bundle E, we deduce
that

(3) V() = Lo @t 99 (V®c C[C*])
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where V Q¢ C[C*] is identified as a subspace of V((t)) by choosing a parameter t
around p € C.
We first construct the splitting of #/A over Ty, := g;!T'g,. Define the group

, +
homomorphism a,, : Ty, = H by 04,(7) = (v,7" ), where v = (7* 2) with

respect to the decomposition (3). (Observe that I'g, keeps the second factor stable
and hence v*' € GL(L,).) The group homomorphism ,, : Ly, = H/N (where
@,, is the map o,, followed by the canonical map H — H/N) splits the central
extension (2) over I'y,. Now take any preimage g, of g, in H/N, and define the
splitting : T = H/N (v = §,7,.(97179.)35 1)

Since H/N acts on the line bundle £,, so is I' (via the homomorphism 7). It
can be easily seen that the action I' x £, — £, is a morphism of ind-varieties.
Moreover, let 7@ : ' = H/A be another splitting of I such that the induced action
I' x £, -+ L, is again a morphism of ind-varieties. Then we claim that @ = & :
There is a group homomorphism a : I' =& C* such that (cf.(2)) @ = a@. Further
« is a morphism of ind-varieties (since the action of I on £, in both the cases is
regular). But then a is identically 1 (cf. Proposition 2.4, see also Remark 6.8(c)).
This proves the uniqueness of such a splitting.

Since the line bundle £, is isomorphic with the homogeneous line bundle £(—x,),
it is easy to see that the group I' acts morphically on the representation L(C,1)
and hence on any L(C, d) (for d > 0, where L(C, d) is the irreducible representation
of the affine Lie algebra siy with central charge d, cf. §A.2).

(2.7) Splitting of the central extension over I' (general case). We now
come to the case of general G as in §1.1. Take a finite dimensional representation
V of G such that the group homomorphism 7 : G —+ SL(V) has finite kernel, and
consider the induced map at the Lie algebra level dvy : g — sl(V), where sl(V) is
the Lie algebra of trace 0 endomorphisms of V. We denote the Lie algebra sl(V)
by g°. The Lie algebra homomorphism dvy induces a Lie algebra homomorphism
7 :§ — §° defined by (cf. §A.1)

X@p—(dv(X))®p, and K = myK®,

for X € g and p € C[t*!]; where K (resp. K°) is the canonical central element of
g (resp. §°), and my is the Dynkin index of the representation V' (cf. §5.1).

To distinguish the objects corresponding to SL(V') from that of G, we denote the
former by a superscript 0. Let us consider the irreducible representation L°(C, 1)
for the Lie algebra §° with central charge 1 and restrict it to the Lie algebra g via
the homomorphism 4. It can be seen that the §-submodule of L°(C,1) generated
by the highest weight vector v, is isomorphic with L(C,my ).

The representation « also gives rise to a morphism of the corresponding affine
flag varieties 4 : X — X°, and a morphism of ind-groups I' = I'°. It is easy to see
that the basic homogeneous line bundle £°(x,) on X° pulls-back to the line bundle
£(mvx,) on X. In particular, the group I' acts morphically on the line bundles
£(dmvyx,) (for any d € Z) and hence T also acts morphically on the representation
space L(C,dmy).

We come now to the following proposition, asserting that X = G/P supports an
algebraic family.
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(2.8) Proposition. (aj There is an algebraic G-bundle Y — C x X such that
for any z € X the G-bundle Uy := Ujcx 1s isomorphic with o(z) (where ¢ is the
map of §1.4). Moreover, the bundle Uic. «x comes equipped with a trivialization
a: e Ucexx, where € is the trivial G-bundle on C* x X.

(6) Let € = C x Y be an algebraic family of G-bundles (parametrized by an
algebraic variety Y ), such that € is trivial over C* xY and also over (Spec (f),) xY.
Then, if we choose a trivialization 3 : € 5 Ecexy, we get a Schubert variety
Xw and a unigue morphism f : Y — Xy together with a G-bundle morphism
f:€5 Ucxx, inducing the map Ix f at the base such that foB =aob, where ¢
1s the trivial bundle on C* x Y and 8 is the canonical G-bundle morphism ¢ — ¢
inducing the map Ixf at the base.

Proof. Let R be a C-algebra and let Y := Spec R be the corresponding scheme.
Suppose £ —+ C x Y is a G-bundle with trivializations 3 of £ over C* x Y and 7 of
€ over (Spec @,) x Y. Note that the fiber product (Spec @p xY)xexy (C*xY)is
canonically isomorphic with (Spec irp) x Y (cf. §1.4). Therefore the trivializations
B and r give rise to an element f7~! € G(l}, ® R). Conversely, given an element
g € G(l}p ® R), we can construct the family £ —+ C x Y by taking the trivial
bundles on C* x Y and (Spec @,) x Y and glueing them via the element g (cf.
§1.4). Moreover, if g; and g, are two elements of G(I}p ® R) such that g = g1h
with h € G(é, ® R), then h induces a canonical isomorphism of the bundles
corresponding to g; and gp. All these assertions are easily verified.

Choose a local parameter ¢t around p € C. Let evy : G(C[t™!]) & G be the
group homomorphism induced from the algebra homomorphism Cft~!] — C taking
t™' +5 0, and let N~ := ker (eve). Then the image U™ of N~ in X under the
mapi: N~ — X | taking g + gP , is an open subset of X. To construct a family
of G—bundles on X, we first construct a family on the open sets wU~ C X, for
w € Mor,(C*, T) as follows (cf. proof of Lemma C.10 for the notation Mor, (C*, T)):

From the discussion in the first paragraph, it suffices to construct an element
8u € G(k, ® ClwU™]) such that, for every wz € wU™, the element 8,, evaluated
at wz (i.e. the image of 6,, under the evaluation map G(k, ® ClwU~]) = G(k,) at
wz) satisfies 0,,(wz) = wi~!(z) mod P. But, by definition, N~ C G(C[t~!}) and
hence we get a tautological map 6 : (P}(C)\0) x N~ — G. It is easy to see that
@ is a morphism under the ind-variety structure on N~. (Observe that U~ being
an open subset of X, has an ind-variety structure and hence N~ acquires an i_pd—
variety structure via the bijection i.) Think of C* = P(C)\{0,00} and define 8, :
PYC)\{0, 00} xwlU~ — G by 8,(z, wi(g)) = w(2)8(z, g), for z € P}{C)\{0, 00} and
g € N~. The morphism 8,, of course gives rise to an element ,, € G(k, ® ClwlU ~}),
and hence a G-bundle on C x wU ™.

To prove that the bundles on C x wU ™ got from the elements 8,, patch together
to give a bundle on C x X, it suffices to show that the map

8,8y : PYC\{0,00} x (WU~ NoU~) = G

.

extends to a morphism (again denoted by) 8, 8y : PY(C)\{o0} x (wU~ NovU~) =
G : But for any fixed z € wU™ NvU~, the map 5:15',, :PH{O\{0,00} xz =+ G in
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fact is an element of P = G’(@p), ie., 5;15.‘, does not have a pole at 0, for any fixed
z € wU~ NoU~. From this it is easy to see that —9':15,,, extends to a morphism
P}(C)\{oo} x (WU~ NwlU~) = G. Clearly the maps 5;15,,, satisfy the ‘cocycle
condition’ and hence we get a G—bundle on the whole of C x X.

To prove the (b) part, let us choose a trivialization 7 of the bundle £ restricted
to (Spec (5,) X Y. As above, this (together with the trivialization 3) gives rise to
amap fr:Y — G and hence amap f: Y — X. (It is easy to see that the map f
does not depend upon the choice of the trivialization 7.) We claim that there exists
a large enough w such that Imf C X, and moreover f : ¥ — Xy, is a morphism:

For both of these assertions, we can assume that Y is an affine variety ¥ =
Spec R, for some C-algebra R. Then the map f. can be thought of as an element
(again denoted by) f, € G(Itrp ® R). Choose an imbedding G < SLy. Then we
can write f, = (fi¥)1<ij<n, with f29 € k, ® R. In particular, there exists a
large enough ! > 0 such that (for any 1 < 4,5 < N) fiJ € t7!C{[t]] ® R. From
this (together with Lemma C.10) one can easily see that Im f is contained in a
Schubert variety X,,. Now the assertion that f : Y — Xy is a morphism follows
from the description of the map f” as an element of G(I}p ® R) together with the
description of the variety structure Xj,; on X. The remaining assertions of (b) are
easy to verify, thereby completing the proof of (b). O

3. Preliminaries on moduli space of G-bundles and the determinant
bundle.

Throughout this section, we allow G to be a connected reductive group (over C).
We recall some basic concepts and results on semistable G-bundles on C. The
references are [NS], [Ry], [Re], and [RR]. Recall the definition of G-bundles and

reduction of structure group from §1.2.

(3.1) Definition. Let E — C be a G-bundle. Then E is said to be semistable
(resp. stable), if for any reduction of structure group Ep to any parabolic subgroup
P C G and any non-trivial character x : P = G,, which is dominant with respect
to some Borel subgroup contained in P, the degree of the associated line bundle
Ep(x) is < 0 (resp. < 0). (Note that, by definition, a dominant character is taken
to be trivial on the connected component of the centre of G.)
(3.2) Remark. When G = GL,, this definition coincides with the usual definition
of semistability (resp. stability) due to Mumford (cf. [NS]) viz. a vector bundle
V — C is semistable (resp. stable) if for every subbundle W & V, we have u(W) <
(V) (resp. p(W) < u(V)), where (V) := deg V/rank V.

Let V - C be a semistable vector bundle. Then there exists a filtration by
subbundles

Vo=0GV W& SV,

such that p(Vi) = (V) and V;/V;-, are stable. Though such a filtration in general
is not unique, the associated graded

grV:= @ Vi/Vi,
21
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is uniquely determined by V (up to an isomorphism).

We will now describe the corresponding notion of grE for a semistable G-bundle

E.
(3.3) Definition. A reduction of structure group of a G-bundle E — C to a
parabolic subgroup P is called admissible if for any character of P, which is trivial
on the connected component of the centre of G, the associated line bundle of the
reduced P-bundle has degree 0.

It is easy to see that if Ep is an admissible reduction of structure group to a
parabolic subgroup P, then E is semistable if and only if the P/U-bundle Ep(P/U)
is semistable, where U is the unipotent radical of P. Moreover, a semistable G-
bundle E admits an admissible reduction to some parabolic subgroup P such that
Ep(P/U) is, in fact, a stable P/U-bundle. Let M be a Levi component of P. Then
M =~ P/U (as algebraic groups) and thus we get a stable M-bundle Ep(M). Extend
the structure group of this M-bundle to G to get a semistable G-bundle denoted
by gr(E). Then gr(E) is uniquely determined by E {up to an isomorphism).

Two semistable G-bundles E; and E; are said to be S-equivalent if gr(E;) ~
gr(E;). A semistable G-bundle E is said to be quasistable if E ~ gr(E). (It can be
seen that a semistable vector bundle is quasistable if and only if it is a direct sum
of stable vector bundles with the same u.)

Two G-bundles E; and E; on C are said to be of the same topological type
if they are isomorphic as G-bundles in the topological category. The topological
types of all the algebraic G-bundles on C are bijectively parametrized by the first
fundamental group m1(G) (cf. [Ry, §5]).

(3.4) Theorem. The set M of S-equivalence classes of all the semistable G-
bundles on C' of a fized topological type admits the structure of a normal, irreducible,
projective variety (over C), making it into a coarse moduli.

In particular, for any algebraic family £ — C x Y of semistable G-bundles of
the same topological type (parametrized by a variety Y ), the set map 8:Y — IN,
which takes y € Y to the S-equivalence class of £, is a morphism.

The details can be found in [NS], [Ry], [Rz], ....

(3.5) Lemma. Let H be a connected affine algebraic group. Then any principal
H-bundle on C 13 locally trivial in the Zarisk: topology.

Proof. Let E be a principal H-bundle on C and U the unipotent radical of H. Since
‘the group M = H/U is connected and reductive, the M-bundle E(M), obtained
from E by extension of structure group to M, is locally trivial in the Zariski topology
[Rs, Proposition 4.3].

Let W be a non-empty affine open subset of C such that the restriction of E(M)
to W is trivial. We show that Ej is trivial (which will of course prove the lemma):
Observe that a trivialization of E(M) on W gives a reduction of the structure group
H of Eyw to the subgroup U. So, it suffices to show that any (principal) U-bundle
on W is trivial:

We may assume U # e. Then there exists a (finite) filtration of U by closed
normal subgroups such that the successive quotients are isomorphic to the additive
group G,. Now the assertion follows since any principal G,-bundle on W is trivial,

W being affine (see [Sey, §5.1]). O
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Let P be a parabolic subgroup of G and P = MU a Levi decomposition, where
U is the unipotent radical of P and M a Levi component. The next proposition
will be used in §6 in the case of an admissible reduction of a semistable bundle E.

(3.6) Proposition. Let G be a connected semisimple algebraic group. Let E be
a G-bundle on C and Ep a reduction of the structure group of E to P. Denote by
gr (Ep) the G-bundle on C obtained from the P-bundle Ep by eztension of the
structure group via the composite homomorphism

P> P/Ux=M<G.

Then there ezists a G-bundle £ on C x Al where Al is the affine line, such that
we have

(a) Eoxarvo) = pe(E), Eicxioy = gr (Ep), and A
(b) 810- xat 1s trivial and also the pull-back of £ to (Spec O,) x Al is trivial,

where pc is the projection on the C-factor.

Proof. By [Ri, Lemma 2.5.12], there exists a one-parameter group X : G (:=
A\0) = M | such that the regular map

Gm x P — P, givenby (t,p) = Mt)pA(t)™?, for t € G, p€ P,

extends to a regular map ¢ : Al x P — P satisfying ¢(0,mu) =m ,form € M,u €
U. By Lemma (3.5), the P-bundle Ep is locally trivial in the Zariski topology.
Let {U;} be an affine open covering of C in which the bundle Ep is given by the
transition functions p;; : U;NU; — P. Let F be the (Zariski locally trivial) P-bundle
on C x A! defined by the covering {U; x A!} and the transition functions

hij: (UiNU;) x Al 5 P

where hy;(2,t) = ¢(t,pij(2)), for t € Al,z € U; NU;. Now let £ be the G-bundle
obtained from the P-bundle F by extension of the structure group to G. Then
clearly £ satisfies condition (a).

We next show that for any non-empty affine open subset W of C, the restriction
of £ to W x Al is trivial (which will, in particular, imply that condition b is
satisfied): Note that, by our construction, there exists a finite open covering W;
of W such that Ew, a1 is trivial, for every i. Now by an analogue of a result of
Quillen (cf. [Ra, Theorem 2]) £ xa: is the pull-back of a G-bundle on W. But by
Proposition (1.3), any G-bundle on W is trivial. O

(3.7) Determinant bundle and ©-bundle. We briefly recall a few definitions
and facts on the determinant bundles and ©-bundles associated to families of bun-
dles on C. We follow [DN], [NRa).

Let V =+ C x Y be a vector bundle. Then there exists a complex of vector
bundles V; on Y ( with V; =0, for all ¢ > 2):

Vo= Vi =020 ....
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such that for any base change f : Z — Y, the i*® direct image (under the projection
C x Z —+ Z) of the pull-back (id x f)*V is given by the i** cohomology of the pull-
back of the above complex to Z. We define the determinant line bundle Det V on

Y to be the product t7\p(VI) ® (‘7\"(1/0)*). ( Notice that our Det V is dual to the
determinant line bundle as defined, e.g., in [L, Chapter 6, §1].)

The above base change property gives rise to the base change property for Det
V,ie.,if f: Z =Y is a morphism then Det((id x f)*V) = f*(Det V).

Let £ be a line bundle on Y, and let p; : C x Y — Y be the projection on the
second factor. Then for the family V @ pj£ — C x Y, we have Det (V ® p3£)=
(Det V) ® £~¥V) | where X(V) := hO(V,) — h1(V,) is the Euler characteristic and
V: = V|oxe. (Observe that h°(V;) — k'(V;) remains constant on any connected
component of Y.)

We now define the ©-bundle ©(V) of a family of rank r and degree 0 bundles V —
C x Y to be the modified determinant bundle given by (Det V)® (det(V,))*V/T,
where V, is the bundle V|, xy on Y, and det V, is its usual determinant line bundle.
It follows then that ©(V) = ©(V @ p;£), for any line bundle £ on Y. Moreover
O(V) also has the functorial property O((id x f)*V) = f*(6(V)).

If £ - C'xY is a family of G-bundles ( where G is semisimple and connected) and
V is a G-module, then Det (£(V)) and ©(£(V)) are defined to be the corresponding
line bundles of the associated family of vector bundles, via the representation V of
G.

For the family & - C x X (cf. Proposition 2.8), the line bundles ©(U/(V)) and
Det(U(V')) coincide, since U),, , is trivial.

1t is known ([DN], [NRa] ) that there exists a line bundle © on the moduli space
M, of rank r and degree 0 semistable bundles, such that for any family V of rank
r and degree 0 semistable bundles parametrized by Y , we have f*(©) ~ ©(V),
where f : Y — 90, is the morphism given by the coarse moduli property of M, (cf.
Theorem 3.4).

Let V be a representation of G of dimension r (G semisimple and connected).
Then for any semistable G-bundle on C, the associated vector bundle (via the
representation V) is semistable (cf. [RR, Theorem 3.18]). Thus, given a family
of semistable G-bundles on C parametrized by Y, we have a canonical morphism
(induced from the representation V) Y — 91, (where 9%, as above is the moduli
space of semistable bundles of rank r and degree 0 ). Let 9 be the moduli space
of semistable G-bundles. By the coarse moduli property of I, we see that we have
a canonical morphism ¢y : MM — IM,. We define the theta bundle O(V) on M
associated to V to be the pull-back of the line bundle © on M, via the morphism
¢v. It can be easily seen that for any family ¥V — C x Y of semistable G-bundles,
£ (O(V)) = 0(V(V)), where f : Y — M is the morphism (induced from the family
V) given by the coarse moduli property of M.

4. A result on algebraic descent.

We prove the following technical result, which will crucially be used in the note.
Even though we believe that it should be known, we did not find a precise reference.
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(4.1) Proposition. Let f: X - Y be a surjective morphism between irreductble
algebraic varieties X and Y over an algebraically closed field k of char 0. Assume
that Y is normal and let £ = Y be an algebraic vector bundle on Y.

Then any set theoretic section o of the vector bundle £ is regular if and only if
the induced section f*(o) of the induced bundle f*(€) is regular.

Proof. The ‘only if’ part is of course trivially true. So we come to the ‘if’ part.

Since the question is local (in Y), we can assume that Y is affine and moreover
the vector bundle £ is trivial, i.e., it suffices to show that any (set theoretic) map
o :Y = k is regular, provided & := o o f : X — k is regular (under the assumption
that ¥ = Spec R is irreducible normal and affine):

Since the map f is surjective (in particular dominant), the ring R is canonically
embedded in I'(X) := H%(X,Ox), where Ox is the structure sheaf of X. Let R[7]
denote the subring of I'(X) generated by R and & € I'(X). Then R[5] is a (finitely
generated) domain (as X is irreducible by assumption), and we get a dominant
morphism f : Z — Spec R, where Z := Spec (R[5]). Consider the commutative
diagram:

X
6 NS
Z —Y
!

where 8 is the dominant morphism induced from the inclusion R[F] «— I'(X). In
particular, Im 6 contains a non-empty Zariski-open subset U of Z. Let 2,22 € X
be closed points such that f(z,) = f(z2). Then r(z;) = r(z2), for all r € R and
also 7(z1) = &(x3). This forces 6(z;) = 8(x2), in particular, f,u is injective on the
closed points of U.

Since f is dominant, by cutting down U if necessary, we can assume that f[U :
U —» V is a bijection, for some open subset V C Y. Now since Y is (by assumption)
normal and Z is irreducible, by Zariski’s main theorem (cf. [Mum, Page 288, 1.
Original form] together with [Ha, Lemma 10.5, Chap. III]), .f]U :U = Visan
isomorphism, and hence ¢ is regular on V.

Assume, if possible, that o), does not extend to a regular function on the whole
of Y. Then, by {B, Lemma 18.3, Chapter AG], there exists a point y, € ¥ and
a regular function h on a Zariski neighborhood W of y, such that h(y,) = 0 and
ho =1on WNV. But then k5 =1 on f~}(W NV) (where % := ho f) and hence,
& being regular on the whole of X, hd = 1 on f~*(W). Taking §, € f~(y.) (f is,
by assumption, surjective), we get h(y,)5(3,) = 0. This contradiction shows that
o), does extend to some regular function (say o') on the whole of Y. Hence & = &',
in particular, by the surjectivity of f, o = ¢’. This proves the proposition. 0O

5. Identification of the determinant bundle.

(5.1) Recall from §2.8 that G/P is a parameter space for an algebraic family U
of G-bundles on C. Let us fix a (finite dimensional) representation V of G. In
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particular, we can talk of the determinant line bundle Det(U(V')) (cf. §3.7). Also
recall the definition of the fundamental homogeneous line bundle £(x,) on G/P
from §(C.6). Our aim in this section is to determine the line bundle Det(Z(V)) in
terms of £(x,). We begin with the following preparation.

Let 6 be the highest root of g. Define the following Lie subalgebra sl3(8) of the
Lie algebra g of G :

(1) sla(8) :=g_o © CH' @ go,

where gg is the 6-th root space, and 6" is the corresponding coroot. Clearly sl;(8) ~
sly as Lie algebras. Decompose

(2) V=V,

as a direct sum of irreducible sl3(#)- modules V; of dim m;. Now we define

m; + 1 2 _
(3) mV=Z( 3 ) , where we set (3) =0.

i
Let g1 and g, be two (finite dimensional) complex simple Lie algebras and ¢ :

g1 — g2 be a Lie algebra homomorphism. There exists a unique number m, € C,
called the Dynkin indez of the homomorphism ¢ (cf. [D, §2]), satisfying

(50(1)730(3/)) = m#’("tv y>5 fOI‘ a‘ll z,y S g1,
where (,) is the Killing form on g; (and g2) normalized so that (8,8) = 2 for the
highest root 8.
It is easy to see, from the next Lemma (5.2), that for a finite dimensional rep-

resentation V of g; given by a Lie algebra homomorphism ¢ : g; = sl(V), we have
m, = my, where (as earlier) sl(V) is the Lie algebra of trace 0 endomorphisms of

We give an expression for my in the following lemma. Write the formal character
(4) chV = Zn;e".
(5.2) Lemma.

1
(1) mv.—.iz\:n,\</\,0v >2,

In particular, for the adjoint representation ad of g we have
(2) maq = 2(1+ < p, 6" >),

where p as usual s the half sum of the positive roots of g.
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Stmilarly, for the standard n-dimensional representation V® of slp,my» = 1,

Proof. To prove the first part, it suffices to show that, for the irreducible represen-
tation W(m) (of dim m + 1) of s, ,

1 «— s [m+2
(3) §Z<mp1—na,H>=( 3 ),
n=0
where a is the unique positive root of sly, H the corresponding coroot and p; 1= %a.
Now the left side of (3) is equal to

m ka
22(% - n)2 = 4,‘2 k2 = m—t}é)—w-, if m = 2k, is even; and
=1

n=0

m m m 1 ) )
22{)(3‘")2‘—'220(160—5—@2, if m =2k, —1is odd

k k ko
- 12_ - 2
=4% (k- 5) =4 Ktk —4) k
k=1 k=1 k=1
_m(m+1)(m+2)
=

So, in either case, the left side of (3) = '—"—(l'ilsxﬂﬁ = (m; 2). This proves the

first part of the lemnma.
For the assertion regarding the adjoint representation, we have

ch(ad) = (dimb)e® + Y (¢ +e77),

Bedy

where Ay is the set of positive roots.
So maa=3 g, <B,68Y>?

=4+ E < f3,8¥ > ,since < 3,8Y >=0orl, foranyf € A+ \ 9
BeEAL\O

=4+ <2p-6,6" >

=2(1+ < p,8Y >).

The assertion about myn is easy to verify.

(5.3) Remark. The number (1+ < p,8Y >) is called the dual Cozeter number of g.



Its value is given as below.

Type of g
A€ 21)
By(€ > 2)
Ce(£ 2 3)
De(€ 2 4)

Es

E;

Eg

G,

Fy

20

dual Coxeter number
£+1
20 -1
41
20 -2
12
18
30
4
9

Now we can state the main theorem of this section.

(5.4) Theorem. With the notation as in §5.1

Det(U(V)) ~ L(mvX,),

or any finite dimensional representation V of G, where the number my 1s defined
Y P

by (8) of §5.1.

Proof. By Proposition (C.13), there exists an integer m such that

Det (U(V)) = £(mx,) € Pic (G/P).

We want to prove that m = my : Set U, := U(V)|cxx, as the family restricted
to the Schubert variety X, := X,  (cf. proof of Proposition C.13). Denote by «
(resp. ) the canonical generator of H%(X,,Z) (resp. H?(C,Z)). Then it suffices

to show that Det U, ~ L(mvx,) which is equivalent to showing that the first

Chern class

(1 c1(Det,) = mya:

From the definition of the determinant bundle we have

(2) Cl(Det uo) =—C (R""Ztuo),

where 7 is the projection C x X, = X,, and Rma U, := 3 (—=1) Rim U, .
Since G is semisimple, the associated vector bundle U(V) has

(3)

Let & (resp. §) be the pull-back of a (resp. B) under 73 (resp. m : Cx X, = C).

Now write

C](uo) =0.

(4) c2(U,) = 1aB, for some (unique) ! € Z.



21

Let Tr, be the relative tangent bundle along the fibers of m;. Let us abbreviate
by ¢; (resp. ¢;) the first (resp. second) Chern class of U,. By the Grothendieck’s
Riemann-Roch theorem [F, §9.1] applied to the (proper) map 73, we get

ch(Rmzullo) = 134 (ch(thy).4d(T}, )
= mol(ckly + o1 + %(cf — 2e,))(1 + %CI(T,,))]
= maul(ekly ~ e2)(1+ (T, by (3),
where ch denotes the Chern character and td denotes the Todd class. Hence

C](RTFZ*UO) = 7"2:(—02)
=7r2;(_l&ﬂ~)a by (4)

(5) = ~la, since Wz,(&ﬁ) = a.

So to prove the theorem, by (1),(2) and (5), we need to show that [ = my, where
l is given by (4):

It is easy to see (from its definition) that topologically the bundle U, is pull-back
of the bundle 4! (Where U, is the same as U, for C = P?) on P? x X, via the map

Cx X, 5P x X,

where § : C — P? pinches all the points outside a small open disc around p to a
point. Of course the map ¢ is of degree 1, so the cohomology generator a pulls
back to the generator 4 (observe that X, ~ P? as shown below). Hence it suffices
to compute the second Chern class of the bundle /) on P! x X, :

Choose Xy € gy (where 8 is the highest root of g) such that < Xy, —wXs >=1,
where w is the Cartan involution of g and <, > is the Killing form on g, normalized
so that < 8,8 >= 2. Set Yy := —w(Xy) € g_g. Define a Lie algebra homomorphism
sly — g ®c Clt*!], by

X = YRt
Y = Xp@t!
H - -8"®1,

where {X,Y, H} is the standard basis of sly. The corresponding group homomor-
phism (choosing a local parameter t around p) n : SL3(C) — G induces a biregular
isomorphism 7 : P! & SLy(C)/B; 5 X, , where B, is the standard Borel subgroup
of SL2(C) consisting of the upper triangular matrices. In what follows, we will
identify X, with P! under 7. The representation V of G on restriction gives rise to
a continuous group homomorphism (cf. the decomposition (2) of §5.1)

v : SU2(8) - [] (AutVi),

where SU;(#) is the compact form (given by the involution w) of the group SL»(6)
(with Lie algebra sl,(8)).
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There is a principal SU;-bundle W on S* (in the topological category) got by
the clutching construction from the identity map S* ~ SU; — SUs. In particular,
we obtain the vector bundle W(i) — S$* associated to the principal bundle W via
the representation ¢, which breaks up as a direct sum of subbundles W;(y) (got
from the representations V;).

We further choose a degree 1 continuous map v : P! x P! — $4. We claim that
the vector bundle /; on P! x P! is isomorphic (in the topological category) with
the pull-back v*(W(¥)) :

Define the map & : S x (SU,/D) — SU, by

ab d o™\ (de\!
(+(28) mar)» (& ) (2)
for (::) € SU; and t € S?; where D is the diagonal subgroup of SU,. It is easy

to see that the principal SUz-bundle »*(W) on P! x P! is isomorphic with the
principal SU;-bundle obtained by the clutching construction from the map @ (by
covering P! x P! = §2 x §2 = H* x §? U H™ x $2, where H* and H™ are resp.
the upper and lower closed hemispheres). By composing & with the isomorphism
SUz —+ SU,(8) (induced from the Lie algebra homomorphism sl; — sl3(#) taking
X = Xp,Y — Yp, and H — 6Y), and using the isomorphism 7 together with the
definition of the vector bundle U} , we get the assertion that U/ ~ v*(W(¥)). So

e2lly) = v (W) = v* 3 ca(Wi(¥))

= Z (m; 3+ L )&B, by the following lemma (since v is a map of degree 1).

Hence [ =}, ('"";l) = my, proving the theorem modulo the next lemma. O

(5.5) Lemma. Let W(m) be the (m + 1)-dimensional irreducible representation
of SUz and let W(m) be the vector bundle on S* associated to the principal SU,-
bundle W on S* (defined in the proof of Theorem 5.4) by the representation W(m)
of SUs. Then

1) ewem) = ("3 %) 2

where () is the fundamental generator of the cohomology H*(S*,Z).

Proof. By the Clebsch -Gordan theorem (cf. [Hu, Page 126]), we have the following
decomposition as SU;-module:

Wm)@W(1)=W(m+1)eW(m—~1), foranym>1.
In particular, the Chern character

(2) chW(m).chW(1) = chW(m + 1) + chW(m — 1).
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Assume, by induction, that (1) is true for all I < m. (The validity of (1) for [ =1
is trivial to see.) Then by (2) we get

chW(m +1) chW(m). chW(1) — chW(m — 1)

((m+1).1 = eoW(m))(2.1 = e2W(1)) = (m.1 — ceW(m — 1)),

since c; W(I) = 0 as W(l) is a SU;-bundle. Hence by induction
(3)

chW(m +1) = ((m+ 1).1 - (m;—Q) Q) (2.1-Q)- (m.l - (m; 1) Q)

Writing chW(m +1) = (m+2).1 — c2W(m + 1), and equating the coeflicients from

(3), we get
amns= (o757 emea (7))

("3%)a

This completes the induction and hence proves the lemma. O

Recall that for any connected complex simple group G, the third homotopy group
73{G) is canonically isomorphic with Z.

(5.6) Corollary. For any representation p of G in a finite dimensional vector
space V, the induced map m3(G) — m3(SL(V)) is multiplication by the number
my.

Proof. The representation p : G — SL(V) gives rise to a morphism  : G/P —
G°/P°, where G° := SL(V)(k,) and P° := SL(V)(&,). Moreover, the family 4°(V')
parametrized by G°/P° (got from the standard representation of SL(V) in V) pulls-
back to the family U(V) (parametrized by G/P). In particular, from the functori-
ality of the determinant bundle (cf. §3.7), Theorem (5.4), and Lemma (5.2), we see
that the induced map 5* : H*(G°/P°,Z) - H*(G/P,Z) is multiplication by the
number my (under the canonical identifications H?(G°/P°,Z) ~ Z ~ H*(G/P,Z)).
But the flag variety G/P is homotopic to the based continuous loop group 2(K)
(where K is a compact form of G), and similarly G°/P? is homotopic to .(SU(V)).
In particular, by the Hurewicz’s theorem and the long exact homotopy sequence
corresponding to the fibration 1.(K) — P(K) — K (where P(K) is the path
space of K consisting of all the continuous paths starting at the base point ), the
corollary follows. O

6. Statement of the main theorem and its proof.

(6.1) Definition. Recall the definition of the homogeneous line bundle £(my,) on
X :=G/P ( for any m € Z) from §(C.6). Define, for any p € Z, (cf. [Kui, §3.8])

(1) HP(X, Llmxo)) = fm  HP(Xw, L(mXo)ix, ),
oeW /W
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where the notation is as in §(C.1). Since any g € G acts as an algebraic auto-
morphism of the line bundle £(my,) (cf. §C.6), H?(X, £(mx,)) is canonically a
G-module. This module is determined in [Ku;] ( and also in [M]). We summarize
the results :

2) HP(X,L(mx,)) =0, f p>0and m >0,
(3) H°(X,L(mx,)) =0, if m <0, and
(4) H(X, £(mx,)) ~ L(C,m)* form >0, as G — modules,

where L(C, m) is the integrable highest weight (irreducible) § -module correspond-
ing to the trivial g-module C and the central charge m (cf. §A.2), and L(C,m)*
denotes its full vector space dual. (By §C.4, L(C,m) and hence L(C,m)* acquires
a canonical structure of G-module.) For any subgroup H C G, by H?(X, £(mx,))¥
we mean the space of H-invariants in H?(X, £(my,)).

Recall the definition of the map ¢ : ¢ — X, from §1.4, and the family U
parametrized by X from Proposition (2.8). Now define

X*® = {gP € X : p(g)is semistable}
={z € X : Uicx is semistable},

and set (for any tv € W/W)

X =X'NXp.
Then by [Ri, Proposition (4.8)], X2, is a Zariski-open (and non-empty, since 1 €
X3} subset of Xy, in particular, X* is a Zariski-open subset of X. Now define

(5) HP(X?, £(mxo)) = lm  HP(Xg,L(mXo)|x, )-
weW/w

Clearly I' keeps X* stable and, by §2.7, ' acts morphically on the line bundle
£(mx.,) for any m which is a multiple of my (for some finite dimensional represen-
tation V of G), in particular, I acts on the cohomology H?(X*, £(mx,)), and we
can talk of the space of I-invariants H?(X*, £(mx,))’. The space HP(X, £(mx,))*
has a similar meaning,

The family U x. yields a morphism 1 : X* — 9N, which maps any z € X° to
the S-equivalence class of the semistable bundle U,, where 9 is the moduli space
of semistable G-bundles on C (cf. Theorem 3.4).

(6.2) Lemma. There ezists a b, € W /W such that
P(Xg,) =M

Proof. Since {J, X, = X* and ¥(X*) = M, we get that M = J,, ¥(X3). But by
a result of Chevalley (cf. [B, Chapter AG, Corollary 10.2)), ¢(X?) is a finite union
of locally closed subvarieties {9},} of M. Hence M is a countable union |JMY
of locally closed subvarieties. But then, by a Baire category argument, 9 is a
certain finite union of (locally closed) subvarieties {IMy,,, ..., My }. Now choosing
ab, € W/W such that v, > v, , for all 1 < i < n, we get that MM = (X ). This
proves the lemma. 0O
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(6.3) Corollary. The moduli space 9 is a unirational variety.

Proof. Since X, is an open subset of X, and Xy, is a rational variety ( by the
Bruhat decomposition), the corollary follows from the above lemmma (6.2). O

(6.4) Proposition. For any d > 0 and any finite dimensional representation V
of G, the canonical map

$* L HO(OR, ©(V)®4) o HO(X*,4*(O(V))®4)T

18 an 1somorphism, where ©(V) is the theta bundle on the moduli space MM associated
to the representation V (cf. §3.7), and the vector space on the right denotes the
space of I'-invariants under its natural action on the line bundle ¥*(©(V)). (Since
the map v : X® — 9 is T-equivariant, with trivial action of T’ on M, the pull-back
bundle ¥*(O(V)) has a natural I'-action.)

Proof. Using Lemma (6.2), we see that the map v¥* is injective. Now the (b)-part
of Proposition (2.8), and Proposition (3.6) show that if z and y are two points
in X° with U, ~ gt(ld;), then y belongs to the Zariski closure of the I'-orbit of
z. In particular, two points in X*® are in the same fiber of ¢ if and only if the
closures of their I-orbits intersect. This, in turn, shows that if ¢ is a I-invariant
regular section of ¥*(©(V))®? on X?, it is induced from a set theoretic section ¢ of
O(V)®4 on M. That g is regular, is seen by taking any Schubert variety X, such
that $(X2) = M (cf. Lemma 6.2) and applying Proposition (4.1) to the morphism
Yixg  Xp =9 O

By the functorial property of the theta bundle, @(U(V))|x. is canonically iso-
morphic to ¢¥*(O(V)), since ¢ is defined using the restriction of the family U(V)
to X*® (cf. §3.7). Moreover, as observed in §3.7, the line bundles ©(U(V)) and
Det(U(V)) coincide on the whole of X.

(6.5) Proposition. Any I'-invariant regular section of $*(Q(V))®4 on X* eztends
uniquely to a regular section of (Det U(V))®? on X.

This proposition will be proved in the next section.
We now state and prove our main theorem, assuming the validity of Proposition
(6.5). '

(6.6) Theorem. Let the triple T = (G,C,p) be as in §1.1, and let V be a finite
dimensional representation of G. Then, for any d > 0,

Ho(m, @(V)®d) = Ho(g/Pa E(diXO))Fv

where the latter space of I-invariants is defined in §6.1, the integer my is the
Dynkin indez of V defined in §5.1, and the moduli space M and the theta bundle
O(V) are as in §§3.4 and 3.7 respectively.

In particular, H(G/P, £(dmyx,))¥ is finite dimensional.

(Observe that by (4) of §6.1, HO(G /P, L(dmy x,))' is isomorphic with the space
of I'-invariants in the dual space L(C,dmv)*.) '

Proof. We first begin with some simple observations:



26

(a) For any algebraic line bundle £ on X, the canonical restriction map H°(X, £) —
H®(X*, £ x,) is injective: This is seen by restricting a section to each Schubert va-
riety Xy, and observing that X is non-empty, and open (and hence dense) in the
irreducible variety X,.

(b) If £ is a T-equivariant algebraic line bundle on X (with respect to the standard
action of I' on X ) (cf. §B.7) and o is a regular section of £ such that its restriction
to X*® is I'-invariant, then o itself is -invariant: By I-invariance, for v € T, the
section 4*(o) — o vanishes on X* (and hence on the whole of X).

(c) Suppose that £' and £" are two I-equivariant algebraic line bundles on X°.
Then any biregular isomorphism of line bundles £ : £ — £ (inducing the identity
on the base) in fact is I'-equivariant. In particular, £ induces an isomorphism of
the corresponding spaces of I'-invariant reqular sections:

Defineamape:I' x X* —» C* by
5(7a$) = L'y—l Eye L'y (éz)_l € Autc(ﬁ;’) =C,

for vy € T and = € X°*, where L, is the action of y on the appropriate line bundles,
and £, denotes the restriction of £ to the fiber over z € X°. It is easy to see that
€ is a regular map, and of course ¢(1,z) = 1 for all ¢ € X°*. In particular, by
Proposition (2.4), €(v,z) = 1, for all v € I'. This proves assertion (c).

We now consider (Det L{(V))Sg, as a I-equivariant line bundle by transport-

ing the natural I'-action on ¥*(©(V))®¢ (cf. Proposition 6.4), via the canonical
identification

(1) (DetU(V))x: ~¢*(6(V)).
Choose an isomorphism of line bundles on X
& : (DetU(V))® — £(x0)®"™

which exists by Theorem (5.4). Recall from §2.7 that £(x,)®?™" is a [-equivariant
line bundle on X. Hence by (c) above, the map £ := &, x. is automatically I'-
equivariant. We have the following commutative diagram:

HO(X, (DetU(V))®?) L» H(X, £(x0)®4™v)

! !

HO(X*,(DetU(V))®?) —£> HO(X*, £(x0)®™")

where £ (resp. §,) is induced from £ (resp. ¢&,), and the vertical maps are the
canonical restriction maps. Observe that ¢ is I'-equivariant (since £ is so).
Further we have
HO(9m,0(V)®?) ~ HO(X*, (DetU(V))®H)T (by (1) and Proposition 6.4)
~ HO(X?. £(xo)®4™ )T (under &).
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We complete the proof of the theorem by showing that the restriction map
HO(X,S(XO)®di )1" - HO(X", £(Xa)®dmv )F

is an isomorphism:

It suffices to show that any I'- invariant section o of £(x0)®%™¥ over X* extends
to a section over X, for then the extension will automatically be I-invariant by
(b) and unique by (a). By the above commutative diagram, this is equivalent to
showing that any I-invariant section o, of (DetU(V))®4 over X* extends to the
whole of X. But this is the content of Proposition (6.5), thereby completing the
proof of the theorem. O

(6.7) Proposition. For any d > 0, and finite dimensional representation V of G,
we have

[L(C,dmv )*I' = [L(C,dmy )*]*eT = [L(C,dmy )*]8®9C"],

where L(C,dmy) is canonically an algebraic T-module as in §2.7, g is the Lie
algebra of the group G and (as in §1.1) C[C*] is the ring of regular functions on
the affine curve C*.

Proof. Abbreviate L(C,dmy) by V. Fix v € V and consider the morphism ., :
T — V given by 7, (y) = ~.v for ¥ € . Recall (cf. Lemma B.6) that, by definition,
the action of the Lie algebra Lie " on v € V is given by the induced map (dry)e :
T(I') = LieT - T, (V)= V.

Fix ¢ € V*. For any v € V, define the map 8, : I' —+ A! by 8,(y) = 6(v.v). The
induced map (df,). : T.(T') = Lie T' — Ty,)(A!) = A! is given by

(1) (dfy)e(a) = 6(a.v), fora € Liel.

For any v, € I, we now determine the map (df,),,: Consider the right transla-
tion map R, :T' = T, given by Ry (%) = 77,- Then we have

(2) (d8y)+, © (AR, )e = (dba,.0)e-

If 8 € [V*]', then 6, (for any fixed v € V) is the constant map v — 6(v).
In particular, (d6,). = 0, proving (by 1) that § € [V*]T. Conversely, take
8 € [V*]*T. Then by (1) and (2), for any fixed v € V,(d8,),, =0 for any v, € T.
In particular, for any fixed v € V and i > 0, the map v, : Ti = Al (T;isasin
the proof of Lemma 2.1) is constant on the irreducible components of T'; (as the
base field is of char. 0). But since I is connected (cf. proof of Proposition 2.4), 8,
itself is forced to be a constant. Thus, we have (78 — 8)v = 0, for every v € V and
v € T, proving that 8 € [V*]'. Finally, by Lemma (2.2), we have Lie T' = g® C[C*].
This proves the proposition. O

(6.8) Remarks. (a) From the proof it is clear that the above proposition is true
with L(C,dmy) replaced by any algebraic representation of the ind-group T'.

(b) In Conformal Field Theory, the space of vacua is defined to be the space
of invariants [L(C, d)*]#®9C"] of the Lie algebra g ® C[C*] (cf. [TUY, Definition
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2.2.2]). We see, by Theorem (6.6) and Proposition (6.7), that the space of vacua is
1somorphic with the space of generalized theta functions.

{c) Assertion (c) in the proof of Theorem (6.6) is true with X° replaced by X.
(In fact, in this case we do not even need to use Proposition (2.4), but need only
the connectedness of I'.) We outline an argument:

Following the same notation as in the proof of assertion (¢), in this case, for any
fixed v € I' the map ¢, : ¥ x X = C* is a constant o, (since X is a connected
projective ind-variety). From this it can be easily seen that the map o : ' — C*
taking 7y — a is a group morphism. In particular, the derivative (da), : LieT' = C
is a Lie algebra homomorphism. Since the commutator [Lie I', Lie I'] = Lie T, we
get that da = 0. Hence, by an argument used in the proof of Proposition (6.7), we
see that the map « itself is identically 1. This proves assertion (c) for X.

As an immediate consequence of the above remark (b), we obtain the following.

(6.9) Corollary. Let the notation and assumptions be as in Theorem (6.6). Then
the space of coinvariants L(C,dmy)/((g ®c C{C*]).L(C,dmyv)) is finite dimen-
stonal. (Cf. [K, Exercise 11.10, p. 209] for a purely algebraic proof of this corol-
lary.)

7. Proof of Proposition (6.5).

(7.1) Lemma. Let X be an irreducible normal variety, U C X a non-empty open
subset and £ a line bundle on X. Then any element of 6)9 HO(U, L") which is
n>0

integral over @OHO(X, £7) belongs to ®H(X, L"),

Proof. Since the rings in question are graded, it suffices to prove the lemma only
for homogeneous elements. Let b € HO(U, £"°) be integral over @H(X, £"), i.e., b
satisfies a relation b™ + a;b™"! + - - + @, = 0 with a; € ®H?(X,£L"). Let D be a
prime divisor in X \ U and let b have a pole of order £ > 0 along D. Then the order
of the pole of b™ along D is of course #m and that of a;b™~* is < £(m — 1) for every
i > 1. But since ™ + ;5™ 1 + .-+ + am-1b is by assumption regular along D, we
are forced to have £ =0, i.e., b is regular along D. Hence b € H°(X,L"). O

(7.2) Lemma. Let f : X = Y be a morphism between projective varieties and L
an ample line bundle on'Y. Then the ring Eg HO(X, f*L™) is integral over the ring
n>0

® HO(Y, L"),
n>0
Proof. First of all,

m 8 H'(X,f*L") ~ H(Y, £" @0 £.0).

Since f,O is coherent, we can write

0 K=3L,8®Lwm = f.O 0,
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for some line bundles £; on Y. Since £ is ample on Y, there exists n, > 1 such
that for n > n,, HY(Y,£L® ® K) = 0, in particular,

(2) HO(Y,L" ® (8L:)) —» Ho(Y, L™ 2 £.0)

is surjective for n > n,. We now prove that @ H®(Y,L" ® £;) is finitely generated
n>0
over e)aOHO(Y,L"), for any line bundle £; on Y :
n—
Consider the sheaf exact sequence
0= Zayy = Oyxy = Oy = 0,

where A(Y) CY xY is the diagonal and Ty (y) is the ideal sheaf of A(Y)in ¥ x Y.
There exist £,,m, > 1 such that for n > £, and m > m,,

HY Y xY,Ipnv) @ (L"R(L™ @ Li))) = 0.
In particular, for n > £, ,
HY(Y,L™) ® HO(Y, L™ @ £;) - HO(Y, L™ @ L)
is surjective. This, in particular (using 2), proves that the ring H@OHO(Y, E"%ﬂ(@))
is finitely generated over ne>90H O(Y,L™), and hence integral (cf. [AM, Proposition

5.1]). This proves the lemma by (1). O

(7.3) Proposition. Let Y be a normal irreducible variety parametrizing a family
& of G-bundles on C. Consider the induced map 5 :Y*® — D (c¢f. Theorem 8.4;
where Y is the subset of Y consisting of those y € Y such that £, is semistable).
Fiz a representation V of G and fiz an isomorphism

O(EMWV))y. = B*(O(V)).

Then for any section o € H°(MM,0(V)®?) (d > 0), the pull-back section %o
eztends to an element of HO(Y,0(£(V))®?).

Proof. Consider the diagram (cf. §3.7, the notation of which we follow here)

BEVH® —— OV)®¢ —— 0%

fys

! ! !

Y? —7—) m —_ M,

By Lemma (7.1), it suffices to show that 8*c € HO(Y?,©(£(V))®4) is integral
over @oHO(Y,G(S(V))®"):

Since o is integral over 62 HO(9M,,0%") (by Lemma 7.2), there exists a relation
n>0

(%) oP +ajeP 4. ap =0, for some a; € egoHo(mo’ e®n)'
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Now we have

Y* & Y?
Bl 18,
omo - M,

where Y := {y € Y : §,(V) is a semistable GL(V)-bundle}. Assume that 8}a;
can be extended to the whole of Y (which is possible by the following Lemma 7.5),
then we get from (%)

(B*0) + (Byar))y. (B0 + -+ + (Bap)y, =0,

which proves the proposition. O

(7.4) G.I.T. construction of the moduli of vector bundles. We recall the
construction of the moduli spaces of vector bundles on C using G.I.T.. Let r > 1
and § be integers. For the fixed point p € C and for a coherent sheaf F on C, put
F(m) =F®0O(mp), for any m € Z, where O = O¢ is the structure sheaf of C.
We can choose a large enough integer m, = m,(r,§) such that for any semistable
vector bundle E of rank r and degree § on C, we have H!(E(m,)) = 0 and E(m,) is
generated by its global sections. Let g := dim HY(E(m,)) = §+r(m,+1—g) (where
g is the genus of C) and consider the Grothendieck quot scheme @ consisting of those
coherent sheaves on C which are quotients of C* ®¢ O with Hilbert polynomial (in
the indeterminate v) rv+¢q . The group GL(q, C) operates canonically on Q and the
action on C x @ (with the trivial action on C) lifts to an action of the tautological
sheaf 7 on C x Q.

We denote by R, the GL(q)-invariant open subset of @ consisting of those z € Q
such that 7; := Tjcx is locally free and such that the following canonical map is
an isomorphism:

! = HO(C? @¢c O)3H(T,).

Then R, is smooth and irreducible and Ticxr, is a rank-r vector bundle. Define
the open subset (of R,) R? = {z € R, : T, is semistable }. If we choose sufficiently
large m, , the G.I.T. quotient R2//GL(q) yields the moduli space M, of vector
bundles of rank r and degree 8. (We choose such a m, in the sequel.) (For all this,
see [NRa, Appendix A] or [Le].)

Now let V, - C x T, be a family of vector bundles of rank r and degree &
(parametrized by a variety T,). We can find an integer mr, such that for m > mr,,
we have :

(1) Rlps,(Vo(m)) = 0.
(2) p2.(Vo(m)) is a vector bundle on T, ( of rank ¢ := § + r(m + 1 — g)), and
{3) the canonical map p3ps, (V,(m)) = V,(m) is surjective,
where p; : C x T, — T, (resp. p; : C x T, — C) is the projection on the second
(resp. first) factor, and V,(m) := V, ®oc 1, P}O(mp).

Choose 7, larger than mr, and m,, where m, is as above. Let P, be the
frame bundle of pz, (V,(77,)) with the projection 7, : P, — T,. Then there exists
a canonical GL(g)-equivariant morphism p,: P, — R, , such that the families
75 (Vo) and @3 (T(—71,)) are isomorphic, where T(—m) := T ®oc,x, PEO(—mp)

and pc : C x R, = C is the projection on the first factor.
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With the same notation as in Proposition (7.3) and its proof, we have the fol-
lowing;:
(7.5) Lemma. For any g, € H°(M,,0%%) (d > 0) the pull-back section B0, €
HO(Y?,0(E(V))®?) can be extended to the whole of Y.

Proof. In the construction as in §7.4, take r = dimV, § =0,and T, = Y.
Counsider the diagram (where the map = is the quotient map and the other maps
are as explained in §§7.3-7.4):

P,

To o
Y)Y R, + R}
Ba™\ T
m, .

Now since codimpg, (R,\R3) > 2 and R, is smooth (in particular normal), the
section 7*0, extends (say to 7*,) to the whole of R,. Pull 7*a, via the GL(g)-
equivariant morphism ¢,, and then push via the GL(g)-bundle m,. This gives an
extension of the section 330, to the whole of Y. This proves the lemma, thereby
proving Proposition (7.3) completely. 0O

Finally we prove Proposition (6.5) and thus complete the proof of Theorem (6.6).

(7.6) Proof of Proposition (6.5). Let & be a ['-invariant regular section of ¢*(0(V))®¢
on X*. By Proposition (6.4), there is a section o of ©(V)®? over M such that
¢¥*(0) = 5. Let Xy be a Schubert variety. Since Xy is irreducible and normal
{cf. {Ku1, Theorem 2.16]), by Proposition (7.3), &,x: extends to a (unique) section
T of (Det U(V))®? on X,. By the uniqueness of extensions, it is clear that for
any v < ,0n,,, = Ov. In particular, the sections {w} give rise to a section &
of (Det U(V))®? on the whole of X, extending the section & . This completes the
proof of the proposition. O
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Appendix A. Affine Lie algebras - Basic definitions and representations.

The basic reference for this section is Kac’s book [K].

(A.1) Definition. Let g be a finite dimensional complex simple Lie algebra. (We
also fix a Borel subalgebra b and a Cartan subalgebra h C b of g.) The associated
affine Kac-Moody Lie algebra is by definition the space

§:=g@cCit*']oCK ,

together with the Lie bracket (for X,Y € g and P, @ € Ct*!])
dpP
X®PY®Q=[XY|®9PQ+(<X,Y > Res(—-Q))K, and

8, K]=0,

where <, > is the Killing form on g, normalized so that < 8,8 >= 2 for the highest
root 8 of g. We also define a certain completion §comp of g by

gcomp =g®&c¢ a(t)) & CK y
where C((t)) is the field of Laurent power series. Then §comp is a Lie algebra under
the same bracket as above.
The Lie algebra g is a Lie subalgebra of § sitting as g ® t°. The Lie algebra §

admits a distinguished ‘parabolic’ subalgebra

p:=g@Ct & CK.
We also define its ‘nil-radical’ #i (which is an ideal of p) by

i := g ® tC[1),

and ‘Levi component’ (which is a Lie subalgebra of p)

p°:=gRt°9CK.

Clearly (as a vector space)
p=u@p°.

Define the loop algebra L(g) := g ®c C[t*!] with Lie bracket [X @ P,Y ® Q] =
[X,Y]® PQ, for X,Y € g and P,Q € C[t*']. Then § can be viewed as a one-
dimensional central extension of L(g):

05 CK - §-" L(g) =0,

where the Lie algebra homomorphism 7 is defined by #(X ® P) = X ® P and
T(K) = 0.
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(A.2) Irreducible representations of §. Fix an irreducible (finite dimensional)
representation V of g and a number £ € C (to be called the central charge). Then
we define the associated generalized Verma module for g as

M(V,£) = U(g) Que) Le(V),

where the p-module I;{V) has the underlying vector space same as V , on which &
acts trivially, the central element K acts via the scalar £ and the action of g = gQ1°
is via the g-module structure on V.

In the case when £ # —h (where h is the dual Coxeter number of g, cf. Remark
5.3), M(V,¢) has a unique irreducible quotient denoted L(V,¢) (cf. [KL,, §2.8]).
We assume in the sequel that £ # —h. It is easy to see that the g-module structure
on M(V,£) (and also L(V,£)) extends to a fcomp-module structure.

(A.3) Remark. As can be easily seen, any vector v € M(V,{) is contained in a
finite dimensional g-submodule of M(V,£). In particular, the same property holds
for any vector in L(V, £).

(A.4) Definition. Consider the Lie subalgebra t° of § spanned by {Yp, ® 1,6 @
1,Xe ® t71}, where Yy (resp. Xj) is a non-zero root vector of g corresponding to
the root —@ (resp. 8) and the coroot #Y is to be thought of as an element of h.
Then the Lie algebra t° is isomorphic with sl(2) (cf. proof of Theorem 5.4).

A g-module W is said to be integrable if every vector v € W is contained in a
finite dimensional g-submodule of W and also v is contained in a finite dimensional
r°-submodule of W.

The following lemma follows as a consequence of sl(2)-theory.

(A.5) Lemma. The irreducible module L(V,£) (as in § A.2) is integrable if and
only if £ is an integer and £ >< )\, 0¥ >, where ) is the highest weight of V.

Appendix B. An introduction to Ind-varieties.

In this section we take k to be any algebraically closed field of arbitrary char.

(B.1) Definition [Sa]. By an ind-variety over k we mean a set X together with a
filtration
XoCXiCXa G-,
such that
(1) U X,=2X,and
n>0
(2) Each X, is a (finite dimensional) variety over k such that the inclusion
Xn = Xpn+1 is a closed immersion.

An ind-variety X is said to be projective (resp. affine) if each X, is projective
(resp. affine). For an ind-variety X, we define its ring of regular functions k{X] by
kX) = Inz; It. k[X,], where k[X,] is the ring of regular functions on X,. Putting

n o0

the discrete topology on each k[X,] and taking the inverse limit topology on k[X],
we obtain k[X] as a topological ring.
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Let X and Y be two ind-varieties with filtrations X, and Y, respectively. A
map f : X = Y is sald to be a morphism if for every n > 0, there exists a
number m(n) 2 0 such that f(X,) C Y,5(n) and moreover fix, : Xn = Yn(n) is a
morphism. Clearly, a morphism f : X — Y (between two ind-varieties) induces a
continuous k-algebra homomorphism f* : k[Y] — k[X].

A morphism f : X — VY is said to be an isomorphism if f is bijective and
f7':Y — X also is a morphism. Two ind-variety structures on the same set
X are said to be equivalent if the identity map I : X — X is an isomorphism of
ind-varieties. A morphism f : X — Y is called a closed immersion if for every
n >0, fix, : Xn = Yp(ay is a closed immersion.

We define the Zariski topology on an ind-variety X by declaring a set U C X
open if and only if U N X, is Zariski-open in X, for each n.

(B.2) Ezercises. (a) For an ind-variety X , a subset Z C X is closed (under the
Zariski topology) if and only if Z N X,, is closed in X, for each n.

(b} A morphism f: X — Y between two ind-varieties is continuous.

(c) Any continuous map f : X — Y between two ind-varieties satisfies that for
each n, there exists a m(n) such that f(X,) C Yi(n).

(B.3) Ezamples. (1) Any (finite dimensional) variety X is of course canonically an
ind-variety, where we take each X, = X.

(2) f X and Y are ind-varieties then X x Y is canonically an ind-variety, where
we define the filtration by

(X XY)n = Xp x Yy

(3) A := {(a1,a,,a3,---): all but finitely many as are zero and each a; € k}
is an ind-variety under the filtration : A! C A2 C A% C ---, where A" C A® is
the set of all the sequences with any1 = anyy = --- = 0, which of course is the
n-dimensional affine space.

(4) Any vector space V of countable dimension over k is canonically an affine ind-
variety: Take a basis {e;}i>1 of V. This gives rise to a k-linear isomorphism A% 3V
(taking (a1,a2,a3,---) = 3 a;e; ). By transporting the ind-variety structure from
A via this isomorphism, we get an (affine) ind-variety structure on V. It is easy
to see that a different choice of basis of V gives an equivalent ind-variety structure
onV.

Similarly, the space P(V) of lines in V is canonically a projective ind-variety.

(B.4) Definitions. (a) Let X be an ind-variety with the filtration (X,). For any
z € X, define the Zariski tangent space To(X) of X at z by

T:(X) = limit T;(X,,),
n—o0
where T;(X,) is the Zariski tangent space of X, at z. (Observe that z € X, for
all large enough n.)
A morphism f: X — Y clearly induces a linear map (df), : To(X) — Tpry(Y)
(for any z € X), called the derivative of f at z.
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(b) An ind-variety H is said to be an ind-algebraic group (for short an ind-
group), if the underlying set H is a group such that the map H x H — H , taking
(z,y) # zy~! , is a morphism. In this article, we only have occasion to consider
affine ind-groups, i.e., ind-algebraic groups H such that H is an affine ind-variety.
So this will be our tacit assumption on ind-groups.

By a group morphism between two ind-groups H and K, we mean a group
homomorphism f : H — K such that f is also a morphism of ind-varieties.

An abstract representation of the ind-group H in a countable dimensional k-
vector space V is said to be algebraic if the map H xV — V| defined by (h,v) — h.v,
is a morphism.

For an ind-group H and ind-variety Y, we say that Y is an H-variety if the
group H acts on Y such that the action H xY — Y is a morphism of ind-varieties.

(B.5) Proposition [Sa]. For an ind-group H, the Zariski tangent space T.(H) at
the identity element e is endowed with a natural Lie algebra structure (described in
the proof). We denote this Lie algebra by Lie H.

Moreover, if a : H = K 1s a group morphism between two ind-groups, then the
derivative (da)e : Lie H — Lie K i3 a Lie algebra homomorphism.

Proof. Denote k[H]| by A. The multiplication map u = gy : H x H - H , taking
(h1,h2) » hihy , induces a continuous homomorphism p* : A — k[H x H]. There
is a canonical inclusion A @k A — k[H x H}, and it is easy to see that the image
is dense in k[H x H]. So we denote k[H x H] by A®A, and view it as a certain
completion of A ® A. Let ¢ : A — k be the homomorphism, taking f ++ f(e). Let
m = kere. Then for any f € m

(1) pf-f®1-18 f € m&m,

where m@m denotes the closure of m @ m in AQA.

A continuous derivation D : A — A is said to be tnvariant if L} o D = Do L},
for all h € H, where L} : A — A is the algebra homomorphism induced from the
left translation map Ly : H — H taking g — hg. The set Der A of continuous
invariant derivations of A is a Lie algebra under

[DI,DQ] i=DyoD; ~DgoDy, Dy,D4 € Der A.

Define the map 7 : T.(H) — Der A as follows. Take v € T.(H). Then v €
T(H,) for some n (where H, is the filtration of H). By definition, T.(H,) =
Hom x(m,/m2, k), where m,, := {f € k[H,] : f(e) = 0} is the maximal ideal of
k[H,] corresponding to the point e. In particular, v gives rise to a k-linear map
v:m, = k. Let §: A = k be the continuous linear map defined by (1) = 0, and
9|, = ¥ 0 my,, where T, : m — my, is the canonical restriction map. Now the map
n(v): A — A is defined by

7(v) = (I1&0) o p*,

where I : A — A is the identity map and /7 : A®A — A®k = A is the completion
of the map I ® . By using (1), we get that n(v) is a derivation. Further, it can be
seen that n(v) is invariant and hence n(v) € Der A.
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Conversely, we define a map £ : Der4 — T.(H) as follows. Take D € Der A
and consider eo D, : m — k. Since D is continuous, there exists some n such that
€ o Dy, factors through m,, giving rise to a map (denoted ) fp : m, — k. Since D
is a derivation, Bp(m2) = 0 and hence Bp gives rise to an element Ap € Te(Hn).
Now set £(D) = fp.

It can be easily seen that £on and nof both are the identity maps, in particular,
n and £ are isomorphisms. We now transport the Lie algebra structure from Der A
to Te(H) (via n).

Finally, we prove that for any group morphism « : H — K, the derivative
& = (da), : LieH - Lie K is a Lie algebra homomorphism:

To prove this, it suffices to show that the following diagram is commutative (for
any v € Lie H):

K[K] — K[H]
n(dV)l ﬂ(v)l
kK] — k[H].

Take f € my, where myg C k[K] is the maximal ideal corresponding to the point
e. Then, by the definition of the map 7,

—_
*
~—

(2) n(v)(e"f) = I&)uy(a”f),  and

() n(éw)f = (I&(év))pk(f)-

Further,

@) a*néw)f = (" @@)uk(f),  whereas
(5) av=79o0a", and

(6) ("®a’)opu) = pyoa’.

Now combining (2)-(6), we get the commutativity of the diagram (*). This proves
the proposition. O

(B.6) Lemma. An algebraic representation 6 of an ind-group H tn a (count-
able dimensional) vector space V induces (on ‘differentiation’ as defined below) a
representation dfl of the Lie algebra Lie (H) on the same space V.

Proof. Fix v € V and define the map 6, : H — V by h — hv. Consider the
derivative (df,). : T.(H) = Lie (H) — T,(V) = V. Then the representation dé: Lie
(H) x V = V is defined as (z,v) — (df,).(z). We claim that df is a Lie algebra
representation:

We abbreviate df(z,v) by z.v . For any v € V, define the evaluation map e(v) :
k[V] = k by e(v)f = f(v), for f € k[V]. Fixany v, € V. Thenv € T, (V) = V
induces a k-linear map & : k[V] — k, such that 5(1) = 0 {cf. the proof of Proposition
B.5). If v,w € Ty, (V) are such that |,. = ),., then ¥ = @, where V* C k[V]
denotes the full vector space dual of V. Moreover, as is easy to see,"

(1) ﬁlv' = e(v)|v- i
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By definition (for any v € V and z € T.(H))

(2) T-0 = (ZQe(v)) 0 6,

where 6 : H x V = V is the representation. Since 8 is linear in the V-variable,
(3) g*(V*) C k[H|®V*,

where k[H|®V* is the closure of k[H] ® V* in k{H]|®k[V] := k[H x V).

Consider the following commutative diagram (for any z,y € T.(H) and v € V),
where A = k[H], and I stands for the identity maps.

k[V]
16*
ARK[V]
wrond e
(ABABKV] ~ AB(AGK[V))
(289)@e(v) N  28(3@e(v))
k@k@k=k.

The commutativity of the above diagram and (1)—(3) give the following (for any
z,y € Te(H) and v € V).

(4) ez (y-v))y. = ((Z&)Se(v)) o (1*®I) 08%)),..
By (4) we get
(5) (e(z - (y-v)) —ely - (z - ). = (F®F — §&ZT)®e(v)) 0 (u*®I) 0 87),...

But, as can be easily seen from the definition of the bracket in T.(H) (cf. proof of
Proposition B.5),

(6) (28§ ~ §@Z) o p* = [z, y].
In particular,

ez (y-v) =y (z-9)),. = (([z,4]®e(v)) 0 8°)},..,
(Iz,y] - v)},.» by (2)
e([z,4] - v)y.» by (1).

H

This gives that z - (y -v) —y - (z - v) = [z,y] - v, proving the lemma. O
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(B.7) Definition. For an ind-variety Y, by an algebraic vector bundle of rank r
over YV, we mean an ind-variety E together with a morphism 8 : E — Y such
that (for any n) E, — Y, is an algebraic vector bundle of rank r over the (finite
dimensional) variety Y, , where {Y,,} is the filtration of ¥ giving the ind-variety
structure and E,, := §71(Y,) . If r = 1 , we call E an algebraic line bundle over Y.

Let E and F be two algebraic vector bundles over Y. Then a morphism (of
ind-varieties) v : E — F is called a bundle morphism if the following diagram is
commutative :

and moreover ¢|g, : E, = F, is a bundle morphism for all n. In particular, we
have the notion of isomorphism of vector bundles over Y.

We define Pic YV as the set of isomorphism classes of algebraic line bundles on
Y. It is clearly an abelian group under the tensor product of line bundles.

We similarly define the notion of principal H-bundles on an ind-variety (for a
finite dimensional algebraic group H).

For an ind-group H and H-variety Y (cf. §B.4), an algebraic vector bundle
0:E —Y is said to be an H-equivariant vector bundle if the ind-variety E also is
an H-variety, such that the following diagram is commutative:

HxE —— E

[ o

HxY —— Y,

and moreover for any y € Y and h € H the fiber map h x 61y — §~1(hy) is linear.

Appendix C. Affine Kac-Moody groups and their flag varieties.

Let G be a connected simply-connected simple algebraic group and let G :=
G(C((t))), P := G(C[[t]]). We fix a Borel subgroup B C G and a maximal torus
T C B, and define the standard Borel subgroup B of G as evy ' (B), where evg : P =
G(C[[t]]) = G is the group homomorphism induced from the C-algebra homomor-
phism C[[t]] — C, taking ¢ s 0.

Let N(T) be the normalizer of T in G and consider the set Mor (C*, N(T))
of all the regular maps f : C* —+ N(T), which is a group under pointwise multi-
plication. Then T can be thought of as a (normal) subgroup of Mor (C*, N(T))
consisting of constant loops in T. Then the affine Weyl group W of G is by defini-
tion W = Mor(C*, N(T))/T. Clearly the (finite) Weyl group W := N(T)/T of G
is a subgroup of w.

(C.1) Bruhat Decomposition. We can view Mor(C*, N(T)) as a subgroup of
G. In particular, any element w € Mor(C*, N(T)) can be thought of as an element
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{(denoted by the same symbol) w of G. The generalized flag variety X := G/P has
the following Bruhat decomposition:

(1) X= |J BnoP/P,
weW/w

where the notation BwP /P means BwP /P for any choice of the coset representative
w of to. (The set BroP/P is independent of the choice.) Moreover, the union in (1)
is disjoint.

The affine Weyl group W is a Coxeter group and hence has a Bruhat {or Cheval-
ley) partial order <. This induces a partial order (again denoted by) < in W/ w
defined by

u:=umod W <wo (foru,vEW)

if and only if there exists a w € W such that

u < vw.
We define the generalized Schubert variety Xy, (for any 1 € W/W) by

(2) Xw = | BoP/P.
v<
Then clearly Xy € Xy if and only if b < .

(C.2) Definstion. Let g be the Lie algebra of G. We define the adjoint represen-
tation Ad of G in Geomp as follows (cf. [PS, Proposition 4.3.2]):

Embed G < SLx and define, forany g € G, Y € g C((¢)) and z € C
~1 —1 dg
Ad(g(Y +zK)=gYg™ + z—{&eg e Y K,

where (, ) is the C((t))-bilinear extension of the normalized Killing form (, ) on g
{cf. §A.1).

The following lemma is well known, but we give a proof for completeness. Even

though we do not need, a more general lemma (where the base field C is replaced
by any C-algebra) for G = SLy is proved by Faltings (cf. [BL, Appendix to Sect.
7))
(C.3) Lemma. Let v :§ — EndW be an integrable highest weight representation
of § (in particular W ~ L(V,€) as in Lemma A.5). Then there ezists a unique
group homomorphism # : G — PGL(W), such that the following holds for any
g€G and X € Geomp -

(*) (g)m(X)7(g)™" = 7(Adg X),
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where & : Geomp — End W is the eztension of = (cf. §A.2), PGL(W) := GL(W)/C"*,
and GL(W) is the group of all the linear automorphisms of W. (We view #(g)7(X)#(g)™?
as an element of End W by taking any lift of #(g) in GL(W).)

Proof. Fix g € G. We first prove that if there exists an element § € PGL(W) such
that O7(X)0™! = #(Adg X), for all X € fcomp, then 8 is unique:
For, if possible, let 8; be another such element. Then

(61_10)7?(X)(01—16)~1 = ‘I—I'(X), for a.ll X € gcomp-

But W being irreducible, (§7'8) = 1 (in PGL(W)). This proves the uniqueness

assertion.

Define the set
S = {g € G:#(g) is defined satisfying (*) for all X € Jcomp} -

By uniqueness, it is clear that S is a subgroup of G and moreover the map # : § —
PGL(W) is a group homomorphism. We next prove that $ =G :
For any root vector z € g and p € C((t)), define

(1) #(exp(z ® p)) = exp(7(z @ p))-

(Since z is a root vector and W is integrable, #(z ® p) € End W is locally nilpotent,
in particular, exp(7(z ® p)) is well defined.) It is easy to see that #(exp(z ® p)), as
defined by (1), satisfies (*) for every z € fcomp. Further, by a result of Steinberg,
the group generated by the elements exp(#(z ® p)) is the whole group G. This
proves the lemma. O

(C.4) Central Extension. Recall the definition of the integrable highest weight
(irreducible) §-module W, = L(C,1) with central charge 1 from Lemma (A.5),
where C is the trivial one-dimensional representation of g. By Lemma (C.3), there
exists a group homomorphism # : ¢ - PGL(W,). We define the group G as the
pull-back #*(GL{W,)):

¢ —— GL(W,)

l l

g —A-‘} PGL(WO) .
Then § is a central extension:
(1) 15C =656 1.

By the very definition of G, the §-module W, becomes a G-module. In particular,
the tensor product W®™ (for m > 0) acquires a canonical G-module structure.
The integrable §-module L{C, m) with central charge m > 0 occurs uniquely as a
g-submodule of W®™, and it is easy to see (using (1) of the proof of Lemma C.3)
that G keeps L(C,m) C W®™ stable. In particular, L(C,m) acquires a.canonical
G-module structure.
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(C.5) Realizing X as an ind-variety via representation theory. Define the
filtration {Xn}n>0 of X as follows:

Xn = U.Xm,

where the union is taken over those m = w mod W € W /W such that £(w) < n.

Fix any integer £ > 0 and consider the irreducible §-module L(C,¢). From the
Bruhat decomposition, it is easy to see that the map t = i¢ : X — P(L(C, £)),gP
{gvo] (where v, is the highest weight vector of L(C,£) and P{L(C, ¢)) denotes the
space of lines in L(C,£)) is injective. As proved in [S], §2.4], for any n, there
exists a finite dimensional subspace W,, C L(C,£) such that i(X,) C P(W,) and
moreover $(X,) is Zariski-closed in P(W,). We endow X, with the projective
(reduced) variety structure so that i|x, is a closed immersion. This makes X into a
projective ind-variety. Further, the ind-variety structure does not depend upon the
particular choice of £ > 0 {cf. [S], §2.5]). Equipped with this ind-variety structure,
we denote X by X,y .

For any w € W/ W the generalized Schubert variety Xy, is an irreducible Zariski-
closed subset of X,.,. We endow X, with the projective (reduced) variety structure
so that X — X is a closed immersion. Then BrwP/P C X, is an open subset,
which is biregular isomorphic with the affine space CX™), where £(10) is the length
of the smallest element in the coset w.

Since X, is a variety, we can equip X, with the (Hausdorff) analytic topology and
put the inductive limit topology on X. The decomposition (1) of §(C.1) provides a
cellular decomposition of X, making it into a CW complex.

Following [S], §2.7], we define the homogeneous line bundles on X;ep:

(C.8) Definition. For any countable dimensional vector space V, we first define
the tautological line bundle Ly on P(V) as follows: Consider the subset

Ly ={(z,v) e P(V)x V:v €z}

Then Ly is a Zariski-closed subset of the ind-variety P(V) x V. We equip Lv with
the ind-variety structure so that Ly = P(V) x V is a closed immersion. Now the
projection on the first factor Ly — P(V) realizes Lv as an algebraic line bundle
on P(V).

For any £ > 0, define the algebraic line bundle £(£x,) on X as the pull-back
of the dual £* of the tautological line bundle £ = Lyce on P(L(C £)) via the
embedding i¢ : X — P(L(C ¢)) of the above section. For any integer £ < 0, we
define the line bundle £(£x,) as the dual £(—£€x,)* and for £ = 0, £(£Lx,) is defined
to be the trivial line bundle. It is easy to see (cf. [Sl, §2.7]) that the line bundle
£(£x,) is isomorphic with the line bundle £(x,)®*.

The group G acts (set theoretically) on X = G/P via g(hP) = ghP, for g,h € G.
We denote the action of g € G on X by L,. This action lifts to an action of the
group G on the line bundle £(£x,) (for £ < 0) via

g(z,v) = (Lneg)z, 9v), for any g € G, zeXandve ie(z),
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where 7 : ¢ — G is the canonical map. Observe that for any fixed g € G, the action
of g on £(€x,) is an algebraic automorphism of the algebraic line bundle £{£x,)
inducing the automorphism L., on the base X.

Set £, := £(~x,), and define the Mumford group (cf. [PS, Remark (i}, page
115)) Aut(L,) = {{g9,¢) : ¢ € G and ¢ is an algebraic automorphism of the line
bundle £, inducing the map L, on the base}. Then Aut(L,) is a group under

(g1, 1)(g2,02) = (9192, P102)-

The projection on the first factor gives a group homomorphism 6 : Aut (£,) — G.
Since G acts on £,, there is a canonical group homomorphism £ : ¢ —+ Aut(£L,)
making the following diagram commutative:

Since 7 is surjective, so is 4. In particular, £ is an isomorphism.

We also need another ‘lattice’ description of the ind-variety structure on X (cf.
[KL, §5]).
(C.7) Realizing X as an ind-variety via lattices (SLy case). We first con-
sider the case of G = SLy. Denote V = CV, and A = C[[t]]. For any n > 0,
consider the set F, of A-submodules L C V ®¢ C((¢)) such that (denoting V ®c 4
by L,
v £ t"L,C LCt "L, , and dim (L/t"L,) =nN .

Let V, :=¢""L,/t" L, be the complex vector space of dimension 2nN. Then the
multiplication by ¢ induces a nilpotent endomorphism £, of V,, and hence 1 + i,
is a (unipotent) automorphism of V,. In particular, 1 + £, induces a biregular
isomorphism (denoted by the same symbol) of the Grassmannian Gr(nN,2nN) of
n.N-dimensional subspaces of the 2nN-dimensional space V,. Let Gr(nN,2nN)!*%»
denote its fixed point. Then clearly the map jn : Fn = Gr(nN,2nN)!* given
by L ~ L/t"L, is a bijection. We pull the (reduced) subvariety structure of
Gr(nN,2nN)1** via j, to equip F, with a projective variety structure. We next
claim that the canonical inclusion F,, = Fn41 is a closed immersion:

Consider the commutative diagram:

Fo -2 Gr(nN,2nN)!*in

[ Lo

Fat1 2 Gr((n +1)N,2(n + 1)N)i+nn

where the map 6, takes W C t "L, /t"L, ~ t" 1V @ t" 2V @---dt™"V
t"V @ W. It is easy to see that 8, is a closed immersion. This equips F = Up>0Fn
with a projective ind-variety structure.

Let G° := SLn(C((t))) and P° := SLy(A) and set X° = G°/P°. By virtue
of the following lemma, the map 8 : X° — F (defined below) is a bijection. By
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transporting the projective ind-variety structure from F to X° (via 8) we equip
X° with a projective ind-variety structure. With this structure we denote X° by
Xy, We also define the filtration X2 of X° by

X: = ﬂ—l(fn)-
The group G° acts canonically on V ® C((2)).
(C.8) Lemma. The map gP° ++ gL, (for g € G°) induces a bijection 3 : X° — F.
Proof. Fix g € G°. It is easy to see that there exists some n (depending upon g)
such that
1) t"L, C gL, C "L,

Of course gL, is t-stable. We next calculate the dimension of gL, /t"L,:
By the Bruhat decomposition (1) of §(C.1), it suffices to assume that g is a
morphism C* — D taking 1~ 1, where D is the diagonal subgroup of SLy. Write

™ 0
g(t)=( ), fort € C* and n; € Z.
0 tny

Then " n; = 0. Now
dim(gL,/t"L,) = (n —n)+-+(n—ny)= Nn—-Zn,- = Nn.

This proves that gL, € F,.

Conversely, take L € F,. Since A is a PID and t¥L, is A-free of rank N (for
any k € Z), we get that L is A-free of rank N. Further, L ®.4 C((t)) - V((2))
is an isomorphism, where V((t)) := V ®, C((¢)). Let {ey,...,en} be the standard
C-basis of V and take an A-basis {v,,...,vn} of L. Now define the C((t))-linear
automorphism g of V((t)) by ge; = v; (1 <i < N). We prove that det g is a unit of
A: Write det g = t*u, where k € Z and u is a unit of A. Consider the C((¢))-linear
automorphism a of V((t)) defined by

ae;=¢;, for1<i<N,
k, -1

=t""u ‘ey, fori=N.

Then det(ga) = 1, and t"**IL, C (ga)L, C t~"~ L,
Hence, by the first part of the proof, we get

. afL,
@) dim (,g,. a8 ) = (n+ [k])N.
On the other hand,
. alL, . L,
(3) dim (i-‘fl—)f(mL—)) =d1mti;L—+|k|N+k

=Nn+ kN +k (since L € F,).
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Now combining (2) and (3), we get k = 0, bence (ga)L, = gL, = L. This proves
the surjectivity of 5. The injectivity of 3 is clear. This proves the lemma. O
(C.9) Realizing X as an ind-variety via lattices (general case). We now
come to the case of general (connected, simply-connected, simple) G. Fix an em-
bedding G < SLy. This gives rise to an embedding

X =G/P— X°=G°/P".

The filtration X2 of X° (given in §C.7) on restriction gives the filtration X, of X,
ie.,

Xn ::X:ﬂX.

In (a subsequent) Lemma (C.11), we prove that X, is a Zariski-closed subset of
X3. This allows us to put the reduced subvariety structure on X, making X into
a projective ind-variety. Equipped with this ind-variety structure, we denote X by
Xiat-

(C.10) Lemma. The two filirations X, (cf. §C.5) and X, of X are compatible,
t.e., for every n there ezists k(n) such that

Xn C Xi(ny and X, € Xi(n)-

Proof. Fix a maximal torus T C G and an embedding G — SLy such that T goes
inside the diagonal subgroup D of SLy. There is a bijection 7% /W ~ Mo (C*,T),
where Mor; denotes the set of morphisms C* — T such that 1 — 1. Since the set
{m € wW/w £(w) < n} is finite, it is easy to see that X, C Xk(") (for some large
enough k(n)).

Conversely (for a fixed n), we want to show that for all but finitely many v €
W/W, (BroP/P)N X, = ¢: Represent v as a morphism C* = T < D

tﬂ1(m)
t> ,
tnn ()

for some n;(w) € Z . We first claim that any w such that n;(v) < —n (for some
i) satisfies (BoP/P)N X, = ¢ : If for some b € B, boL, € F, , then clearly
wL, € i'lf" = F,, a contradiction to the choice of to! Now observe that the set
{m € W/W : ni(v) > —n for all i} is finite, since ¥ n;(rv) = 0. From this, it
follows that X, C X, k(n) , for some large enough k(n). This proves the lemma. O

(p.ll) Lemma. With the notation as in §(C.9), X, is a Zariski-closed subset of
X3 (for alln 20).

Proof. Fix v € W/ W (W is the affine Weyl group corresponding to G) and take a
coset representative w of 1 of minimal length. Choose any reduced decomposition
w = 8, ... i, (Where s;’s are the simple reflections in W), and consider the Bott-
Samelson-Demazure-Hansen variety Z,, defined in [S], §2.3]. Let P; be the minimal
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parabolic subgroup of § corresponding to the simple reflection s;. Recall that, set
theoretically, Z,, := P;, X -+ % P;,/BP, where BP acts on Pi; x Py, x -+ x Py, from
the right via

(:L'],. . ,z,)(bl,. . ,bp) = (.’tlbl,bl-l.'tgbg,. .o ,b;_llprp),

for z; € 'P.‘j and bj € B.

Define the map 6., : Z, = X by 8y ((z1,...,2p) mod BP) = zy ...z,P. Since Im
8w = X (cf. [S], §2.4]), by the above lemma, Im(i o 8,,) C X2, for some m, where
i : X — X° is the inclusion. By an argument similar to the proof of [Sl, Theorem
2.4], it can be easily seen that i 08y, : Z,, — X, i1s a morphism. In particular, Z,,
being projective, i(Xp) is closed in X2,. We now prove that i(X,) is closed in X2:

Observe that X, is left B-stable. Fix any o € W/W such that BoP/P C X,.
Then we claim that Xy, C X,: There is an open (dense) subset Yy, C Z,, such that
6w (Yw) = BwP/P. Hence, considering the morphism i 0 8y, : Z,, — X°, we see
that i 0 6,,(Z,) C X,‘i (since X2 is projective). In particular, X\, C X, and thus
X. is a finite union (by Lemma C.10) of Schubert varieties Xy,. Now since i(Xy)
is closed in X2, so is i(X,). This proves the lemma. O
(C.12) Proposition. The identity map Xiep — Xiay 18 an isomorphism of ind-
varteties.

Proof. Embed G — SL(N) as in §(C.9) and follow the same notation as in §§(C.7)
and (C.9). By definition, Xj,, < X, is a closed immersion. Similarly, we claim
that Xiep < X[, is a closed immersion :

Take the integrable highest weight module L = L(C,{) for §° (for any fixed
integer £ > 0, where g° = sly ), and let W C L be the (integrable highest weight)
g-module spanned by the highest weight vector of L. Then we have

o
Xiep < Xrep

!
P(W) < P(L)

where both the vertical maps are by definition closed immersions, and moreover
P(W) <= P(L) is of course a closed immersion. This proves that Xep < X5, is a
closed immersion. So, to prove the lemma, we can take G = SLn :

Fix 0 € W /W (where W is the affine Weyl group corresponding to G = SLy).
By the proof of Lemma (C.11) (following the same notation), the map 8,, : Z,, =
X\ is a morphism with its image precisely equal to X2. We denote X endowed
with the reduced subvariety structure from X7, by X, m,rep (and a similar meaning

for X2,,,). Then the map 6, : Z,, — X rep (the map 8, at the level of sets
is nothing but 8,,) is a surjective morphism (cf. [Sl, Theorem 2.4]) and moreover
X3 rep 18 an irreducible normal variety (cf. {Kuj, Theorem 2.16]). We claim that
the inclusion map Iy : X3, ,, = X3, is a morphism:

First of all, by Lemma (C.10), Im I, C X2, for some n. Now the map 8,, : Z,, =
X rep beIng a proper surjective morphism, the (Zariski) topology on X, 1,rep 18 the
quotient topology. Let & C X2 be an open subset. Then 61 (U) = (8,)7 IS W)

is open in Z,, and hence I';* (i) is open in X5 rep- To prove that Iy, is a morphism,
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it suffices to show that for any affine open & C X2, the map Toy ., I - U
15tan

is a morphism: But this follows from Proposition (4.1), since the map I, 08y, = 8y
is a morphism.

Conversely, fix n > 0 and take X2. Then (for the identity map I : KXep —
Xxe,) I"Y(X2) ¢ Xrep is a Zariski-closed subset and moreover (by Lemma C.10)
I7Y(X2) € X, (for some m), in particular, I ~1(X?) acquires the structure of a
projective subvariety of X[, ,. The bijective map I, : I71(X2) —» X::,m (where
I, := Il:—l(xg)) is a morphism (since X2 C X7, , for some o € W/W) Further,
the variety Xf"llt is isomorphic with the variety Gr(nN,2nN)1+t» (cf. §C.7). But
Gr(nN,2nN) "+ is known to be irreducible and normal by using a result of Kostant
(cf. [Kuz]). Moreover, I, being a homeomorphism (since I, is a proper surjective
morphism), I71(X?) is irreducible as well. Hence by [Mum, page 288, I. Original
form], I, is an isomorphism. This shows that the identity map X2, — Xrep also is
a morphism, proving the proposition. [J

So we identify X),. with X, and just denote them by X. We have the following
proposition determining Pic (X).

(C.13) Proposition. The map Z — Pic(X) given by
d — £(dxo)

t3 an isormorphism.

Proof. For any tv € W/W, since Xy, is a projective variety, by GAGA, the natural
map

(1) Pic(Xn) = Pican(Xn)

is an isomorphism, where Picg,(Xy) is the set of isomorphism classes of analytic
line bundles on X,,.
We have the sheaf exact sequence:

(2) 022 04— 0,,—0,

where Oqn (resp. O;,) denotes the sheaf of analytic functions (resp. the sheaf
of invertible analytic functions) on X,, (under the analytic topology). Taking the
associated long exact cohomology sequence, we get

(3) = HY (X, Oan) = H (X, 02,) S H* (X Z) = H*(Xrg, On) = - .,
where the map ¢, associates to any line bundle its first Chern class. Now

(4) H{(Xew,0) =0, foralli >0,

by [Ku;, Theorem 2.16(3)] (also proved in [M]); and by GAGA

(5) HY (X1, 0) = H(Xr, Oayn),
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and hence the map c; is an isomorphism. But
(6) Pican(Xm) ~ HI(XITMO;",)'

Hence, by combining (1) and (3)-(6), we get the isomorphism (again denoted
by)

(7) ¢ : Pic(Xpn) 3 H* (X, Z).

Further, the following diagram is commutative (whenever Xy, C X,) :

c

Pic(X,) —— H2(X,,Z)

@) | |
Pic(Xe) N H*(Xw,Z),

where the vertical maps are the canonical restriction maps. But from the Bruhat
decomposition, for any tv > s5,, the restriction map

(8) H*(Xw,Z) = H*(Xs,,Z)

is an isomorphism, where s, is the (simple) reflection corresponding to the simple
coroot af (as in [K, Chapter 7]), and 5, := s, mod W. Moreover, X, being
isomorphic with the complex projective space P!, H?(X,,,Z) is a free Z-module of
rank 1, which is generated by the first Chern class of the line bundle £(x,)x,,- In
particular, Pic(Xy) is freely generated by £(x,);x,, , for any ro > s,.
We next prove that the canonical map o : Pic (X) —lim __  Pic(Xp) is
—rneW/ W

an isomorphism:

Since the line bundles £(dx.) (for d € Z) are algebraic line bundles on X, the
surjectivity of the map a follows. Now we come to the injectivity of o :

Let £ € Ker a. Fix a non-zero vector v, in the fiber of £ over the base point
¢ € X. Then £x,, being a trivial line bundle on each X, we can choose a nowhere-
vanishing section sy of £|x, such that sy(e) = v,. We next show that for any
021,80, =Sw: Clearly Sox, = f5w, for some regular function f: Xy — C*.
But X, being projective and irreducible, f is constant and in fact f = 1 since
sp(€) = sw(e). So the sections sy, give rise to a nowhere-vanishing (regular) section
s of £ on the whole of X such that s;x, = $p. From this it is easy to see that
£ is isomorphic with the trivial line bundle on X. This proves that « is injective,
thereby completing the proof of the proposition. O
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