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Introduct ion .  
These are notes for my eight lectures given at the C.I.M.E. session on "Vector 

bundles on curves. New directions" held at Cetraro (Italy) in June 1995. The 
work presented here was done in collaboration with M.S. Narasimhan and A. Ra- 
manathan and appeared in [KNR]. These notes differ from [KNR] in that we have 
added three appendices (A)-(C) containing basic definitions and results (we need) 
on ind-varieties, affine Kac-Moody Lie algebras, the associated groups and their 
flag varieties. We also have modified the proof (given in w of the basic extension 
result (Proposition 6.5), and we hope that it is more transparent than the one given 
in [KNR, w We now describe the main result of this note. 

Let O be a smooth projective irreducible algebraic curve over C of any genus 
and G a connected simply-connected simple affine algebraic group over C. In this 
note we elucidate the relationship between 

(1) the space of vacua ("conformal blocks") defined in Conformal Field Theory, 
using an integrable highest weight representation of the a~ne Kac-Moody 
algebra associated to G and 

(2) the space of regular sections ("generalized theta functions" ) of a line bundle 
on the moduli space 9X of semistable principal G-bundles on C. 

Fix a point p in C and let d)p (resp. kp) be the completion of the local ring Op 
of 6' at p (resp. the quotient field of g)p). Let G := G(Jcp) (the kp-rational points of 
the algebraic group G) be the loop group of G and let 7 9 := G(6p) be the standard 
maximal parahoric subgroup of G- Then the generalized flag variety X := G/79 is 
an inductive limit of projective varieties, in fact, of generalized Schubert varieties. 
One has a basic homogeneous line bundle ~(Xo) on X (cf. w and the Picard 
group Pic(X) is isomorphic to Z which is generated by ~(Xo) (Proposition C.13). 
There is a central extension 0 of G by the multiplicative group C* (cf. w which 
acts on the line bundle ,i~(Xo). By an analogue of the Borel-Weil theorem proved in 
the Kac-Moody setting by Kumar (and also by Mathieu), the space H~ ,fi(dXo)) 
of the regular sections of the line bundle .g(dxo) :=~(Xo) | (for any d _> 0) is 
canonically isomorphic with the full vector space dual L(C, d)* of the integrable 
highest weight (irreducible) module L(C, d) (with central charge d) of the a.~ne 
Kac-Moody Lie algebra ~ (cf. w 

Using the fact that any principal G-bundle on C \ p is trivial (Proposition 1.3), 
one sees easily that the set of isomorphism classes of principal G-bundles on C 
is in bijective correspondence with the double coset space F\G/79, where F := 
Mor(C \p,  G) is the subgroup of ~ consisting of all the algebraic morphisms C \ p 
G. Moreover, X parmnetrizes an algebraic family b /of  principal G-bundles on C 
(cf. Proposition 2.8). As an interesting byproduct of this parametrization and 
rationality of the generalized Schubert varieties, we obtain that the moduli space 
ffJt of semistable principal G-bundles on C is a unirational variety (cf. Corollary 
6.3). Now, given a finite dimensional representation V of G, let L/(V) be the 
family of associated vector bundles on C parametrized by X. We have then the 
determinant line bundle Det(b/(V)) on X, defined as the dual of the determinant 
of the cohomology of the family /g(V) of vector bundles on C (cf. w As 
we mentioned above, Pic (X) is freely generated by the homogeneous line bundle 



P-(Xo) on X, in particular, there exists a unique integer mv (depending on the 
choice of the representation V) such that Det(H(V)) _~ ~.(mvxo). We determine 
this number explicitly in Theorem (5.4), the proof of which makes use of Riemann- 
Roch theorem. It is shown that the number mv coincides with the Dynkin index of 
the representation V. For example, if we take V to be the adjoint representation of 
G, then mv =2x dual Coxeter number of G (cf. Lemma 5.2 and Remark 5.3). The 
number my  is also expressed in terms of the induced map at the third homotopy 
group level r3(G) -~ ~rs(SL(V)) (cf. Corollary 5.6). 

The action of F on X via left multiplication lifts to an action on the line bundle 
.C(mvxo) (cf. w Suggested by Conformal Field Theory, we consider the space 
H~ S2(dmvxo)) r of F-invariant regular sections of the line bundle ~(dmvxo) 
(for any d _> 0). This space of invariants is called the space of vacua. More 
precisely, in Conformal Field Theory, the space of vacua is defined to be the space 
of invariants of the Lie algebra g | R in L(C, d)*, where R is the ring of regular 
functions on the afl:ine curve C \ p  and g is the Lie algebra of the group G. We have 
(by Proposition 6.7) [L(C, dmv)*]r = [L(C, dmv)*] g| and, as already mentioned 
above, H~ ~_ L(C, dmv)*. The main result of this note (Theorem 
6.6) asserts that (for any d >_ 0) the space H~ O(V) | of regular sections 
of the d-th power of the O-bundle O(V) (cf. w on the moduli space ~]t is 
isomorphic with the space of vacua [L(C, dmv)*]r = [L(C, dmv)*]~| Moreover, 
this isomorphism is canonical up to scalar multiples. This is the connection, alluded 
to in the beginning of the introduction, between the space of vacua and the space 
of generalized theta functions. This result has also independently been obtained 
by Faltings [Fa] and in the case of G = SLN by Beauville-Laszlo [BL], both by 
different methods. 

We make crucial use of a 'descent' lemma (cf. Proposition 4.1), and an extension 
result (cf. Proposition 6.5) in the proof of Theorem (6.6). The proof of Proposition 
(6.5) is given in w and relies on the explicit GIT construction of the moduli space 
of vector bundles. 

Our Theorem (6.6) can be generalized to the situation where the curve C has n 
marked points {Pl , . . . ,  P,} together with finite dimensional G-modules {V1,... ,  V,} 
attached to them respectively, by bringing in moduli space of parabolic G-bundles 
on  C.  

A purely algebro-geometric study (which does not use loop groups) of generalized 
theta fuctions on the moduli space of (parabolic) rank two torsion-free sheaves on a 
nodal curve is made by Narasimhan-Ramadas [NRa]. A factorization theorem and 
a vanishing theorem for the theta line bundle are proved there. In addition, several 
other mathematicians (A. Bertram, S. Bradlow, S. Chang, (3. Daskalopoulos, B. 
van Geemen, E. Previato, A. Szenes, M. Thaddeus, R. Wentworth, D. Zagier, -.. ) 
and physicists have studied the space of generalized theta ~mctions (from different 
view points) in the case when G = SL(2), in the last few years. 

Even though we have taken the base field to be the field C of complex numbers 
throughout the note, all the results of the note hold good over any algebraically 
closed field of char 0 (with minor or no modifications in the proofs). 

The organization of the note is as follows: 
Apart from introducing some notation in w we realize the atiClne flag variety 



X as a parameter set for G-bundles. In section (2) we prove that X supports an 
algebraic family of G-bundles on the curve C (cf. Proposition 2.8). We also realize 
the group F as an ind-group, calculate its Lie algebra, and prove its splitting in this 
section. Section (3) is devoted to recalling some basic definitions and results on the 
moduli space of semistable G-bundles, including the definition of the determinant 
line bundle and the O-bundle on the moduli space. We prove a curious result (cf. 
Proposition 4.1) on algebraic descent in w Section (5) is devoted to identifying the 
determinant line bundle on X with a suitable power of the basic homogeneous line 
bundle on X. Section (6) contains the statement and the proof of the main result 
(Theorem 6.6). Finally in Section (7) we prove the basic extension result (Proposi- 
tion 6.5), using Geometric Invariant Theory. Appendix (A) is devoted to recalling 
the definition of aYfine Kac-Moody Lie algebras and its representations. Appendix 
(B) is an introduction to ind-varieties and ind-groups. Finally in appendix (C), we 
recall the basic theory of al~ne Kac-Moody groups and their flag varieties. 

1. Afltne flag variety  as p a r a m e t e r  set for G - b u n d l e s .  

(1.1) Notation. Throughout the note we take the field C of complex numbers as 
the base field. By a scheme we will mean a scheme over C. Let us fix a smooth 
irreducible projective curve C over C, and a point p E C. Let C* denote the open 
set C \ p. We also fix an atone algebraic connected simply-connected simple group 
G over C. 

For any C-algebra A, by G(A) we mean the A-rational points of the algebraic 
group G. We fix the following notation to be used throughout the note: 

= = 

p = ~v~ : G(C)p), and 
r = = G ( C [ C * ] ) ,  

where C)p is the completion of the local ring Op of C at p, kp is the quotient 
field of C)p, C[C*] is the ring of regular functions on the affine curve C* (which 
can canonically be viewed as a subring of kp), and ~ is the triple (G, C,p). We 
will freely use the notation and the results from the three appendices throughout 
Sections (1)-(7). 

We recall the following 

(1.2) Definition. Let H be any (not necessarily reductive) affine algebraic group. 
By a principal H-bundle (for short H-bundle) on an algebraic variety X,  we mean 
an algebraic variety E on which H acts algebraically from the right and an H- 
equivariant morphism r : E --+ X (where H acts trivially on X),  such that r is 
isotrivial (i.e. locally trivial in the ~tale topology). 

Let H act algebraically on a quasi-projective variety F from the left. We can 
then form the associated bundle with fiber F, denoted by E(F). Recall that  E(F) is 
the quotient of E x F under the H-action given by g(e, f )  = (eg-l ,gf) ,  for g E H, 
e E E a n d  f E F. 

Reduction of structure group of E to a closed algebraic subgroup K C H is, by 
definition, a K-bundle EK such that EK(H) ~ E, where K acts on H by left 



multiphcation. Reduction of structure group to K can canonically be thought of 
a.s a section of the associated bundle E ( H / K )  --+ X .  

Let X = X ( H ,  C) denote the set of isomorphism classes of H-bundles on the base 
C, and No C A' denote the subset consisting of those H-bundles on C which are 
algebraically trivial restricted to C*. We recall the following proposition essentially 
due to Harder [H1, Satz 3.3 and the remark following it]. 

(1.3) P r o p o s i t i o n .  Let H be a connected reductive algebraic group. Then the 
structure group of any H-bundle on a smooth aj~ne curve Y can be reduced to the 
connected component Z~  of the centre Z ( H )  of H.  

In particular, if H as above is semi-simple, then any H-bundle on Y is trivial. 

The following map is of basic importance for us in this note. This provides a 
bridge between the moduli space of G-bundles and the affine (Kac-Moody) flag 
variety, where G is as in w 

(1.4) Definition (of the map ~ : ~ -+ Xo). Consider the canonical morphisms 
il : Spec (0p) --+ C and i2 : C* ~-4 C. Let us take the trivial G-bundles on both 
the schemes Spec (0p) and C*. The fiber product 

F := Spec (Op) x C* 
c 

of il and i2 can canonically be identified with Spec (1r This identification F _~ 
Spec (~:p) is induced from the natural morphisms 

Spec (~) 

Spec (d,) ]~ c* 
~,, 2 '  

F 

By an analogue of "glueinfflemma of Grothendieck ([G, w167 2.7], [BL~]), to 
give a G-bundle on C, it su~ces to give an automorphism of the trivial G-bundle 
on Spec (kp), i.e., to give an element of g := O(tcp). (Observe that since we have a 

cover of C by only two schemes, the cocycle condition is vacuously satisfied.) This 
is, by definition, the map ~ : g --+ Xo. 

(1.5) P r o p o s i t i o n .  The map ~ (defined above) factors thro=gh the double cosd 
space to give a bOective map (denoted by) 

(Observe that, by Proposition (1.3), Xo = X since G is assumed to be connected 
and semi-simple.) 

Proof. From the above construction, it is clear that for g ,g '  E G, ~(g) is isomor- 
phic with ~(g') (written ~(r ~ ~(o'~ if and only if '~ . . . . . .  ;~+ ..... C ~ ....... !. 



isomorphisms : 

Spec (Op) x G -~ Spec ((gp) x G 

Spec (C5~) 

and 

C'•215 

C" 

such that the following diagram is commutative: 

(*) 

Spec(kp) x G "[Spec(kp) Spec(kp) X G 

Ig' Ig 

Spec(}~) • C '~ISpeCd~) Spec(/~J • G. 

Any G-bundle isomorphism 01 (resp. 02) as above is given by an element h 6 7 9 
(resp. 3' 6 F). In particular, from the commutativity of the above diagram (*), 
~(g) .~ ~(g') if and only if there exist h 6 7 9 and 7 6 F such that gh = 7g', i.e., 
7-1gh = g'. This shows that the map qa factors through F\G/79 to give an injective 
map ~. The surjectivity of ~ follows immediately from the definition of A'o, and 
the fact that  any G-bundle on Spec (Op) is trivial. [] 

(1.6) Remark. G/79 should be thought of as a parameter space for G-bundles E 
together with a trivialization of EIc. (cf. Proposition 2.8). 

2. Affine flag variety parametrizing an algebraic family and realizing F 
as an ind-group.  

Recall the definition of the group r C ~ from w 

(2.1) L e m m a .  The group r is an ind-group. 

Proof) Embed G ~ SLN C MN, where MN is the space of N • N matrices over C. 
This induces an injective map i : r ~-~ Mor(C*, MN), where Mor (C*, MN) denotes 
the set of all the morphisms from C* to MN �9 Take a C-bas is  { f l , f 2 , f 3 , " "  } of 
C[C*] (the ring of regular fimctions) such that ordpfn _< ordpfn+l for any n _> 1, 
where ordpf ,  denotes the order of the pole of fn at p. The set Mor (C*, MN) has a 
filtration Mor0 C . . .  C Mor,  C . . . ,  where Mor,  is the (finite dimensional) vector 

11 thank R. Hammack for some simplification in my original argument. 



space of all those morphisms 0 : C* ~ MN such tha t  all its mat r ix  entries have 
poles of order < n. Set F ,  = i - l (Morn) .  Any 0 = (Oij) E Morn can be writ ten 

~(n) 
k as Oij = E z i , j h  (for some k(n)). We take (zik, j)  as the coordinates on Morn. It 

k = l  
is easy to see that  Fn ~ Morn is given by the vanishing of some polynomials in 
(z~j) , in part icular,  Fn is a closed subvariety of the affine space Morn. (We put  
the reduced structure on Fn.) This gives rise to the lad-variety s tructure on F as 
a closed ind-subvariety of Mor (C*, MN). It is easy to see (from the definition of 
the ind-variety structure on F) that  F in fact is an ind-group. Moreover, this ind- 
variety structure on F does not depend upon the par t icular  choice of the embedding 
G ~-+ SLN.  [] 

The following lemma determines the Lie algebra of the lad-group F. 

(2.2) L e m m a .  The Lie algebra Lie F is isomorphic with g | R , where g := Lie 
V, n : =  C[C*], and the bracket in ~ | R is defined as [X | Y | q] = [X, Y] | for 
X ,  Y E g and p, q E R. The isomorphism Lie F ~- ~ | R is obtained by considering 
the differential of the evaluation map at each point of C*. 

Proof. Choose an embedding G ~-~ SLN C MN as in the proof  of Lemma (2.1). 
This gives rise to a closed immersion i : F ~ Mor (C*,MN) .  In part icular ,  it 
induces an injective map di : Te(F) = L ieF  ~-+ Tl(Mor)  -~ Mor at the Zariski 
tangent space level (where I is the identity matr ix  and Mor = Mor (C*, MN)).  We 
claim tha t  di is a Lie algebra homomorphism, if we endow Mor ~- MN(R)  with 
the s tandard  Lie algebra structure, where MN(R)  is the space of N x N matrices 
over R. To prove this, consider the following commutat ive d iagram (for any fixed 
x ~ C ' ) :  

T.(r) ~, MN(R) 
$ $ 

g=T~(C) ~ MN, 

where the vertical maps axe induced by the evaluation map  e~ : R --+ C given by 
p ~ p(x). Since the bot tom horizontal map is a Lie algebra homomorphism, and 
so axe the vertical maps,  we obtain that  di itself is a Lie algebra homomorphism. 
It is htr ther  clear, from the above commutat ive diagram, that  the image of di is 
contained in ~ | R, where g is identified with its image in MN. 

Next, we prove that  the image of di contains at least the set g | R: 
Fix any vector X E ~ C MN such that  X is a ni lpotent  mat r ix  and take p E R, 

and define a morphism A 1 --+ F by z ~-~ exp ( z X  | p). (Since X is nilpotent,  the 
image is indeed contained in F.) It is easy to see that  the image of the induced 
map (at the tangent space level at 0) is precisely the space C_~X |  But since the 
nilpotent  matrices X E ~ span 9, the assertion follows. This completes the proof of 
the lemma. [] 

We prove the following interesting lemma (even though we do not make use of 
it). 



(2.3) L e m m a .  Let Y be a connected variety (over C). Then any regular map 
Y -4 C*, which is nuIl-homotopic in the topological category, is a constant. 

(Observe that if the singular cohomology Hi(Y ,  Z) = 0, then any continuous 
map Y -4 C* is null-homotopic.) 

Proof. Assume, if possible, that there exists a null-homotopic non-constant regular 
map A : Y -4 C*. Since A is algebraic, there exists a number N > 0 such that the 
number of irreducible components of A -1 (z) < N, for all z E C*. Now we consider 
the NI-sheeted covering rN, : C* -4 C*(z ~-r zN'), for any N r > N. Since A is 
null-homotopic, there exists a (regular) lift A : Y -4 C* (cf. [Se~, Proposition 20]), 
making the following diagram commutative: 

C* 

i x 

Y ---+ C*.  
A 

Since A is regular and non-constant, by Chevalley's theorem, Im A (being a con- 
structible set) misses only finitely many points of C*. In particular, there exists a 
Zo E C* (in fact a Zariski-open set of points) such that lrN,l(Zo) C ImA. But then 
the number of irreducible components of A-l(zo) = A-l(rN1,)(zo ) > N '  > N,  a 
contradiction to the choice of N. This proves the lemma. [] 

We will use the following proposition in the proof of assertion (c) contained in 
the proof of Theorem (6.6). 

(2.4) P r o p o s i t i o n .  There does not exist any non-constant regular map A : F -4 
C*. 

Proof. Fix a Borel subgroup B C G and let U be its unipotent radical. Fix any 
g E G. Consider the subgroup Mor(C*, gUg -1) C P consisting of all the regular 
maps f : C* -4 gUg -1. We put the ind-group structure on Mor(C*, gUg -1) similar 
to that  of F as in the proof of Lemma (2.1). We denote the inclusion (which is a 
regular map) by 

8 = 0 9 : Mot(C*, gUg -1) ~-~ F. 

Let A : F --4 C* be a regular map, and consider the regular map 

AoO:  Mor(C*,gUg -1) -4 C*. 

The exponential map induces an isomorphism of the ind-varieties Mor(C*, gUg -1 ) ~m 
Mor(C*,n)  = n |  C[C*], where n :=  Lie U. In particular, Mor(C*, gUg -1) 
is an inductive limit of (finite dimensional) a i d e  spaces and hence the regular 
map A 0 0 is constant. So the derivative map at the tangent level d(A o 0) : 
Te(Mor (C* ,gUg-1 ) )  -4 Tx(e)(C*) is the zero map. 



As seems to be well known, the group F is connected. I do not know to whom 
this result should be attributed, but there is an interesting proof of this due to 
Drinfeld. 

Now assume (if possible) that A is non-constant. Then (using conneetedness of 
F) there exists a positive integer n and a point h E Fn such that the derivative map 
d(Air.) : Th(F,~) -+ Tx(h)(C*) is non-zero (where F ,  is the filtration of F as in the 
proof of [,emma 2.1). In particular, the derivative map (dA)h : Th(F) --~ Ta(h)(C*) 
is non-zero. By translating the map A, if necessary, we can assume that h = e. But 
since T~( Mor (C*, gUg -1)) = gag -x |  (by the same proof as of Lemma 2.2), 
we obtain that (dA)~ vanishes on the sum n :=  ~uEG(gn9 -1) | C[C*]. Further 

gng -a = g and hence T~(F) = 5 (by Lemma 2.2). In particular, (d),), vanishes 
gEG 
on the whole tangent space Te(F), a contradiction! This proves that the map A is 
constant on F, proving the proposition. [] 

Remark. Simple-connectedness of F of course will imply the above proposition (in 
view of Lemma 2.3). In fact, it is very likely that the space F is homotopically 
equivalent to the corresponding space I~top consisting of all the continuous maps 
C* --~ G under the compact-open topology. This of course will give the connected 
and simple-conneetedness of F, by using a result of Thorn [GK, Theorem 5.10]. A 
student of mine R. Hammack is trying to give a proof of this homotopy equivalence 
by using some ideas similar to [PS, Proof of Proposition 8.11.6], albeit in the al- 
gebraic category, together with a variant of a result of Hurtubise [Hur, Theorem 
1.3]. 

Recall from Proposition (C.12) that X = Xrep = Xlat is a projective ind-variety. 

(2.5) L e m m a .  The left multiplication of F on X is a morphism 6 : F x X --+ X .  

Proof. We will consider the Xl~t description of X (eft. w It is clear that  for any 
non-negative integers m , n  , 6(Fn x Xm) C )(k(n,,,0, for some k(n, m). Now from 
the explicit description of the variety structures (on P and Xl,t), it is easy to check 
that 6,.,,~ := 61r" xA',, is a morphism. 

This proves the lernma. [] 

Restrict the central extension (1) of w to get a central extension 

(1) 1 - ~  C" -~ P - ~ r  ~ 1, 
~r 

where P is by definition 7r-l(F). 

(2.6) Spl i t t ing  o f  t h e  cen t ra l  ex t ens ion  over  P ( S L N  case) .  The basic ref- 
erence for this subsection is [PS, w We first consider the ease of G = SLN and 
follow the same notation as in w In particular, ~o :=  SLN(C(( t ) ) ) ,  po = 
SLN(C[[t]]) ,  X o = ~ ~ 1 7 6  V = C N,  V( ( t ) )  = V |  C(( t ) ) ,  and Lo = V |  q l t ] ] .  
Let G L ( W )  denote the group of C-linear isomorphisms of a vector space W. 

Define the subgroup "k/of ~o x GL(Lo) by 

= {(9,E) 6 ~~ x GL(Lo) : 9 + - E : Lo --~ Lo has finite rank}, 



10 

(1) v((~)) = Lo + ( v  0 c t-'C[t-~]). 

Let Af C 7-/be the normal subgroup defined as A/" = {(1,E)  E 7-/ : d e t E  = 1}. 
(Observe that  since I - E : Lo -+ Lo has finite rank, i.e., has finite dimensional 
image, the determinant  of E is well defined.) 

It is not difficult to see that  the projection on the first factor gives rise to a 
central extension: 

(2) I ---+ C* ---+ H/A/--+ G ~ -+ 1 . 

We now give an alternative description of the line bundle s on X ~ (cf. w 
Recall the definition of the set 9 r and the map /3  : X ~ --+ U from w For 

any W E ~ ,  define S w  as the set of C-linear isomorphisms 0 : Lo --+ W such that  
7raO - I : Lo --+ Lo has finite rank, where 7r 1 : V((t))  -+ Lo is the projection on the 
Lo factor with respect to the decomposition (1). 

Define the vector space Vw over C with basis parametr ized by the set Sw,  i.e., 
an element of Vw is of the form ~~=0esw zoO, where all but  finitely many z0 E C are 

det(O O)O }o,o'esw and let zero. Let V~v C I)w be the subspace spanned by {0 - ' - a  , 
s  = I)w/Y~v. (Note that  0 ' - 1 0 - I  has finite rank as an endomorphism of Lo and 
hence det(O'-lO) is well defined.) T h e n / : w  is a 1-dimensional vector space. Now 

define the line b u n d l e / :  -~ 9 v, where r l - l (W)  = s  for any W E ~'. As proved in 
[PS, w the line b u n d l e / :  is an algebraic line bundle on .Y" (with respect to the 
ind-vaxiety s tructure on .T" as in w It is easy to see that  L:I~ 1 is the restriction 
of the basic (negative ample) line bundle on Gr(N,  2N) under the identification 
~I _% Gr(N,  2N)I+gI (cf. w Let L:o be the pull-back of the line bundle ~: to 
X ~ via the isomorphism/3 : X ~ -Y+ ~ .  In view of Proposit ion (C.13), it  is easy to 
see that  the dual  line bundle / :o  is isomorphic with the line bundle ~(Xo). 

Now we define an action a of the group H/2r on s as follows: For (g, E)  E H, 
define 

~(g, E)[z, O]w = [z, gOB-']~w, 

where for z E C and 0 E Sw,  [z, O]w denotes the equivalence class of zO. This action 
factors through an action of H/N" and moreover for any fixed (g, E)  E 74, C~(g, E)  
is an algebraic automorphism of the line b u n d l e / :  (and hence of / :o)  inducing the 
map La on the base (cf. w Using this, the group H/A/" can canonically be 
identified with the Mumford group Aut(s  defined in w In part icular,  the 
central extension H / A  f is isomorphic with ~. 

Final ly we construct a spli t t ing of H/A/" over F as follows: 
Choose an element go ~- ~o such that  the associated rank-N vector bundle ~(go) 

on C twisted by O((g - 1)p), E := ~(go) ( (g-  1)p) (where 9 is the genus of the curve 
C) has all its cohomology 0. Then considering the local cohomology sequence (for 
the curve C with support  in p) with coefficients in the vector bundle E,  we deduce 
that  

(3) v((t)) = ro + t ' - ~ g f ' ( v  | c [c*] ) ,  
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where V | C[C*] is identified as a subspace of V((t))  by choosing a parameter t 
around p G C. 

We first construct the splitting of N/Af  over Fgo := golFgo. Define the group (:0) homomorphism an~ : Fgo -+ 7t by ag o (7) = (% 3"+'), where 3' = 3' with 

respect to the decomposition (3). (Observe that Fg, keeps the second factor stable 
and hence 3,+' E GL(Lo).) The group homomorphism aao : Fgo --+ 7-//A/" (where 
~go is the map ago followed by the canonical map 7-( -+ 7-//2r splits the central 
extension (2) over Fgo. Now take any preimage go of go in N/A/,  and define the 
splitting ~ :  P -~ 7~/N (3" ~ yo-~go(goa3"go)y71). 

Since 7-//A/" acts on the line bundle Z:o, so is F (via the homomorphism ~). It 
can be easily seen that the action F • --+ /:o is a morphism of ind-varieties. 
Moreover, let ~ : F -~ 7"//A/" be another splitting of F such that the induced action 
P x s -+ /:o is again a morphism of ind-varieties. Then we claim that ~'  = ~ : 
There is a group homomorphism a : F -+ C* such that (cf.(2)) ~ = a~. b-hrther 
a is a morphism of ind-varieties (since the action of P on/~o in both the cases is 
regular). But then a is identically 1 (cf. Proposition 2.4, see also Remark 6.8(c)). 
This proves the uniqueness of such a splitting. 

Since the line bundle/:o is isomorphic with the homogeneous line bundle s  
it is easy to see that the group P acts morphically on the representation L(C, 1) 
and hence on any L(C, d) (_for d > 0, where L(C, d) is the irreducible representation 
of the affine Lie algebra SIN with central charge d, cf. w 

(2.7) Splitting of  the central extension over F (genera l  case) .  We now 
come to the case of general G as in w Take a finite dimensional representation 
V of G such that the group homomorphism 3' : G -+ SL(V) has finite kernel, and 
consider the induced map at the Lie algebra level d3' : g --~ sl(V), where sl(V) is 
the Lie algebra of trace 0 endomorphisms of V. We denote the Lie algebra sl(V) 
by go. The Lie algebra homomorphism d7 induces a Lie algebra homomorphism 
.~ : ~ __+ ~o defined by (cf. w 

X |  ~+ (dr(X))  |  and g ~t m v K  ~ , 

for X E g and p G C[t• where K (resp. K ~ is the canonical central element of 
(resp. ~~ and m v  is the Dynkin index of the representation V (cf. w 
To distinguish the objects corresponding to SL(V) from that of G, we denote the 

former by a superscript o. Let us consider the irreducible representation L~ 1) 
for the Lie algebra ~o with central charge 1 and restrict it to the Lie algebra ~ via 
the homomorphism ~. It can be seen that the ~-submodule of L~ 1) generated 
by the highest weight vector Vo is isomorphic with L(C, m y ) .  

The representation 3' also gives rise to a morphism of the corresponding affine 
flag varieties ~ : X -+ X ~ and a morphism of ind-groups P --+ F ~ It is easy to see 
that the basic homogeneous line bundle s176 ) on X ~ pulls-back to the line bundle 
s  on X. In particular, the group F acts morphically on the line bundles 
~(dmvxo)  (for any d E Z) and hence F also acts morphically on the representation 
space L(C, dmv) .  

We come now to the following proposition, asserting that X = GYP supports an 
algebraic family. 
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(2.8)  P r o p o s i t i o n .  (a) There is an algebraic G-bundle U --+ C • X such that 
for any z E X the G-bundle LIx : = / l i c x x  is isomorphic with ~(x)  (where ~ is the 
map of w Moreover, the bundle HIc. • comes equipped with a trivialization 
a : e--~Hic, xx ,  where e is the trivial G-bundle on C* x X .  

(b) Let s --+ C x Y be an algebraic family of G-bundles (parametrized by an 
algebraic variety Y) ,  such that E is trivial over C* x Y and also over (Spec Op) x Y.  
Then, if we choose a trivialization /3 : e~ ~ ElC. xy,  we get a Schubert variety 
Xro and a unique morphism f : Y ~ Xr, together with a G-bundle morphism 
] : s --~ bllo• . inducing the map I x f  at the base such that f o i l  = aoO, where e' 
is the trivial bundle on C* x Y and O is the canonical G-bundle morphism e' --+ e 
inducing the map l x  f at the base. 

Proof. Let R be a C-algebra and let Y := Spec R be the corresponding scheme. 
Suppose C -+ C x Y is a G-bundle with trivializations/3 of s over C* • Y and r of 
E over (Spec Op) x Y. Note that  the fiber product  (Spec Op x Y )  •  (C* x Y )  is 
canonically isomorphic with (Spec kp) x Y (cf. w Therefore the trivializations 

fl and 7" give rise to an element fir -1 E G(kp | R). Conversely, given an element 

g E G(lcp | R), we can construct the family E -+ C x Y by taking the trivial 
bundles on C* • Y and (Spec C)p) • Y and glueing them via the element g (cf. 

w Moreover, if gl and g2 axe two elements of G(/cp | R) such that  g2 = glh 
with h E G(Op | R), then h induces a canonical isomorphism of the bundles 
corresponding to gl and 92. All these assertions are easily verified. 

Choose a local parameter  t around p E C. Let evoo : G(C[t-1])  --~ G be the 
group homomorphism induced from the algebra homomorphism C[t-1] __+ C taking 
t -1 ~-~ 0 , and let N -  := ker (evoo). Then the image U -  of N -  in X under the 
map  i : N -  --+ X , taking g ~+ g~O , is an open subset of X.  To construct a family 
of G - b u n d l e s  on X,  we first construct a fa.mily on the open sets w U -  C X ,  for 
w e Mor~ (C*, T) as follows (cf. proof of Lemma C. 10 for the notat ion Morl  (C*, T)): 

From the discussion in the first paragraph,  it suffices to construct an element 
8" E G(/q, | C[wU-] )  such that ,  for every wx E w U - ,  the element 8,, evaluated 

at wx (i.e. the image of 0" under the evaluation map G(lcp | q w U - ] )  -~ G(kp) at 
wx)  satisfies 8"(wx)  = w i - l ( x )  mod P.  But, by definition, N -  C G(C[t-1]) and 
hence we get a tautological map 8 : (Px(C)\0) x N -  --+ G. It is easy to see t h a t  

0 is a morphism under the ind-vaxiety structure on N - .  (Observe that  U ,  being 
an open subset of XlLt has an ind-vaxiety structure and hence N -  acquires an ind- 
variety s t ructure  via the bijection i.) Think of C* = PI(C) \{0,  oo} and define 8" : 
PI (C) \{0 ,  eo} x w U -  --+ G by -8,,(z, wi(g)) = w(z)e(z,  g), for z e PI(C) \{0,  oo} and 
g E N - .  The morphism 8"  of course gives rise to an element 0,, E G(kp | (~wU-]) ,  
and hence a G-bundle on C x w U - .  

To prove tha t  the bundles on C x w U -  got from the elements 0" patch together 
to give a bundle on C x X,  it suffices to show that  the map  

~:1~" : P l (c ) \ (0 ,  oo} • (wU- n vV- )  ~ G 

extends to a morphism (again denoted by) ~:1~" : pl(C)\{oo} x (wU- N vU-) -.} 

G : But for any fixed x E w U -  N vU- ,  the map O r Ow : p I ( C ) \ { O ,  00} X X -~ G in 
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fact is an element of P = G(Op), i.e., ~. 8~ does not have a pole at 0, for any fixed 

x E w U -  N v U - .  From this it is easy to see that ~ 8w extends to a morphism 

Pl(C)\{oo} x (wU-  N v U - )  --+ G. Clearly the maps 8~ 8,: satisfy the 'cocycle 
condition' and hence we get a G-bund le  on the whole of C • X. 

To prove the (b) part, let us choose a trivialization r of the bundle $ restricted 
to (Spec C)p) x Y. As above, this (together with the trivialization fl) gives rise to 
a map f r  : Y -~ 6 and hence a map f : Y --+ X. (It is easy to see that the map f 
does not depend upon the choice of the trivialization r.) We claim that there exists 
a large enough ro such that I m f  C Xr0 and moreover f : Y --+ Xro is a morphism: 

For both of these assertions, we can assume that Y is an ~ e  variety Y -- 
Spec R ,  for some C-algebra R. Then the map f~ can be thought of as an element 
(again denoted by) f~ e G(kp | R). Choose an imbedding G ~ SLN.  Then we 
can write f r  = (ffr'J)l<_i,j<N, with f i,j E kp | R. In particular, there exists a 
large enough l >_ 0 such that (for any 1 < i , j  < N)  fr e t-IC[[t]] | R. From 
this (together with Lemma C.10) one can easily see that Im f is contained in a 
Schubert variety Xro. Now the assertion that f : Y -~ Xro is a morphism follows 
from the description of the map f f  as an element of G(~cp | R) together with the 
description of the variety structure Xtat on X. The remaining assertions of (b) are 
easy to verify, thereby completing the proof of (b). [] 

3. P r e l i m i n a r i e s  on  m o d u l i  space  o f  G - b u n d l e s  and  th e  d e t e r m i n a n t  
bund le .  

Throughout this section, we allow G to be a connected reductive group (over C). 
We recall some basic concepts and results on semistable G-bundles on C. The 

references are [NS], [all ,  [R2], and JAR]. Recall the definition of G-bundles and 
reduction of structure group from w 

(3.1) Definition. Let E ~ C be a G-bundle. Then E is said to be semistable 
(resp. stable), if for any reduction of structure group Ep  to any parabolic subgroup 
P C G and any non-trivial character X : P --+ Gm which is dominant with respect 
to some Borel subgroup contained in P ,  the degree of the associated line bundle 
Ep(X) is < 0 (resp. < 0). (Note that, by defixfition, a dominant character is taken 
to be trivial on the connected component of the centre of G.) 
(3.2) Remark. When G = G L , ,  this definition coincides with the usual definition 
of semistability (resp. stability) due to Mumford (cf. [NS]) viz. a vector bundle 
V ~ C is semistable (resp. stable) if for every subbundle W x C V, we have #(W) < 
#(V) (resp. #(W) < it(V)), where it(V) := d e g V / r a n k V .  

Let V --+ C be a semistable vector bundle. Then there exists a filtration by 
subbundles 

Vo=OCV CV2C...cv, 
such that/~(V~) = it(V) and V~/V~_I axe stable. Though such a filtration in general 
is not unique, the associated graded 

grV := �9 �88 
i>l 
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is uniquely determined by V (up to an isomorphism). 
We will now describe the corresponding notion of g rE  for a semistable G-bundle 

E. 
(3.3) Definition. A reduction of structure group of a G-bundle E -+ C to a 
parabolic subgroup P is called admissible if for any character of P ,  which is trivial 
on the connected component of the centre of G, the associated line bundle of the 
reduced P-bundle  has degree 0. 

It is easy to see that  if E p  is an admissible reduction of structure group to a 
parabolic subgroup P ,  then E is semistable if and only if the P/U-bundle Ep(P/U)  
is semistable, where U is the unipotent radical of P.  Moreover, a semistable G- 
bundle E admits  an admissible reduction to some parabolic subgroup P such that  
Ep(P/U)  is, in fact, a stable P/U-bundle. Let M be a Levi component of P.  Then 
M ~ P /U  (as algebraic groups) and thus we get a stable M-bundle  Ep(M).  Extend 
the structure group of this M-bundle  to G to get a semistable G-bundle denoted 
by gr(E).  Then gr(E)  is uniquely determined by E (up to an isomorphism). 

Two semistable G-bundles E1 and E2 are said to be S-equivalent if gr(E1) 
gr(E2). A semistable G-bundle E is said to be quasistable if E ~ gr(E).  (It can be 
seen that  a semistable vector bundle is quasistable if and only if it is a direct sum 
of stable vector bundles with the same p.) 

Two G-bundles E1 and E2 on C are said to be of the same topological type 
if they are isomorphic as G-bundles in the topological category. The topological 
types of all the algebraic G-bundles on C are bijectively parametr ized by the first 
fundamental  group 7ra (G) (el. [R2, w 

(3.4) T h e o r e m .  The set 9'2 of S-equivalence classes of all the semistable G- 
bundles on C of a fixed topological type admits the structure of a normal, irreducible, 
projective variety (over C), making it into a coarse moduli. 

In particular, for any algebraic family E --> C • Y of semistable G-bundles of 
the same topological type (parametrized by a variety Y), the set map/3 : Y -+ 9Yt, 
which takes y 6 Y to the S-equivalence class of Eu is a morphism. 

The details can be found in INS], [R1], [R2], .... 

(3.5) L e m m a .  Let H be a connected ajfine algebraic group. Then any principal 
H-bundle on C is locally trivial in the Zariski topology. 

Proof. Let E be a principal  H-bundle  on C and U the unipotent radical of H. Since 
t h e  group M = H / U  is connected and reductive, the M-bundle  E ( M ) ,  obtained 
from E by extension of s tructure group to M, is locally trivial  in the Zariski topology 
[R3, Proposit ion 4.3]. 

Let W be a non-empty affine open subset of C such that  the restriction of E(M) 
to W is trivial. We show that  EIw is trivial (which will of course prove the lemma): 
Observe that  a triviMization of E(M)  on W gives a reduction of the structure group 
H of E[w to the subgroup U. So, it suffices to show that  any (principal) U-bundle 
on W is trivial: 

We may assume U r e. Then there exists a (finite) fil tration of U by closed 
normal subgroups such that  the successive quotients are isomorphic to the additive 
group G . .  Now the assertion follows since any principal Ga-bundle o n  W is trivial, 
W being al~ne (see [Se,, w [] 
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Let P be a parabolic subgroup of G and P = M U  a Levi decomposition, where 
U is the unipotent radical of P and M a Levi component. The next proposit ion 
will be used in w in the case of an admissible reduction of a semistable bundle E. 

(3.6) P r o p o s i t i o n .  Let G be a connected semisimple algebraic group. Let E be 
a G-bundle on C and Ep a reduction of the structure group of E to P. Denote by 
gr (Ep)  the G-bundle on C obtained from the P-bundle Ep  by extension of the 
structure group via the composite homomorphism 

P ~ PIU ~ M ~--~ G. 

Then there exists a G-bundle s on C x A l, where A 1 is the affine line, such that 
we have 

* E (a) glCx(A~\o ) ~ P c ( ) ,  ElCx{O} ~ gr (Ep),  and 
(b) glC. • is trivial and also the pull-back of g to (Spec (gp) x A 1 is trivial, 

where pc is the projection on the C-factor. 

Proof. By [R1, Lemma 2.5.12], there exists a one-parameter  group A : Gin(:= 
A 1 \0) -* M , such that  the regular map 

Grn x P -+ P, givenby (t ,p) ~-~ A(t)p,~(t) -1, for t E Gin, p E P, 

extends to a regular map r : A 1 x P --+ P satisfying r rnu) = m , for rn E M, u E 
U. By Lemma (3.5), the P-bundle  Ep is locally trivial in the Zariski topology. 
Let {Ui} be an affme open covering of C in which the bundle El,  is given by the 
transit ion functions pij : UiMUj ~ P. Let 5 t" be the (Zariski locally trivial) P-bundle  
on C x A 1 defined by the covering {Ui x A 1 } and the transit ion functions 

hil : (Ui N Vj) x A 1 -~ P ,  

where hij(z , t )  = dp(t,pij(z)), for t E A l , z  E Ui M Uj. Now let g be the G-bundle 
obtained from the P-bundle  U by extension of the structure group to G. Then 
clearly s satisfies condition (a). 

We next show that  for any non-empty affine open subset W of C, the restr ict ion 
of s to W x A 1 is trivial (which will, in particular,  imply that  condition b is 
satisfied): Note that ,  by our construction, there exists a finite open covering Wi 
of W such that  s • 1 is trivial, for every i. Now by an analogue of a result of 
Quillen (cf. [Ra, Theorem 2]) s is the pull-back of a G-bundle on W. But by 
Proposit ion (1.3), any G-bundle on W is trivial. [] 

(3.7) D e t e r m i n a n t  b u n d l e  a n d  O - b u n d l e .  We briefly recall a few definitions 
and facts on the determinant  bundles and O-bundles associated to families of bun- 
dles on C. We follow [DN], [NR@ 

Let 12 --+ C x Y be a vector bundle. Then there exists a complex of vector 
bundles Vi on Y ( with Vi = 0, for all i > 2): 

~o -:" 12~ ~ 0 ~ 0- ->  . . . .  
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such that for any base change f : Z ~ Y, the ith direct image (under the projection 
C x Z -~ Z) of the pull-back (id x f)*V is given by the ith cohomology of the pull- 
back of the above complex to Z. We define the determinant  line bundle Det ~2 on 

top top * 

Y to be the product A(V1) |  ). ( Notice that our Det Vis  dual to the 
determinant line bundle as defined, e.g., in [L, Chapter 6, w 

The above base change property gives rise to the base change property for Det 
l;, i.e., if f : Z -~ Y is a morphism then Det((id x f)*V) = f*(Det ]2). 

Let ~ be a line bundle on Y, and let P2 : C x Y --+ Y be the projection on the 
second factor. Then for the family V | p ~  --+ C x Y, we have Det (V | p ~ ) =  
(Det V) | ~ - x ( v ) ,  where X(V) := h~ - hl(Vt) is the Euler characteristic and 
))t :=  VIc• (Observe that h~ - hm(Vt) remains constant on any connected 
component of Y.) 

We now define the O-bundle O(~) of a family of rank r and degree 0 bundles V --+ 
C x Y to be the modified determinant bundle given by (Det V)| (det(l;p)) x(v) /~,  
where Vp is the bundle l;Ip• Y on Y, and det Vp is its usual determinant line bundle. 
It follows then that O(l;) = O(V | p ~ ) ,  for any line bundle ~ on Y. Moreover 
O(I;) also has the functorial property O((id x f)*V) = f*(O(lQ). 

ff s -~ C x Y is a family of G-bundles ( where G is semisimple and connected) and 
v is a e -mod~e,  then Det (E(V)) and O(E(V)) are defined to be the corresponding 
line bundles of the associated family of vector bundles, via the representation V of 
G. 

For the family Lt --+ C x X (cf. Proposition 2.8), the line bundles O(U(V)) and 
Det(U(V)) coincide, since Ulpxx is trivial. 

It is known ([DN], [NRa] ) that there exists a line bundle @ on the moduli space 
9~o of rank r and degree 0 semistable bundles, such that for any family V of rank 
r and degree 0 semistable bundles parametrized by Y ,  we have f*(O) -~ O(1;), 
where f : Y --+ ffY~o is the morphism given by the coarse moduli property of 92Io (cf. 
Theorem 3.4). 

Let V be a representation of G of dimension r (G semisimple and connected). 
Then for any semistable G-bundle on C, the associated vector bundle (via the 
representation V) is semistable (cf. [RR, Theorem 3.18]). Thus, given a family 
of semistable G-bundles on C parametrized by Y, we have a canonical morphism 
(induced from the representation V) Y -~ 9Y~o (where 9Yto as above is the moduli 
space of semistable bundles of rank r and degree 0 ). Let ~Y~ be the moduli space 
of semistable G-bundles. By the coarse moduli property of fiX, we see that we have 
a canonical morphism Cv : ffY~ --~ ~J~o. We define the theta bundle O ( V )  on 9Yt 
associated to V to be the pull-back of the line bundle O on ff)lo via the morphism 
Cy- It can be easily seen that for any family V --+ C x Y of semistable G-bundles, 
f*(O(V)) _~ O(V(V)), where f : Y ~ ~Y~ is the morphism (induced from the family 
V) given by the coarse moduli property of ~TJI. 

4. A re su l t  on a lgebraic  descent .  

We prove the following technical result, which will crucially be used in the note. 
Even though we believe that it should be known, we did not find a precise reference. 
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(4.1) P r o p o s i t i o n .  Let f : X --+ Y be a surjective morphism between irreducible 
algebraic varieties X and Y over an algebraically closed field k of char O. Assume 
that Y is normal and let C --+ Y be an algebraic vector bundle on Y.  

Then any set theoretic section a of the vector bundle E is regular if and only if 
the induced section f*(a)  of the induced bundle f*(s  is regular. 

Proof. The 'only if' part is of course trivially true. So we come to the 'if '  part. 
Since the question is local (in Y), we can assume that Y is affine and moreover 

the vector bundle ~ is trivial, i.e., it suffices to show that any (set theoretic) map 
a : Y --~ k is regular, provided # := a o f : X -~ k is regular (under the assumption 
that  Y = Spec R is irreducible normal and affine): 

Since the map f is surjective (in particular dominant), the ring R is canonically 
embedded in F(X) := H~ Ox) ,  where O x  is the structure sheaf of X. Let R[#] 
denote the subring of F(X) generated by R and ~ E F(X). Then R[~] is a (finitely 
generated) domain (as X is irreducible by assumption), and we get a dominant 
morphism j : Z --~ Spec R, where Z := Spec (R[~]). Consider the commutative 
diagram: 

X 

o~/ %f  
Z > Y 

] 

where 0 is the dominant morphism induced from the inclusion R[~] "-~ F(X). In 
particular, Im 19 contains a non-empty Zariski-open subset U of Z. Let xl, z2 E X 
be closed points such that f ( x l )  = f(x~). Then r(xl)  = r(z2), for all r E R and 
also ~(xl) = ~(x2). This forces 0(Zl) = O(x2), in particular, flu is injective on the 
closed points of U. 

Since ] is dominant, by cutting down U if necessary, we can assume that ]IV : 
U --~ V is a bijection, for some open subset V C Y. Now since Y is (by assumption) 
normal and Z is irreducible, by Zariski's main theorem (cf. [Mum, Page 288, I. 
Original form] together with [Ha, Lemma 10.5, Chap. III]), flu : U -+ V is an 
isomorphism, and hence a is regular on V. 

Assume, if possible, that alv does not extend to a regular function on the whole 
of Y. Then, by [B, Lemma 18.3, Chapter AG], there exists a point yo E Y and 
a regular function h on a Zariski neighborhood W of yo such that h(yo) = 0 and 
ha - 1 on W fl V. But then h~ =- 1 on f - 1  (W N V) (where h := h o f )  and hence, 

being regular on the whole of X, fz~ = 1 on f - l ( W ) .  Taking fro E f - l ( y o )  ( f  is, 
by assumption, surjective), we get /~(y-o)~(~o) = 0. This contradiction shows that 
alv does extend to some regular function (say a ~) on the whole of Y. Hence ~ = ~t, 
in particular, by the surjectivity of f ,  a = a ~. This proves the proposition. [] 

5. Identification of  t he  d e t e r m i n a n t  bund le .  

(5.1) Recall from w that ~ / P  is a parameter space for art algebraic family/d 
of G-bundles on C. Let us fix a (finite dimensional) representation V of G. In 
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particular, we can talk of the determinant line bundle Det(L/(V)) (cf. w Also 
recall the definition of the fundamental homogeneous line bundle ,~(Xo) on G / P  
from w Our aim in this section is to determine the llne bundle Det(U(V)) in 
terms of ,~(Xo). We begin with the following preparation. 

Let 0 be the highest root of g. Define the following Lie subalgebra sl2(O) of the 
Lie algebra g of G : 

(1) sl2(O) := g-0 �9 CO v �9 g0, 

where go is the 0-th root space, and 0 v is the corresponding coroot. Clearly s12(O) 
sl2 as Lie algebras. Decompose 

(2) V = GiVe, 

as a direct sum of irreducible sl2(8)- modules Vi of dim mi. Now we define 

(3) m v = E ( r n i ; 1 ) ,  where ( ~ )  = 0 .  
t 

Let gl and g2 be two (finite dimensional) complex simple Lie algebras and W : 
gl --+ g2 be a Lie algebra homomorphism. There exists a unique number m ,  E C, 
called the Dynkin indez of the homomorphism ~ (cf. [D, w satisfying 

(~(X), ~9(y)> : m~o(x , y>, for all ~, y e g l ,  

where {, > is the Killing form on gl (and ~2) normalized so that {0, 0> = 2 for the 
highest root 8. 

It is easy to see, from the next Lemma (5.2), that for a finite dimensional rep- 
resentation V o fg l  given by a Lie algebra homomorphism ~ : gl --~ sl(V), we have 
m~, = mv,  where (as earlier) sl(V) is the Lie algebra of trace 0 endomorphisms of 
V. 

We give an expression for mv in the following lemma. Write the formal character 

(4) ch V = E nxeX" 

(5.2)  L e m m a .  

1 
(1) = Z <  'ev 

A 

In particular, for the adjoint representation ad of g we have 

(2) m~ = 2(i+ < p,o >), 

where p as usual is the half sum of the positive roots of g. 



19 

Similarly, for the standard n-dimensional representation V"  of sl , ,  m y .  = 1. 

Proof. To prove the first part, it suffices to show that, for the irreducible represen- 
tation W(rn) (of dim rn + 1) of sl2 , 

1- ( ) (3) ~ < m p , - n a ,  H > 2 =  m + 2  
3 ' 

r / ~ 0  

where a is the unique positive root of s12, H the corresponding coroot and Pl := �89 
Now the left side of (3) is equal to 

m ko 

m m ( m  + 1)(rn + 2) if rn = 2ko is even; and 
= 4 Z  = 6 ' 

n = O  k = l  

~-~(2  ~ 1 _ n ) 2  i f m = 2 k o - l i s o d d  2 - n) 2 = 2 (ko - 

n~O n~O 

ko ko ko 

k = l  k = l  k - -1  

_ m ( m  + 1)(rn + 2) 
m 

6 

So, in either case, the left side of (3) = m('+16)("*+2) = ( m : 2 ) .  This proves the 
first part of the lemma. 

For the assertion regarding the adjoint representation, we have 

ch(ad) = (diml})e ~ + E (e~ + e-B)' 
I/eA+ 

where A+ is the set of positive roots. 
So rna~ = ~B,a+ < fl, ev >2 

= 4 +  ~ <fl ,  O v > , s i n c e < f l ,  0 v > = 0 o r l ,  for a n y f l E A + \ 0  
Bezx+\e 

= 4 + < 2 p - / 9 , 0  v > 

= 2(1+ < p,8 v >). 

The assertion about m y ,  is easy to verify. 

(5.3) Remark. The number (1+ < p, 8 v >) is called the dual Cozeter number ofg. 
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Its value is given as below. 

Type of 9 dual Coxeter number 
A d t  > 1) e + 1 
Bt( I  >_ 2) 2t - 1 
ct( t  >_ 3) e + 1 
Dt( t  >_ 4) 2t - 2 

E6 12 
E7 18 
E8 30 
G2 4 
F4 9 

Now we can state the main theorem of this section. 

(5.4) T h e o r e m .  With the notation as in w 

Det( l l (V))  ~_ l~(mvxo),  

for any finite dimensional representation V of G, where the number m y  is defined 
by (3) oiw 

Proof. By Proposit ion (C.13), there exists an integer m such that  

Det (ld(V)) = P.(mxo ) e Pic (G/P)-  

We want to prove that  m = m y  : Set Uo := DI(V)Ic• o as the family restr icted 
to the Schubert variety X~ := X,o (cf. proof of Proposit ion C.13). Denote by a 
(resp. /3) the canonical generator of H2(Xo, Z) (resp. H2(C,Z) ) .  Then it suffices 
to show that  Det L(o _~ 12(myxo)lXo , which is equivalent to showing that  the first 
Chern class 

(1) cl(Det  Uo) = m v a  : 

From the definition of the determinant  bundle we have 

(2) cl(Det  L/o) = - c l  (RTr2.L/o), 

where ~r2 is the projection C x Xo -~ Xo, and R~r2,ll o := ~(-1)iRi~r2,L/o . 
Since G is semisimple, the associated vector bundle/~(V) has 

(3) c l (Uo )  = o. 

Let & (resp. 3) be the pull-back of a (resp. fl) under 7r2 (resp. r , :  C x Xo -+ C). 
Now write 

(4) c2(lto) = 15~, for some (unique) l E Z. 
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Let T,~ 2 be the relative tangent bundle along the fibers of 7r2. Let us abbreviate 
by cz (resp. c2) the first (resp. second) Chern class of/4o. By the Grothendieck's 
Riemann-Roch theorem [F, w applied to the (proper) map zr2, we get 

ch(Rzr2./4o) = zr2,(ch(Llo).td(T,~2) ) 

= ~. [ (rkUo + cl + -~(Cl ~ - 2~)) (~  + ~I (T~, ) ) ]  
2 

1 
= lr2,[(rk/~o - c2 ) (1  + ~cz(T~2))], b y  (3), 

where ch denotes the Chern character and td denotes the Todd class. Hence 

(5) 
= 7r2.(-l&/~), by (4) 

= - l a ,  sinceTr2.(afl) = c~. 

So to prove the theorem, by (1),(2) and (5), we need to show that l = m y ,  where 
l is given by (4): 

It is easy to see (from its definition) that topologically the bundle L/o is pull-back 
of the bundle/,/o t (Where/'/o' is the same as b/o for C = pz) on ~1 x Xo via the map 

C x Xo (-~I Pl  x Xo, 

where ~ : C --+ ~x pinches all the points outside a small open disc around p to a 
point. Of course the map ~ is of degree 1, so the cohomology generator a pulls 
back to the generator fl (observe that Xo ~ p1 as shown below). Hence it suffices 
to compute the second Chern class of the bundle/,/o r on pz x Xo : 

Choose X0 E ID (where 8 is the highest root of 9) such that < X o , - w X e  >= 1, 
where w is the Cartan involution of 9 and <,  > is the Killing form on g, normalized 
so that < 0, 0 > =  2. Set Y0 :=  - w ( X o )  E g-e .  Define a Lie algebra homomorphism 
s12 ---r 9 @C C[t+z], by 

X ~,  Y o |  
Y ~ Xa |  -1 
H ~-~ -O v | 1, 

where {X, Y, H} is the standard basis of sl2. The corresponding group homomor- 
phlsm (choosing a local parameter t around p) ,7 : SL2(C) --* ~ induces a biregular 
isomorphism ~ : pz ~ SLz(C) /B1 -=~Xo , where Bz is the standard Borel subgroup 
of SLz(C) consisting of the upper triangular matrices. In what follows, we will 
identify Xo with pz under 7. The representation V of G on restriction gives rise to 
a continuous group homomorphism (cf. the decomposition (2) of w 

r  SU2(O) --+ H (AutVi), 
i 

where SU2(8) is the compact form (given by the involution w) of the group SL2(8) 
(with Lie algebra s12(8)). 
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There is a principal SU2-bundle W on S 4 (in the topological category) got by 
the clutching construction from the identity map S 3 ~ SU2 --+ SU2. In particular, 
we obtain the vector bundle ~Y(r -+ S 4 associated to the principal bundle ~Y via 
the representation r which breaks up as a direct sum of subbundles Wi(r  (got 
from the representations ~ ) .  

We further choose a degree 1 continuous map v : p1 x ~1 __4 $4. We claim that 
the vector bundle ~/o ~ on p1 x P1 is isomorphic (in the topological category) with 
the pull-back v '(Vr162 : 

Define the map �9 : S 1 • (SU2/D) --+ SU2 by 

for cd E SU2 and t E $1; where D is the diagonal subgroup of SU2. It is easy 

to see that the principal SU2-bundle v*(14~) on F '1 x p1 is isomorphic with the 
principal SU2-bundle obtained by the clutching construction from the map 0 (by 
covering p1 x p1 = 5,2 x S 2 = H + x S 2 U/- / -  x S 2, where H + and H -  are resp. 
the upper and lower closed hemispheres). By composing 0 with the isomorphism 
SU2 -* SU2(O) (induced from the Lie algebra homomorphism sl2 --+ sl2(O) taking 
X ~-~ Xo, Y ~-* }To, and/-/~-~ 0v), and using the isomorphism ~ together with the 
definition of the vector bundle U~ , we get the assertion that L/o ~ ~ u*(W(r So 

c2(U') = ~*(c~(W(r = v ' ~  c~(W,(r 
/ 

H e n c e / =  

(5.5) L e m m a .  Let W ( m )  be the (m + 1)-dimensional irreducible representation 
of SU2 and let FC(m) be the vector bundle on S 4 associated to the principal SU2- 
bundle VI) on S 4 (defined in the proof of Theorem 5.4) by the representation W(m)  
of SU2. Then 

where f~ is the fundamental generator of the cohomolo#y H4(S4, Z). 

Proof. By the Clebsch -Gordan theorem (el. [Hu, Page 126]), we have the following 
decomposition as SUz-module: 

W ( m ) |  for m a y m > l .  

In particular, the Chern character 

(2) ch}4;(m), chW(1) = chl/Y(m + 1) + chYY(rn - 1). 
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Assume, by induction, that (1) is true for all l _< m. (The validity of (1) for l = 1 
is trivial to see.) Then by (2) we get 

chW(rn + 1) = chW(m).chW(1) - ch)4;(rn - 1) 
= ((rn + 1).1 - c2Yl;(rn))(2.1 - c;142(1)) - (rn.1 - c2)~;(rn - 1)), 

since clYV(1) = 0 as Yl;(1) is a SU2-bundle. Hence by induction 
(3) 

Writing chFC(m + 1) = (m + 2).1 -c2)A2(m + 1), and equating the coefficients from 
(3), we get 

m + 2 ) + r n + l - ( m ~  1 c2)'Y(m + 1) : (2  ( 3 ) ) f t  

This completes the induction and hence proves the lemma. [] 

Recall that for any connected complex simple group G, the third homotopy group 
Ira(G) is canonically isomorphic with g. 

(5.6) Coro l l a ry .  For any representation p of G in a finite dimensional vector 
space V, the induced map 7r3(G) --+ 7r3(SL(V)) is multiplication by the number 
D2V. 

Proof. The representation p : G ~ SL(V)  gives rise to a morphism fi : G /~  -+ 
~~ '~ where ~~ := SL(V)(kp) and T '~ := SL(V)(~)p). Moreover, the family L/~ 
paraxnetrized by ~~ 9~ (got from the standard representation of SL(V)  in V) pulls- 
back to the family hi(V) (parametrized by ~/T').  In particular, from the functori- 
ality of the determinant bundle (cf. w Theorem (5.4), and Lemma (5.2), we see 
that the induced map ~* : H2(G~176 -+ H2(G/79,25) is multiplication by the 
number m y  (under the canonical identifications H2 ( ~~ /'P ~ 25) ~- 25 ~- H2 ( ~ / T ', 25)). 
But the flag variety g/7 ~ is homotopic to the based continuous loop group f~r 
(where K is a compact form of G), and similarly ~~ 9~ is homotopic to f~,(SU(V)). 
In particular, by the Hurewicz's theorem and the long exact homotopy sequence 
corresponding to the fibration f t , (K)  --~ P(K)  --+ g (where P(K)  is the path 
space of K consisting of all the continuous paths starting at the base point e), the 
corollary follows. [] 

6. S t a t e m e n t  o f  the  m a i n  t h e o r e m  and i ts  p r o o f .  

(6.1) Definition. Recall the definition of the homogeneous line bundle s on 
X := ~/7 ~ ( for any m E Z) from w Define, for any p E Z, (cf. [Kua, w 

(1) HP(X,s  lim HP(Xto,P,(mXo)lx,,), 4_... 
~oEw/w 
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where the notation is as in w Since any 9 E 0 acts as an algebraic auto- 
morphism of the line bundle P~(rnXo ) (eft. w HP(X,~(rnXo)) is canonically a 
0-module. This module is determined in [Ku~] ( and also in [M]). We summarize 
the results : 

(2) HP(X,~(rnxo)) = 0, i fp  > 0 and m > 0, 

(3) H~ = 0, i f m  < 0, and 

(4) H~ "~ L(C,m)* form > 0, as 0 - modules, 

where L(C, m) is the integrable highest weight (irreducible) ~ -module correspond- 
ing to the trivial g-module C and the central charge rn (cf. w and L(C, rn)* 
denotes its full vector space dual. (By w L(C, rn) and hence L(C, rn)* acquires 
a canonical structure of 0-module.) For any subgroup H C 0, by HP(X, s ~ 
we mean the space of H-invariants in HP(X, s 

Recall the definition of the map T : ~ --~ Xo from w and the family U 
parametrized by X from Proposition (2.8). Now define 

X '  = {gT) E X : T(g)is semistable} 

= {x E X :/41c• semistable}, 

and set (for any ro E W / W )  
X~ = X" n X~,. 

Then by JR1, Proposition (4.8)], X~ is a Zariski-open (and non-empty, since 1 E 
X~)  subset of  Xr,, in particular, X* is a Zariski-open subset of X. Now define 

(5) HP(X',Z(rnXo))= lira HP(X~,Z(mXo)Ix~,). +--- 
roEW/W 

Clearly F keeps X* stable and, by w F acts morphically on the line bundle 
S2(rnxo ) for any m which is a multiple of mv (for some finite dimensional represer~- 
ration V of G), in particular, F acts on the cohomology Hn(X',~(rnXo)), and we 
can talk of  the space of r-invariants HP(X ~ s r. The space HP(X, s r 
has a similar meaning. 

The family MIX. yields a morphism r : X ~ --+ 93t, which maps any x E X s to 
the S-equivalence class of the semistable bundle b/,, where ffY~ is the moduli space 
of semistable G-bundles on C (eft. Theorem 3.4). 

(6.2) L e m m a .  There exists a ~o E W / W  such that 

r ) = 9~. 

Proof. Since U~ x~, - x *  and r  ~ = 9JI, we get that  ~9l = Ur, r  But by 
a result of  Chevalley (cir. [B, Chapter AG, Corollary 10.2]), r  is a finite union 
of  locally closed subvarieties {gJt~) of T.R. Hence 93t is a countable union U99ti~ 
of  locally closed subvarieties. But then, by a Baire category argument, ff)t is a 
certain finite union of (locally closed) subvarieties { ~ ,  .,  m. ). Now choosing 

a t~o E W / W  such that Uo _> r0i , for all 1 < i < n, we get that  •I = r ). This 
proves the lemma. 
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(6.3) C o r o l l a r y .  The moduli space 92~ is a unirational variety. 

Proof. Since X~, is an open subset of X~ and Xt, is a rational variety ( by the 
Bruhat  decomposition), the corollary follows from the above l emmma (6.2). [] 

(6.4) P r o p o s i t i o n .  For any d > 0 and any finite dimensional representation V 
of G, the canonical map 

r : H~ O(V) | -~ H ~ 1 6 2 1 7 4  r 

is an isomorphism, where O(V) is the theta bundle on the moduli space 92;t associated 
to the representation V (cf. w and the vector space on the right denotes the 
space of F-invariants under its natural action on the line bundle r  (Since 
the map r : X s --+ 92it is P-equivariant, with trivial action of P on •l, the pull-back 
bundle r  has a natural P-action.) 

Proof. Using Lemma (6.2), we see that  the map ~b* is injective. Now the (b)-part 
of Proposition (2.8), and Proposition (3.6) show that  if x and y are two points 
in X ~ with b(~ "-" gt(Hx), then y belongs to the Zariski closure of the P-orbit of 
x. In particular, two points in X" axe in the same fiber of r if and only if the 
closures of their P-orbits intersect. This, in turn, shows that  if a is a P-invariant 
regular section of r (O(V)) | on X ", it is induced from a set theoretic section g_ of 
O(V) | on !fit. That  cr is regular, is seen by taking any Schubert variety X~ such 
that  r  = 99t (eft. Lemma 6.2) and applying Proposition (4.1) to the morphism 
r : X~ --r 99t. [] 

By the functorial property of the theta  bundle, O(/g(V))[x. is canonically iso- 
morphic to r  since ~b is defined using the restriction of the fami ly /g(V)  
to X ~ (cf. w Moreover, as observed in w the line bundles O(/~(V)) and 
Det(b/(V)) coincide on the whole of X. 

(6.5) P r o p o s i t i o n .  Any F-invariant regular section of r  | on X s  extends 
uniquely to a regular section of (Det H(V))  | on X .  

This proposition will be proved in the next section. 

We now state and prove our main theorem, assuming the validity of Proposition 
(6.5). 
(6.6) T h e o r e m .  Let the triple ff~ = (G,C,p)  be as in w and let V be a finite 
dimensional representation of G. Then, for any d > O, 

H~ O(V) | ~_ H~  l~(dmvxo)) r ,  

where the latter space of P-invariants is defined in w the integer m v  is the 
Dynkin index of V defined in w and the moduli space 93I and the theta bundle 
O(V)  are as in w167 and 3.7 respectively. 

In particular, H~  9, ~( dm v x o ) ) r is finite dimensional. 
(Observe that by (4) of w H~ /7~,S2(dmv xo) ) r is isomorphic with the space 

of F-invariants in the dual space L(C, d m v  )*.) 

Proof. We first begin with some simple observations: 
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(a) For any algebraic line bundle 12 on X ,  the canonical restriction map H~  s --r 
H~ X~ "~lX" ) is injective: This is seen by restricting a section to each Schubert va- 
riety Xr,, and observing that X~ is non-empty, and open (and hence dense) in the 
irreducible variety Xro. 

(b) If  ~. is a F-equivariant algebraic line bundle on X (with respect to the standard 
action o f f  on X )  (cf. w and e is a regular section of s such that its restriction 
to X ~ is F-invariant, then a itself is F-invariant: By F-invariance, for 7 E F, the 
section 7"(a) - a vanishes on X ~ (and hence on the whole of X). 

(c) Suppose that S2 ~ and .~" are two F-equivariant algebraic line bundles on X ' .  
Then any biregular isomorphism of line bundles ~ : t2 t --+ ~" (inducing the identity 
on the base) in fact is F-equivariant. In particular, ~ induces an isomorphism of 
the corresponding spaces of F-invariant regular sections: 

Define a map e : F • X ~ --4 C* by 

e(7, z) = L~-I fr  L ,  ( f~) - '  E A u t c ( ~ )  = C*, 

for 7 E F and x E X ~ where L~ is the action of 7 on the appropriate line bundles, 
and ~z denotes the restriction of ~ to the fiber over x E X ~ It is easy to see that 
e is a regular map, and of course e(1,x) -- 1 for all x E X ~ In particular, by 
Proposition (2.4), e(7, x) = 1, for all 7 E F. This proves assertion (c). 

We now consider (Det U(V) )~ .  as a F-equivariant line bundle by transport- 

ing the natural P-action on r ed (cf. Proposition 6.4), via the canonical 
identification 

(1) (DetU(V))lX. _'2 r 

Choose an isomorphism of line bundles on X 

~o : (Det l l (V) )  | --+ ~(Xo) | , 

which exists by Theorem (5.4). Recall from w that ~(Xo) | is a P-equivariant 
line bundle on X. Hence by (c) above, the map ~ :=  ~oixo is automatically F- 
equivariant. We have the following commutative diagram: 

HO(X,(DetU(V)) |  ~ ~ H~  | 

1 1 
H ~  ~ (Det U(V)) | Ho(x o, z(xo)| ) 

where ~ (resp. ~-~) is induced from ~ (resp. ~o), and the vertical maps are the 
canonical restriction maps. Observe that ~ is F-eqnivariant (since ~ is so). 

Further we have 

H~ O(V) | -~ H ~  ", (DetH(V))| r (by (1) and Proposition 6.4) 

~ HO(x% 12(u174 (under ~). 



27 

We complete the proof of the theorem by showing that  the restriction map 

HO(x, s174 )r ~ HO(x ,, s174 )r 

is an isomorphism: 
It suffices to show that  any F- invariant section a of s | over X ~ extends 

to a section over X,  for then the extension will automatical ly be F-invariant by 
(b) and unique by (a). By the above commutative diagram, this is equivalent to 
showing that  any F-invariant  section ao of (DetU(V))  | over X * extends to the 
whole of X.  But this is the content of Proposit ion (6.5), thereby completing the 
proof of the theorem. [] 

(6.7) P r o p o s i t i o n .  For any d > O, and finite dimensional representation V of G, 
we have 

[L(C, dm v)*]r = [L(C, dmy)*]Lie r = [L(C, dmv)*]~| 

where L(C, dmy) is canonically an algebraic F-module as in w g is the Lie 
algebra of the group G and (as in w C[C*] is the ring of regular functions on 
the a~ne curve C*. 

Proof. Abbreviate L(C, dmy) by V. Fix v E V and consider the morphism 7r. : 
s --+ V given by 7r,(-~) = %v for ~' E F. Recall (cf. Lemma B.6) that ,  by definition, 
the action of the Lie algebra Lie F on v E V is given by the induced map (dTrv)~ : 
T~(F) = Lie r - ,  T~(V) = V. 

Fix ~ E V*. For any v e V, define the map ~. : F -+ A 1 by O,('y) = O(%v). The 
induced map (d~)~ : T~(F) -- Lie F ~ Te(~)(A ~ ) = A 1 is given by 

(i) (dOv)e(a) = 8(a.v), fo ra  E LieI ' .  

For any % E F, we now determine the map (d0~)-ro: Consider the right transla- 
tion map R-fo : r --~ F, given by R~o (7) = "~7o- Then we have 

(2) (d0~)7o o (dRTo)e = (d07o.~)~. 

If ~ E IV*] r ,  then 8v (for any fixed v E V) is the constant map ~/ ~-~ ~(v). 
In part icular,  (dOv)e =- O, proving (by 1) that  0 E [V*] Lier. Conversely, take 

E [Y*] Lier. Then by (1) and (2), for any fixed v E V,(d8~)-to - 0 for any -yo E F. 
In part icular ,  for any fixed v E V and i > 0, the map 0~lr ~ : Fi "+ A 1 (Fi is as in 
the proof of Lemma 2.1) is constant on the irreducible components of Fi (as the 
base field is of char. 0). But since I '  is connected (cf. proof of Proposit ion 2.4), 0~ 
itself is forced to be a constant.  Thus, we have (78 - O)v = 0, for every v E V and 
7 E F, proving that  0 E [V*] r. Finally, by Lemma (2.2), we have Lie F = i]| 
This proves the proposition. [] 

(6.8) Remarks. (a) From the proof  it is clear that  the above proposition is true 
with L(C, drag) replaced by any algebraic representat ion of the ind-group F. 

(b) In Conformal Field Theory, the space of vacua is defined to b e  the space 
of invariants [L(C,d)*]o | of the Lie algebra f] | C_.[C*] (cf. [TUY, Definition 
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2.2.2]). We see, by Theorem (6.6) and Proposit ion (6.7), that  the space of vacua is 
isomorphic with the space of generalized the ta  functions. 

(c) Assertion (c) in the proof of Theorem (6.6) is true with X s replaced by X. 
(In fact, in this case we do not even need to use Proposit ion (2.4), but  need only 
the connectedness of F.) We outline an argument:  

Following the same notat ion as in the proof of assertion (c), in this case, for any 
fixed 7 E F the map el~• : 7 x X --~ C* is a constant a -  t (since X is a connected 
projective ind-vaxiety). From this it can be easily seen that  the map ~ : F -+ C* 
taking 7 ~ mr is a group morphism. In part icular ,  the derivative (dm)e : Lie F --+ C 
is a Lie algebra homomorphism. Since the commutator  [Lie F, Lie F] = Lie F, we 
get that  d(~ - 0. Hence, by an argument used in the proof  of Proposit ion (6.7), we 
see that  the map m itself is identically 1. This proves assertion (c) for X. 

As an immediate consequence of the above remark (b), we obtain the following. 

(6.9) C o r o l l a r y .  Let the notation and assumptions be as in Theorem (6.6). Then 
the space of coinvariants L(C, d m v ) / ( ( g  | C[C*]).L(C, d m v ) )  is finite dimen- 
sional. (Cf. [K, Exercise 11.10, p. 209] for a purely algebraic proof of this corol- 
lary.) 

7. P r o o f  o f  P r o p o s i t i o n  (6.5).  

(7 .1)  L e m m a .  Let X be an irreducible normal variety, U C X a non-empty open 
subset and 2, a line bundle on X .  Then any element of (9 H~  n) which is 

n > O  

integral over (~ H~ ( X ,  ~2 n) belongs to (g H~ ( X ,  ~2n ). 
n~_O n 

Proof. Since the rings in question axe graded, it suffices to prove the lemma only 
for homogeneous elements. Let b E H~ n~ be integral over (9H~ i.e., b 
satisfies a relation b m + alb m-1 + . . .  + a,, = 0 with ai E ( g H ~  Let D be a 
prime divisor in X \ U and let b have a pole of order s > 0 along D. Then the order 
of the pole of b m along D is of course ~rn and that  of aib m-i  is </?(rn - 1) for every 
i > 1. But since b m +a~b "~-1 + . . .  +a,~- lb  is by assumption regular along D, we 
are forced to have s = 0, i.e., b is regular along D. Hence b E H~ 12 ~* ). [] 

(7.2)  L e m m a .  Let f : X --+ Y be a morphism between projective varieties and [: 
an ample line bundle on Y.  Then the ring ~>og~ f , s  is integral over the ring 

(9 H~163  
n>O 

Proof. Firs t  of all, 

(1) (9 H ~ 1 6 3  ") ~ H~ |  f , O ) .  
n > o  

Since f . O  is coherent, we can write 

O --+ E ~ s  . . . (9 s --+ f , O  -~ O, 
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for some line bundles / : i  o n  Y. Since s is ample on Y, there exists no > 1 such 
that for n > no, H I ( Y , s  '~ | IC) = 0, in particular, 

(2) g ~ 1 6 3  ~o (~i s -~ H~ @o f .O)  

is surjective for n >_ no. We now prove that  (9 H ~  |163 is finitely generated 
n > 0  

over (9 H~ for any line bundle f i  on Y : 
n > 0  

Consider the sheaf exact sequence 

0 ~ ZA(y) -~ Oy•  ~ Oy --+ O, 

where A ( y )  C Y x Y is the diagonal and Z,a(y) is the ideal sheaf of A ( y )  in Y x Y. 
There exist to, mo >_ 1 such that  for n > ~eo and m >_ rno, 

~ l ( r  • Y, Za~y~ | (c" [] (~m | ~i))) = O. 

In particular, for n >_ to , 

H ~  n) | H ~ 1 6 3  m~ |  --- H ~  n+m~ |  

is surjective. This, in particular (using 2), proves that  the ring G>_oH~ , f"Qof,(O)) 

is finitely generated over (9 H~163  and hence integral (cf. [AM, Proposition 
n > _ 0  . 

5.1)). This proves the lemma by (1). [] 

(7.3) P r o p o s i t i o n .  Let Y be a normal irreducible variety parametrizing a family 
E of G-bundles on C. Consider the induced map fl : y s  __+ ff)I (cf. Theorem 3.~; 
where Y~ is the subset of Y consisting of those y 6 Y such that Cy is semistable). 
Fix a representation V of G and fix an isomorphism 

O(E(V))I~. ~ ~*(O(V)). 

The,', for any section ,, e H~ O(V) | (,t > 0), the pull-ba~k section ~*,~ 
eztends to an element of H~ O(E(V))| 

Proof. Consider the diagram (cf. w the notation of which we follow here) 

O(E(V)), ~a ~ O(V)| ~ 0 | 
- - l y e  

1 l 1 
y ,  ~ g2rl ~ ~JIo. 

By Lemma (7.1), it suffices to show tha t /3*a  6 H ~  ", O(E(V)) | is integral 
over (9 H~174 

,_>o 
Since a is integral over (9 H~ O | (by Lemma 7.2), there exists a relation 

n>O 

(*) aP+a]cr p - l + . . . + a p = O ,  f o r s o m e a i  6 69 H ~ 1 7 4  
n_>0 
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Now we have 
y ,  ~-~ Y~ 

if_r/ --+ if.rio 

where Y:  := {y E Y : gy(V) is a semistable GL(V)-bundle}. Assume that 30a, 
can be extended to the whole of Y (which is possible by the following Lemma 7.5), 
then we get from (,) 

(~*~)p + (~'a~)j~. (~*~),-1 +... + (~:a~),~. = o, 

which proves the proposition. [] 

(7.4) G . I . T .  c o n s t r u c t i o n  of the  m o d u l i  of  vec to r  b u n d l e s .  We recall the 
construction of the moduli spaces of vector bundles on C using G.I.T.. Let r _> 1 
and $ be integers. For the fixed point p E C and for a coherent sheaf F on C, put 
F(m) =F| for any m E Z, where O = Oc is the structure sheaf of C. 
We can choose a large enough integer m o =  too(r, 5) such that for any semistable 
vector bundle E of rank r and degree 5 on C, we have g](E(mo))  = 0 and E(mo) is 
generated by its globM sections. Let q := dim H~ = 5+r(mo + 1-g)  (where 
g is the genus of C) and consider the Grothendieck quot scheme Q consisting of those 
coherent sheaves on C which are quotients of C a | O with Hilbert polynomial (in 
the indeterminate v) rv+q .  The group GL(q, C) operates canonically on Q and the 
action on C x Q (with the trivial action on C) lifts to an action of the tautological 
sheaf T on C x Q. 

We denote by Ro the GL(q)-invariant open subset of Q consisting of those x E Q 
such that Tz := 7~c• is locally free and such that the'following canonical map is 
an isomorphism: 

Ca = H~ | O)4H~ 

Then Ro is smooth and irreducible and TIc• ~ is a rank-r vector bundle. Define 
the open subset (of Ro) R" o = {x E Ro : Tx is semistable }. If we choose sufficiently 
large rno , the G.I.T. quotient R~o//GL(q) yields the moduIi space 9Xo of vector 
bundles of rank r and degree 6. (We choose such a mo in the sequel.) (For all this, 
see [NRa, Appendix A] or [Le].) 

Now let l)o -+ C • To be a family of vector bundles of rank r and degree 5 
(parametrized by a variety To). We can find an integer inTo such that for m > inTo, 
we have : 

(1) R'p2.(Yo(m)) = 0. 
(2) p2.02o(m)) is a vector bundle on To ( of rank q := $ + r(m + 1 - g)), and 

�9 m ]2o(m) is surjectlve, (3) the canonical map P2P2.(Po())  

where P2 : C x To --+ To (resp. pl : C • To --+ C) is the projection on the second 
(resp. first) factor, and "Vo(m) := )2o |215 p;O(mp). 

Choose ~o  larger than inTo and too, where mo is as above. Let Po be the 
frame bundle ofp2.(Yo(~o)) with the projection fro : Po ~ To. Then there exists 
a canonical GL(q)-equivariant morphism ~o: Po -+ Ro , such that the families 
rr*(l)o) and ~ o ( T ( - ~ o ) )  are isomorphic, where T ( - m )  := r |215 p b O ( - m p )  
and pc : C x Ro -+ C is the projection on the first factor. 
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With the same notation as in Proposition (7.3) and its proof, we have the fol- 
lowing: 

(7.5) L e m m a .  For any ao E H~ 6) | (d >_ O) the pull-back section 13~ao E 
g~ ", O(E(V)) | can be eztended to the whole of Y.  

Proof. In the construction as in w take r = dim V, 6 = 0, and To = Y.  
Consider the diagram (where the map r is the quotient map and the other maps 

are as explained in w167 

Y : ~ Y  

Po 

ffJlo. 

Now since codimno(Ro\R~o) > 2 and Ro is smooth (in particular normal), the 
section 7r*ao extends (say to 7r*ao) to the whole of Ro. Pull 7r*ao via the GL(q)- 
equivariant morphism ~Po, and then push via the GL(q)-bundle 7to. This gives an 
extension of the section/3* ao to the whole of Y. This proves the temma, thereby 
proving Proposition (7.3) completely. [] 

Finally we prove Proposition (6.5) and thus complete the proof of Theorem (6.6). 

(7.6) Proof of Proposition (6.5). Let a be a r-invariant regular section of r  | 
on X*. By Proposition (6.4), there is a section cr of O(V) | over 9JI such that 
r  = a. Let X~ be a Schubert variety. Since Xr, is irreducible and normal 
(cf. [Kul, Theorem 2.16]), by Proposition (7.3), ~lx~, extends to a (unique) section 
Km of (Det L/(V)) | on X~,. By the uniqueness of extensions, it is clear that for 
anY ~ < m,Krotx, = Ks. In particular, the sections {Kin} give rise to a section 
of (Det L/(V)) | on the whole of X, extending the section ~ .  This completes the 
proof of the proposition. [] 
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A p p e n d i x  A.  Af l ine  Lie a lgebras  - B a s i c  de f in i t ions  and  r e p r e s e n t a t i o n s .  

The basic reference for this section is Kac's book [K]. 

(A.1) Definition. Let g be a finite dimensional complex simple Lie algebra. (We 
also fix a Borel subalgebra b and a Cartan subalgebra ~ C b of 9.) The associated 
affine Kac-Moody Lie algebra is by definition the space 

:= g |  C[t • @ C K ,  

together with the Lie bracket (for X , Y  E g and P,Q E C[t• 

[X | P,Y | = [X,Y]| PQ + (< X , Y  > Res(~t Q))K , and 

[~,K] = O,  

where <, > is the Killing form on g, normalized so that < 6,0 > =  2 for the highest 
root 9 of g. We also define a certain completion ~comp of ~ by 

~r = g |  c ( ( t ) )  �9 C K ,  

where C((t)) is the field of Laurent power series. Then ~comp is a Lie algebra under 
the same bracket as above. 

The Lie algebra g is a Lie subalgebra of ~ sitting as g | t ~ The Lie algebra 
admits a distinguished 'parabolic' subalgebra 

fi := g | C[t] @ CK. 

We also define its 'nil-radical' fi (which is an ideal of ~) by 

:=  g | tO[t], 

and 'Levi component' (which is a Lie subalgebra of ~) 

~o :=  9 |  OCK.  

Clearly (as a vector space) 
~, = ~, e f, o. 

Define the loop algebra L(g) := g |  C[ t+l ] with Lie bracket [X | P, Y | Q] = 
[X, Y] | PQ, for X, Y E g and P, Q E C[t •  ]. Then ~ can be viewed as a one- 
dimensional central extension of L(9): 

0 --~ CK --+ ~ - -~  L(g) --+ 0, 

where the Lie algebra homomorphism ~r is defined by w(X | P)  = X | P and 
~(K)  = 0. 
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(A.2) Irreducible representations of  0. Fix an irreducible (finite dimensional) 
representation V of g and a number s E C (to be called the central charge). Then 
we define the associated generalized Verma module for 0 as 

M(V,g) = U(O) | It(V), 

where the ~-module h ( V )  has the underlying vector spaze same as V , on which fi 
acts trivially, the central element K acts via the scalar g and the action of g = g | t o 
is via the l]-module structure on V. 

In the case when g # - h  (where h is the dual Coxeter number of g, cf. Remark 
5.3), M(V,g) has a unique irreducible quotient denoted L(V,g) (el. [KL2, w 
We assume in the sequel that  g # - h .  It is easy to see that the 0-module structure 
on M(V, g) (and also L(V,g)) extends to a ~comp-module structure. 

(A.3) Remark. As can be easily seen, any vector v E M(V,g) is contained in a 
finite dimensional g-submodule of M(V, g). In particular, the same property holds 
for any vector in L(V,g). 

(A.4) Definition. Consider the Lie subalgebra ~~ of 0 spanned by {Ye | t, 0 v | 
1, X0 @ t -1}, where Ye (resp. X0) is a non-zero root vector of g corresponding to 
the root - 0  (resp. 0) and the eoroot 0 v is to be thought of as an element of 0. 
Then the Lie algebra ~o is isomorphic with sl(2) (cf. proof of Theorem 5.4). 

A 0-module W is said to be integrable if every vector v E W is contained in a 
finite dimensional g-submodule of W and also v is contained in a finite dimensional 
t~ of W. 

The following lemma follows as a consequence of sl(2)-theory. 

(A.5) L e m m a .  The irreducible module L(V,g) (as in w A.2) is integrable if and 
only if g is an integer and s >_< ~,6 v >, where ~ is the highest weight of V. 

Appendix B. An introduction to Ind-varieties. 

In this section we take k to be any algebraically closed field of arbitrary char. 

(B.1) Definition [Sa]. By an ind-variety over k we mean a set X together with a 
filtration 

Xo C_Xl C_X2 C . . . ,  

such that 

(1) U>oX. - X,  and 

(2) Each Xn is a (finite dimensional) variety over k such that the inclusion 
Xn ~-+ Xn+l is a closed immersion. 

An ind-variety X is said to be projective (resp. affine) if each Xn is projective 
(resp. a~ne).  For an ind-variety X,  we define its ring of regular functions k[X] by 
k[X] = Inv. lt. k[Xn], where k[Xn] is the ring of regular functions on Xn. Putting 

gl " - 4 - ~  

the discrete topology on each k[Xn] and taking the inverse limit topology on k[X], 
we obtain k[X] as a topological ring. 
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Let X and  Y be two ind-varieties with f i l trat ions X ,  and  ]I, respectively. A 
map  f : X ~ Y is said to be a morphism if for every n > 0, there exists a 
n u m b e r  re(n) > 0 such that  f (Xn)  C Y,~(n) and  moreover f ix ,  : Xn -+ Y,n(n) is a 
morphism.  Clearly, a morphisrn f : X --+ Y (between two ind-varieties) induces a 
cont inuous k-algebra homomorphism f* : k[Y] -+ k[X], 

A morph i sm f : X --+ Y is said to be an isomorphism if f is bijective and  
f - a  : y _+ X also is a morphism.  Two ind-variety s t ructures  on the same set 
X are said to be equivalent if the ident i ty  ma p  I : X --+ X is an isomorphism of 
ind-varieties.  A morph ism f : X --+ Y is called a closed immersion if for every 
n > 0, f ix ,  : Xn --+ Ym(n) is a closed immersion.  

We define the Zariski topology on an ind-variety X by declaring a set U C X 
open if and  only if U ;3 Xn is Zariski-open in Xn for each n. 

(B .2 )  Exercises. (a) For an ind-variety X ,  a subset  Z C X is closed (under  the 
Zariski topology) if and  only if Z ~ Xn is closed in Xn for each n. 

(b) A morph i sm f : X ~ Y between two ind-varieties is cont inuous.  
(c) Any  cont inuous map  f : X --+ Y between two ind-varieties satisfies tha t  for 

each n, there exists a re(n) such that  f (Xn)  C Ym(n). 

(B .3 )  Examples. (1) Any (finite dimensional)  variety X is of course canonical ly an  
ind-variety, where we take each Xn = X.  

(2) If X and  Y are ind-varieties then X • Y is canonical ly  an ind-variety,  where 
we define the fi l trat ion by 

( X x Y ) , = X ,  x Y , .  

(3) A ~176 :=  {(al ,  a2, a 3 , ' " ) :  all bu t  finitely m a n y  a~s axe zero and  each ai E k} 
is an ind-variety under  the f i l t rat ion : A 1 C A 2 C A 3 C "-" , where A n C A ~176 is 
the set of all the sequences with a ,+a  = an+2 . . . . .  0, which of course is the 
n-d imens iona l  afFme space. 

(4) Any vector space V of countable  d imension over k is canonieal ly  an  affine ind- 
variety: Take a basis {e~}i_>a of  V. This  gives rise to a k-l inear  i somorphism A ~176 ~ V  
(taking (al, a2, a3," .  ) ~4 ~ aiei ). By t ranspor t ing  the ind-var ie ty  s t ruc ture  from 
A ~ 1 7 6  via this  isomorphism, we get an (affine) ind-variety s t ruc ture  on V. It is easy 
to see tha t  a different choice of basis of V gives an equivalent  ind-variety s t ruc ture  
Oil g .  

Similarly, the space P(V) of lines in V is canonical ly a projective ind-variety. 

(B .4 )  Definitions. (a) Let X be an ind-variety with the fi l trat ion (X , ) .  For any  
z E X,  define the Zariski tangent space T~(X) of X at  x by 

Tx(X) = limit  T, (X , ) ,  
rl - ~  o o  

where Tx(Xn) is the Zariski t angent  space of X ,  at z. (Observe that  x E Xn for 
all large enough n.) 

A morph i sm f :  X --4 Y clearly induces a l inear m ap  (df)x : Tz(X) --~ TI( , ) (Y ) 
(for any x E X) ,  called the derivative of f at x. 
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(b) An ind-variety H is said to be an in&algebraic group (for short  an ind- 
group), if  the  underlying set H is a group such tha t  the  map  H x H ~ H , taking 
(x, y) ~+ xy -1 , is a morphism.  In this article, we only have occasion to consider 
affine ind-groups,  i.e., ind-algebraic groups H such tha t  H is an affine ind-variety. 
So this will be our tacit assumption on in&groups. 

By a group morphism between two ind-groups H and K ,  we mean  a group 
homomorph i sm f : H -0 K such tha t  f is also a morph i sm of ind-varieties.  

An abst rac t  representat ion of the ind-group H in a countable  dimensional  k- 
vector space V is said to be algebraic if the  map  H x V --+ V, defined by (h, v) ~-+ h.v, 
is a morphism.  

For an ind-group H and ind-variety Y, we say that  Y is an H-variety if the 
group H acts on Y such that  the action H x Y --~ Y is a morph i sm of ind-varieties. 

( B . 5 )  P r o p o s i t i o n  [Sa]. For an ind-group H, the Zariski tangent space Tr at 
the identity element e is endowed with a natural Lie algebra structure (described in 
the proof). We denote this Lie algebra by Lie H. 

Moreover, if a : H --+ K is a group morphism between two in&groups, then the 
derivative (da)~ : Lie H --+ Lie K is a Lie algebra homomorphism. 

Proof. Denote  k[H] by A. The  mult ipl icat ion m a p  bt = # n  : H x H --~ H , taking 
(hi ,  h2) ~-~ hlh2 , induces a continuous homomorph i sm  tz* : A --* k[H x H]. There 
is a canonical  inclusion A Ok A r k[H x HI,  and it is easy to see that  the image 
is dense in k[H x H]. So we denote k[H x H] by A ~ A ,  and view it as a certain 
complet ion of A | A. Let e : A --+ k be the homomorph i sm,  taking f ~ f(e).  Let 
m = ker e. Then  for any f E m 

(1) # * f  - f | 1 - 1 | f e m ~ m ,  

where rn(~m denotes the closure of m | m in A ~ A .  
A continuous derivat ion D : A --+ A is said to be invariant if L~ o D = D o L~,, 

for all h E H,  where L~ : A -~ A is the algebra h o m o m o r p h i s m  induced from the 
left t rans la t ion  map  Lh : H --* H taking g ~ hg. The  set Der A of continuous 
invariant  derivations of A is a Lie algebra under  

[ D 1 , D 2 ] : = D l o D 2 - D 2 o D 1 ,  D 1 , D 2 E D e r A .  

Define the map  r I : T~(H) ~ D e r A  as follows. Take v E T,(H).  Then  v E 
Te(Hn) for some n (where Hn is the f i l t rat ion of  H) .  By definition, T,(Hn) = 
H o m k ( m n / r a ~ , k ) ,  where m ,  := { f  E ktHnl : f ( e )  = 0} is the  max imal  ideal of 
k[Hn] corresponding to the point  e. In par t icular ,  v gives rise to a k-linear map  
b : rrtn -4 k. Let ~ : A -+ k be the continuous l inear map  defined by ~(1) = 0, and 
vl= = ~ o rrn, where 7rn : m -+ mn is the canonical  res t r ic t ion map.  Now the map 
r/(v) : A -4 A is defined by 

s ( v )  = ( I ~ )  o ~', 

where I : A --+ A is the identi ty map  and I ~ 0  : A ~ A  -+ A ~ k  = A is the complet ion 
of the map  I | ~. By using (1), we get that  rI(v) is a derivation.  Further ,  it can be 
seen tha t  U(v) is invariant and hence r/(v) E Der A. 
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Conversely, we define a map ( : DerA -~ Te(H) as follows. Take D E DerA 
and consider e o DI~ " : m -~ k. Since D is continuous, there exists some n such that 
e o DI. ̀ factors through ran, giving rise to a map (denoted)  flD : m,  --+ k. Since D 

is a derivation, flD(m2n) = 0 and hence ~D gives rise to an element f lDE Te(H,) .  
Now set ( (D) = ~D. 

It can be easily seen that ~ o ,7 and ,7 o ~ both are the identity maps, in particular, 
,7 and ~ are isomorphisms. We now transport  the Lie algebra structure from Der A 
to Te(H) (via 7/). 

Finally, we prove that for any group morphism a : H --+ K,  the derivative 
& = (da)e : Lie H -+ Lie K is a Lie algebra homomorphism: 

To prove this, it suffices to show that the following diagram is commutative (for 
any v E Lie H): 

(*) 
k[K] ~'~ k[n] 

k[u] ~ ~ k[H]. 

Take f E raK, where mK C k[K] is the maximal ideal corresponding to the point 
e. Then,  by the definition of the map r h 

n(v)(a* f )  = (I6e)p'H(a* f ) ,  and 

rl(&v)f = (I6(~v))/.t~-(/).  

(2) 
(3) 

Further, 

(4) 

(5) 
(6) 

a*rj(&v)f = (~*~(~-v))#~.(f), whereas 

&v = 0 o a*, and 

Now combining (2)-(6), we get the commutativity of the diagram (,).  This proves 
the proposition. [] 

(B.6)  L e m m a .  An algebraic representation 0 of an in&group H in a (count- 
able dimensional] vector space V induces (on 'differentiation' as defined below) a 
representation dO of the Lie algebra Lie (H) on the same space V.  

Proof. Fix v E V and define the map Ov : H -+ V by h ~-~ hr. Consider the 
derivative (dOv), : T , (H)  = Lie (H) -+ Tv(V) ~-, V. Then the representation dO: Lie 
(H) • V -~ V is defined as (x,v) ~ (dOv)~(z). We claim that  dO is a Lie algebra 
representation: 

We abbreviate dO(z, v) by z . v .  For any v E V, define the evaluation map e(v) : 
k[V] -~ k by e (v ) f  = f (v ) ,  for f E k[V I. Fix any Vo E V. Then v E T~o(V) ~ V 
induces a k-hnear map 0 : k[V] ~ k, such that 0(1) = 0 (cf. the proof of Proposition 
B.5). If v , w  E T~o(V) are such that 0iv. = t~lv., then 0 = ~,  where V* C k[V] 
denotes the full vector space dual of V. Moreover, as is easy to see,  

( 1 )  Olv. = e ( v ) l  v .  
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By definition (for any v E V and x E T~(H)) 

(2) ~ .  v = ( ~ ( ~ ) )  o 0", 

where 8 : H x V ~ V is the representation. Since 8 is linear in the V-variable, 

(3) 8*(V*) C k[gl4V*, 

where k[g]~v* is the closure of k[H] | V* in k[H]~k[Y] := k[H x Y]. 
Consider the following commutative diagram (for any x,y E Tr and v E V), 

where A = k[H], and I stands for the identity maps. 

kIY} 

$0" 

A4k[V] 

. . ~ I /  "Ni4o. 

(A~A)~k[V] ~ A~(A~k[V]) 

(~)@~(~) 'N r162 

k | 1 7 4  

The commutat ivi ty  of the above diagram and (1)-(3) give the following (for any 
x,y E Te(H) and v ~ V). 

(4) e(x. (y. V))lv. = (((~4.~)4e(v)) o ( U ' ~ I )  o 8*)iv.. 

By (4) we get 

(5) (~ (~ .  ( y .  ~)) - ~ (y .  (x . . ) ) )~ .  = ( ( ( ~ #  - 0 ~ ) ~ ( ~ ) )  o ( ~ ' 4 I )  o 0*hv . .  

But, as c a n b e  easily seen from the definition of the bracket in Tr (cf. proof of 
Proposition B.5), 

(6) 

In particular, 

( ~ + ~  - # + ~ )  o U* = [~, U]. 

e ( x .  ( y .  , )  - u .  ( x .  , ) h r .  = (([~, y]+eCv)) o 0")iv. ,  

= (Ix, y ] .  V)lv .  , by (2) 

= e ( [ x , y ] .  V)lv .  , by (1). 

This gives that  x -  (y-  v) - y .  (x .  v) -- Ix, y]. v, proving the lemma. [] 
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(B.7)  Definition. For an ind-variety Y, by an algebraic vector bundle of  rank r 
over Y, we mean an ind-variety E together with a morphism 0 : E -+ Y such 
that (for any n) E ,  --+ Y, is an algebraic vector bundle of rank r over the (finite 
dimensional) variety Yn , where {Yn} is the filtration of Y giving the ind-variety 
structure and E ,  := 0 - 1 ( y , )  . If r = 1 , we call E an algebraic line bundle over Y. 

Let E and F be two algebraic vector bundles over Y. Then a morphism (of 
ind-varieties) ~ : E -+ F is called a bundle morphism if the following diagram is 
commutative : 

E-f+F 

Y 

and moreover ~IE. : E. -~ F. is a bundle morphism for all n. In particular, we 
have the notion of isomorphism of vector bundles over Y. 

We define Pic Y as the set of isomorphism classes of algebraic line bundles on 
Y. It is clearly an abelian group under the tensor product of line bundles. 

We similarly define the notion of principal H-bundles on an ind-variety (for a 
finite dimensional algebraic group H). 

For an ind-group H and H-variety Y (cf. w an algebraic vector bundle 
8 : E ~ Y is said to be an H-equivariant vector bundle if the ind-variety E also is 
an H-variety, such that the following diagram is commutative: 

H •  > E 

ix• 1o 
H x Y  ~ Y ,  

and moreover for any y E Y and h E H the fiber map h • 0-1y --+ O-l (hy)  is linear. 

Appendix C. Af l ine  K a c - M o o d y  groups and their flag varieties. 

Let G be a connected simply-connected simple algebraic group and let G := 
a(C((t))) ,  7 ) := a(c[[t]]). We fix a Sorel subgroup B C a and a maximal torus 
T C B, and define the standard Borel subgroup I3 of• as evo l (B) ,  where evo : 7 ) = 
G(C[[t]]) --+ G is the group homomorphism induced from the C-algebra homomor- 
phism C[[t]] ~ C, taking t ~ 0. 

Let N ( T )  be the normalizer of T in G and consider the set Mor (C*,N(T))  
of all the regular maps f : C* --+ N ( T ) ,  which is a group under pointwise multi- 
plication. Then T can be thought of as a (normal) subgroup of Mor (C*, N ( T ) )  

consisting of constant loops in T. Then the affine Weyl group W of G is by defini- 
tion W = Mor(C*__N(T))/T. Clearly the (finite) Weyl group W := N ( T ) / T  of G 

is a subgroup of W. 

(C.1)  Bruhat Decomposition. We can view Mor(C*,N(T)) as a subgroup of 
G. In particular, any element w E Mor(C*, N ( T ) )  can be thought of as an element 
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(denoted by the same symbol) w of G. The generalized flag variety X := G/P has 
the following Bruhat decomposition: 

(1) x =  U B ~ p / p ,  
~oe~lW 

where the notation I3roT'/7 ) means B w P / P  for any choice of the coset representative 
w of m. (The set BruTal7 ) is independent of the choice.) Moreover, the union in (1) 
is disjoint. 

The affine Weyl group W is a Coxeter group and hence has a Bruhat (or Cheval- 
ley) partial order _<. This induces a partial order (again denoted by) _< in W / W  
defined by 

u : = u m o d W _ < v  ( f o r u , v E W )  

if and only if there exists a w E W such that 

t~ ~ VW. 

We define the generalized Schubert variety X,o (for any m C W / W )  by 

(2) x ~  := U B , ~ , / ~ ,  
v<ro 

Then clearly X,  C_ X~ if and only if v _< m. 

(C.2)  Definition. Let 9 be the Lie algebra of G. We define the adjoint represen- 
tation Ad of G in ~comp as follows (cf. [PS, Proposition 4.3.2]): 

Embed G "-+ SLN and define, for any g E G, Y E 9 | C((t)) and z E C 

i d ( g ) ( Y g i - z U ) = g Y g - l A v ( z - a t e ? l g - l ~ t t , Y l ) K ,  

where (, ~ is the C((t))-bilinear extension of the normalized Killing form ( , )  on 9 
(cf. w 

The following lemma is well known, but we give a proof for completeness. Even 
though we do not need, a more general lemma (where the base field C is replaced 
by any C-algebra) for G = SLN is proved by Faltings (cf. [BL, Appendix to Sect. 
7]). 

(C.3)  L e m m a .  Let 7r : fi -~ End W be an integrable highest weight representation 
of ~ (in particular W ~_ L(V,t)  as in Lemma A.5). Then there exists a unique 
group homomorphism ~r : ~ --~ PGL(W),  such that the following holds for any 
g E ~ and X E ~comp : 

(,) ~(g)~-(x)~-(g) -~ = ~(hdg X), 
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where ~ :  ~r -~ End W is the eztension of rr (cf. w P a L ( W )  := GL(W)/C*, 
and GL(W) is the group o/all the linear automorphisms o/W. (We view r 
as an element of End W by taking any lift of Or(g) in GL(W).) 

Pro@ Fix g E G. We first prove that if there exists an element 0 E PGL(W) such 
that O~(X)O -a = ~(AdgX),  for all X E 9come, then 0 is unique: 

For, if possible, let 81 be another such element. Then 

(0110)~'(X)(0110) -1 ---~ ~'(X), for all X E ~comp. 

But W being irreducible, (0110) = i (in PaL(W)) .  This proves the uniqueness 
assertion. 

Define the set 

S = {g E ~ : ~'(g) is defined satisfying (*) for all X E 9comp} �9 

By uniqueness, it is clear that S is a subgroup of G and moreover the map ~r : S -+ 
PGL(W) is a group homomorphism. We next prove that S = G : 

For any root vector x E I~ and p E C((t)), define 

(1) ~(exp(x |  = exp(~(x | 

(Since x is a root vector and W is integrable, ~(x | E End W is locally nilpotent, 
in particular, exp(~(x |  is well defined.) It is easy to see that ~'(exp(x | as 
defined by (1), satisfies (*) for every x E ~comp. Fb.rther, by a result of Steinberg, 
the group generated by the elements exp(~(x | p)) is the whole group ~. This 
proves the lemma. [] 

(C.4)  C e n t r a l  Ex tens ion .  Recall the definition of the integrable highest weight 
(irreducible) ~-module Wo = L(C, 1) with central charge 1 from Lemma (A.5), 
where C is the trivial one-dimensional representation of ~. By Lemma (C.3), there 
exists a group homomorphism 77 : ~ -+ PGL(Wo). We define the group 0 as the 
pull-back ~r*( aL(Wo ) ): 

O ~ GL(Wo) 

1 1 
~ PGL(Wo). 

~r 

Then 0 is a central extension: 

( i) 

By the very definition of 0, the 0-module Wo becomes a 0-module. In particular, 
the tensor product Wo ~m (for m _> 0) acquires a canonical 0-module structure. 
The integrable ~-module L(C, m) with central charge m >_ 0 occurs uniquely as a 
~-submodule of W~ m, and it is easy to see (using (1) of the proof of Lemma C.3) 
that 0 keeps L(C, m) C Wo ~ "  stable. In particular, L(C, m) acquires a canonical 
0-module structure. 
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(C.5) Realizing X as an ind-variety via representat ion t h eo ry .  Define the 
filtration {X~}~>0 of X as follows: 

Xn :--= UXro, 

where the union is taken over those m = w rood W E W / W  such that g(w) < n. 
Fix any integer s > 0 and consider the irreducible ~-module L(C, g). From the 

Bruhat decomposition, it is easy to see that the map i = it : X --~ P(L(C~)) ,g7 ~ ~-~ 
[gvo] (where vo is the highest weight vector of L(C, t) and P(L(C, ~)) denotes the 
space of lines in L(C, t ) )  is injective. As proved in [S1, w for any n, there 
exists a finite dimensional subspace Wn C L(C,g) such that i (Xn) C P(Wn) and 
moreover i(X~) is Zariski-closed in P(W,) .  We endow Xn with the projective 
(reduced) variety structure so that ilx" is a closed immersion. This makes X into a 
projective ind-variety. Further, the ind-variety structure does not depend upon the 
particular choice of t > 0 (cf. IS1, w Equipped with this ind-variety structure, 
we denote X by Xrep �9 

For any m E W / W  the generalized Schubert variety Xm is an irreducible Zaxiski- 
closed subset of Xrep. We endow Xro with the projective (reduced) variety structure 
so that Xro ~ X is a closed immersion. Then BmT~/7 ~ C Xr~ is an open subset, 
which is biregular isomorphic with the affine space C t(r~ , where t(r0) is the length 
of the smallest element in the coset r0. 

Since Xn is a variety, we can equip X~ with the (Hausdorff) analytic topology and 
put the inductive limit topology on X. The decomposition (1) of w provides a 
cellular decomposition of X,  making it into a CW complex. 

Following [S1, w we define the homogeneous line bundles on Xrep: 

(C.6) Definition. For any countable dimensional vector space V, we first define 
the tautological line bundle s  on P(V) as follows: Consider the subset 

~ v  = ( (x ,  v) e n'(v) • v : v  e x) .  

Then s  is a Zariski-closed subset of the ind-variety P(V) x V. We equip s  with 
the ind-variety structure so that s  "-~ P(V) • V is a closed immersion. Now the 
projection on the first factor s  --~ P(V) realizes s  as a~ algebraic line bundle 
on P(V).  

For any t > 0, define the algebraic line bundle 1~(tXo) on X as the pull-back 
of the dual s of the tautological line bundle s = s on P(L(C~ g)) via the 
embedding it : X --~ P ( L ( ~ s  of the above section. For any integer s < 0, we 
define the line bundle ~(tXo) as the dual s  and for ~ -- 0, 12(s is defined 
to be the trivial line bundle. It is easy to see (cf. [S1, w that the line bundle 
S2(~Xo) is isomorphic with the line bundle I2(Xo) | 

The group g acts (set theoretically) on X = ~ / P  via g(hT~) = ghP, for g, h C g. 
We denote the action of g E G on X by L~. This action lifts to an action of the 
group ~ on the line bundle ~(~Xo) (for t < 0) via 

g(x,v) .=(L,r(o)x,gv) ,  for any g E ~, x E X a n d v E Q ( x ) ,  
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where 7r : ~ ~ ~ is the canonical map. Observe that for any fixed g E ~, the action 
of g on "~(gXo) is an algebraic automorphism of the algebraic line bundle "~(gXo) 
inducing the automorphism L,~(g) on the base X. 

Set Co := s  and define the Mumford group (cf. [PS, Remark (i), page 
115]) Aut(~o) = {(g,~) : g E g and ~ is an algebraic automorphism of the line 
bundle Co inducing the map Lg on the base). Then Aut(~o) is a group under 

The projection on the first factor gives a group homomorphism 8 : Aut (~o) -+ ~. 
Since ~ acts on go, there is a canonical group homomorphism ( : r --+ Aut (~o) 
making the following diagram commutative: 

g .  

Since ~r is surjective, so is 8. In particular, ~ is an isomorphism. 

We also need another 'lattice' description of the ind-variety structure on X (cf. 
[KL, w 

(C.7) Real iz ing  X as an  ind-var ie ty  via  la t t ices  (SLN case) .  We first con- 
sider the case of G = SLN.  Denote V = C N, and A = C[[t]]. For any n > 0, 
consider the set .T" n of A-submodules L C V | C.((t)) such that  (denoting V |  A 
byLo) 

tnLo C L C t-nLo , and dim (L/ tnLo)  = n N  . 

Let Vn :=  t - "Lo / t "Lo  be the complex vector space of dimension 2nN. Then the 
multiplication by t induces a nilpotent endomorphism tn of V, and hence 1 + tn 
is a (tmipotent) automorphism of V,. In particular, 1 + t,, induces a biregular 
isomorphism (denoted by the same symbol) of the Grassmannian Gr(nN, 2nN)  of 
nN-dimensional subspaees of the 2nN-dimensional space Vn. Let Gr(nN, 2nN) a+~" 
denote its fixed point. Then clearly the map j ,  : ~'n --r Gr(nN, 2nN) 1+~" given 
by L ~-~ L / t "Lo  is a bijection. We pull the (reduced) subvariety structure of 
Gr(nN, 2nN) 1+i- via jn  to equip ~'n with a projective variety structure. We next 
claim that  the canonical inclusion 9v, ~ Jr,+a is a closed immersion: 

Consider the commutative diagram: 

.Y',, J. ~ Gr(nN,  2nN) 1+~" 

7.+~ i.+~ ~ a~((,~ + 1)N,2(,~ + 1)N)~§ ~ 

where the map 0.  t~kes W C t -nLo/ t "Lo  ~ t n-a V ~ t "-~ V ~ . .-  ~ t - n V  ~ 
tnV ~ W. It is easy to see that 0~ is a closed immersion. This equips .~" = U~_>0.~'n 
with a projective ind-variety structure. 

Let ~~ :=  SLN(C((t))) and ~P~ := SLur(A) and set X ~ = ~o/,po. B y  virtue 
of the following lemma, the map fl : X ~ -4, .~" (defined below) is a bijection. By 
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t ransport ing the projective ind-variety structure from ~ to X ~ (via fl) we equip 
X ~ with a projective ind-variety structure. With  this structure we denote X ~ by 
XI~ t. We also define the fil tration )~o of X ~ by 

2 .  ~ = ~ - l ( j : n ) .  

The group G ~ acts canonically on V | C((t)). 

(C .8)  L e m m a .  The map gP~ ~+ gL~ (for g ~ G ~ induces a bijection /3 : X ~ -~ ~ .  

Proof. Fix g E G ~ It is easy to see that  there exists some n (depending upon g) 
such that  

(1) t~Lo C gLo C t-~Lo. 

Of course gLo is i-stable.  We next calculate the dimension of gLo/t"Lo: 
By the Bruhat  decomposition (1) of w it suffices to assume that  g is a 

morphism C* --+ D taking 1 ~-+ 1, where D is the diagonal subgroup of SLN.  Write 

g(t) = ".. , for t E C* and ni E Z. 
0 t n~ 

Then ~ ni = 0. Now 

dim(gLo/tnLo) = (n - n , )  + . . .  + ( n -  nN) = N n  - ~ _ n i  = N n  . 

This proves that  gLo E .T'n. 
Conversely, take L E Jrn. Since A is a PID and tkLo is A-free of rank N (for 

any k E Z),  we get that  L is A-free of rank N. Further,  L |  C((t)) --+ V((t)) 
is an isomorphism, where V((t))  := V | C((t)). Let { e l , . . .  ,eN} be the s tandard  
C-basis of V and take an A-basis { v l , . . .  ,vlv} of L. Now define the C((t))- l inear 
automorphism g of V((t))  by gel = vi (1 < i < N). We prove that  de tg  is a unit  of 
A: Write de tg  = tku, where k E Z and u is a unit of A. Consider the C((t))- l lnear 
automorphism a of V((t))  defined by 

a e i = e i ,  for 1 < i <  N, 

= t - k u - l e N ,  for i = N. 

Then de t (ga)  = 1, and t"+lklLo C (ga)Lo C t-n-lklLo. 
Hence, by the first par t  of the proof, we get 

[" ga(Lo) ~ = (n + Ikl)N. (2) dim \ t ,+ lk lLo]  

On the other hand, 

(3) dim \ ~ . + l k l i o }  = dim + IklN + k 

= g ~  + Iklg + k (since L E ~'n). 



44 

Now combining (2) and (3), we get k = 0, hence (ga)Lo = gLo = L. This proves 
the surjectivity of/3. The injectivity of/3 is clear. This proves the lemma. [] 

(C.9) Real iz ing X as an  ind -va r i e ty  v ia  la t t ices  (genera l  case) .  We now 
come to the case of general (connected, simply-connected, simple) G. Fix an em- 
bedding G "--+ SLN.  This gives rise to an embedding 

x = GI~p ~ x ~ = G ~  ~ 

The filtration )~o of X ~ (given in w on restriction gives the filtration ) ( .  of X,  
i.e,~ 

~. :=~~ 
In (a subsequent) Lemma (C.11), we prove that X-n is a Zariski-closed subset of 
^o X,,. This allows us to put the reduced subvariety structure on -~n making X into 

a projective ind-variety. Equipped with this ind-variety structure, we denote X by 
X|&t �9 

((3.10) L e m m a .  The two filtrations X ,  (cf. w and f ( ,  of X are compatible, 
i.e., for every n there exists k(n) such that 

X .  ___ )(k(,,) and Xn C X~(.). 

Proof. Fix a maximal torus T C G and an embedding G ~-~ S L N  such that T goes 
inside the diagonal subgroup D of SLN.  There is a bijection W / W  ~_ Morl (C*, T), 
where Morl denotes the set of morphisms C* --+ T such that 1 ~ 1. Since the set 
{Iv e ~ r / W  : g(w) < n} is finite, it is easy to see that Xn C -f(k(n) (for some large 
enough k(n)). 

Conversely (for a fixed n), we want to show that for all but finitely many m E 
W / W ,  (Bm'P/'P) N )(n = r Represent r0 as a morphism C* --+ T ~ D 

tnN(m) 

for some ni(m) E Z .  We first claim that any m such that ni(m) < - n  (for some 
i) satisfies (BmP/P )  0 )(n = r : ff for some b E 13, bmLo E J:n , then clearly 
mLo E b-l.~n = .Tn, a contradiction to the choice of Iv! Now observe that  the set 
{Iv e W / W  : hi(Iv) _> - n  for all i} is finite, since ~ n i ( I v )  = 0. From this, it 
follows that X,~ C Xk(,) , for some large enough k(n).  This proves the lemma. [] 

(C.11)  L e m m a .  With the notation as in w f(n is a Zariski-closed subset of 
X~ (for all n > 0). 

Proof. Fix m ~ W / W  ( W  is the affane Weyl group corresponding to G) and take a 
coset representative w of m of minimal length. Choose ~.~y reduced decomposition 
w = sil . . .  si~ (where sj 's  are the simple reflections in W), and consider the Bott- 
Samelson-Demazure-Hansen variety Zw defined in [S1, w Let 7~ i be the minimal 
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parabolic subgroup of ~ corresponding to the simple reflection sj. Recall that, set 
theoretically, Zw := ~~ 1 • . . .  • T'ip/13 p, where 13 p acts on Pil • "JPi2 • " '"  • P i p  from 
the right via 

(Xl , . . . ,  xp)(b l , . . . ,  bp) = (zl bl, b? 1 z2b2 . . . .  , b;~_lx~b~), 

for xi E 79i~ and bj E I3. 
Define the map 0w : Z,, -~ X by 0,~((xl, . . . ,  xp) mod13 ~) = xl . . .  zp'P. Since Im 

0~, = Xro (cf. [S1, w by the above lemma, Im(i o 0w) C )(,~ for some m, where 
i : X ~ X ~ is the inclusion. By an argument similar to the proof of [S1, Theorem 
2.4], it can be easily seen that i o t~, : Z~, --+ Xl~ is a morphism. In particular, Zw 
being projective, i(Xro) is closed in ^~ Xm. We now prove that i()~,) is closed in X , .  ^ ~ 

Observe that Xn is left 13-stable. Fix any r0 E W / W  such that 13roP/'P C X , .  
Then we claim that Xro C X',~: There is an open (dense) subset Y~ C Zw such that 
O~(Y,o) = 13ro79/'P. Hence, considering the morphism i o 0,o : Z~o -~ X ~ we see 
that i o 0w(Z~) C .~o (since X~ is projective). In particular, X~, C X ,  and thus 
.~, is a finite union (by Lemma C.10) of Schubert varieties X~. Now since i(Xro) 
is closed in )~o, so is i (X,) .  This proves the lemma. [] 

((3.12) P r o p o s i t i o n .  The identity map Xr~p -~ Xl~t is an isomorphism of ind- 
varieties. 

Proof. Embed G ~ SL(N) as in w and follow the same notation as in w167 
and (C.9). By definition, Xl~t ~-+ Xl~ is a closed immersion. Similarly, we claim 
that Xrcp ~ X~~ is a closed immersion : 

Take the integrable highest weight module L = L(C,/~) for ~~ (for .any fixed 
integer ~ > 0, where $~ = SIN ), and let W C L be the (integrable highest weight) 
~-module spanned by the highest weight vector of L. Then we have 

Xrep a_.+ X o rep 

r(w)  ~ r(L) 

where both the vertical maps are by definition closed immersions, and moreover 
P(W) "-+ P(L) is of course a closed immersion. This proves that Xre p ~ Xr~ is a 
dosed immersion. So, to prove the 1emma, we can take G = SLN : 

Fix r0 E W / W  (where W is the affine Weyl group corresponding to G = SLN).  
By the proof of Lemma (C.11) (following the same notation), the map 0w : Zw 
Xl~ is a morphism with its image precisely equal to X~,. We denote X~, endowed 
with the reduced subvariety structure from XT~ p by Xg,~p (and a similar meaning 

for X~,l~t). Then the map 0~ : Zw -~ X~,,re p (the map 0,o at the level of sets 
is nothing but 0~,) is a surjective morphism (cf. IS1, Theorem 2.4]) and moreover 
X~,,r~p is an irreducible normal variety (ef. [Ku~, Theorem 2.16]). We claim that 
the inclusion map It~ : X~.,rep ~ Xl~ is a morphism: 

" ~ Now the map 0w : Zw -+ First of all, by Lemma (C.10), Im In, C X . ,  for some n. 
X~,~.p being a proper surjective morphism, the (Zariski) topology on X~.,~r is the 

quotient topology. Let Li C 3~  be an open subset. Then 0w 1 (L/) = (0w)-=1I~l(/A) 
is open in Zw and hence I~I(H) is open in X~,r~ p. To prove that Im is a morphism, 
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^ o in,llgl(u) it suffices to show that  for any affine open / . /C  X , ,  the map : I ~ l ( h  r --+ U 

is a morphism: But this follows from Proposition (4.1), since the map In, o0w = 0w 
is a morphism. 

^O Conversely, fix n > 0 and take X , .  Then (for the identity map I : X~~ --+ 

Xj~t) I - 1 ( 2  ~ C Xr~ is a Zariski-closed subset and moreover (by Lemma C.10) 

I-1(2~) c X~, (for some m), in particular, I- l(Xn~ ) acquires the structure of a 
" o (where projective subvariety of Xr~ The bijeetive map I ,  : 1-1 (2~'n ~ --+ Xn,la t 

In := Ib -qx~) )  is a morphism (since X ~ C X~ , for some r0 E W/W). Further, 

the variety X~ is isomorphic with the variety Gr(nN, 2nN) ~+~- (of. w But 

Gr(nN, 2nN) I+T" is known to be irreducible and normal by using a result of Kostant  
(cf. [Ku2]). Moreover, I ,  being a homeomorphism (since In is a proper surjective 
morphism), I -~ ( ) (~  is irreducible as well. Hence by [Mum, page 288, I. Original 
form], In is an isomorphism. This shows that  the identity map XlOt --+ Xr~ also is 
a morphism, proving the proposition. [] 

So we identify Xi,t with X,~p and just denote them by X. We have the following 
proposition determining Pic (X). 

(C.13)  P r o p o s i t i o n .  The map Z --+ Pic (X) given by 

d ~ n(dxo) 

is an isomorphism. 

Proof. For any r0 E W/W,  since Xn, is a projective variety, by GAGA, the natural  
map 

(t) Pic(Xro) --~ Piea,~(Xro) 

is an isomorphism, where Pican(Xn,) is the set of isomorphism classes of analytic 
line bundles on Xn,. 

We have the sheaf exact sequence: 

(2) 0 ~ z ~ O . .  ~ O*. ~ 0,  

where Oan (resp. O~*n) denotes the sheaf of analytic functions (resp. the sheaf 
of invertible analytic functions) on Xn, (under the analytic topology). Taking the 
associated long exact eohomology sequence, we get 

(3) ... ~ Hl(Xn,,Oan) ~ Hl(X~,O:n) ~ H2(Xn, ,Z) -~  H2(Xn,,Oo,) ~ . . . ,  

where the map ca associates to any line bundle its first Chern class. Now 

(4) tti(Xn,, O) = 0, for all i > 0, 

by [Kul, Theorem 2.16(3)1 (also proved in [MI); and by GAGA 

(5) Hi(Xn,, O) .~ Hi(Xn,, Van), 
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and hence the map cl is an isomorphism. But 

(6) Pica,(Xro) ~ H ' ( X r o , O * n ) .  

Hence, by combining (1) and (3)-(6), we get the isomorphism (again denoted 
by) 

(7) c1: Pic(Xm) 5 H2(Xm,Z) .  

Further, the following diagram is commutative (whenever Xm C_ X~) : 

(v) 

Cl 

Pic(XD) ~ > H2(X~,,Z) 

1 1 
Cl 

Pic(X~) ~ ~ H 2 ( X ~ , Z ) ,  

where the vertical maps are the canonical restriction maps. But from the Bruhat 
decomposition, for any m > so, the restriction map 

(8) H ~ ( X ~ , Z ) ~ H 2 ( X ~ o , Z )  

is an isomorphism, where So is the (simple) reflection corresponding to the simple 
coroot a~' (as in [K, Chapter 7]), and 5o := So mod W. Moreover, Xso being 
isomorphic with the complex projective space •1, H 2 (X**, Z)  is a free Z-module of 
rank 1, which is generated by the first Chern class of the line bundle 12(Xo)lX. * . In 
particular, Pic(Xro) is freely generated by 2.(Xo)lX,,, for any m >_ so. 

We next prove that the canonical map a : Pic i x )  -+ lira Pic(Xro) is 
e - - ~ e ~ l W  

an isomorphism: 
Since the line bundles ~(dXo) (for d E Z) are algebraic line bundles on X, the 

surjectivity of the map a follows. Now we come to the injectivity of a : 
Let ~ E Ker a. Fix a non-zero vector Vo in the fiber of ~ over the base point 

e E X. Then ~lX,, being a trivial line bundle on each Xm, we can choose a nowhere- 
vanishing section sro of ~lx,, such that s~(e) = Vo. We next show that for any 
0 >_ ro, s~lx ~ = s m  : Clearly s~lx~, = f sm ,  for some regular function f : Xro -+ C*. 
But Xro being projective and irreducible, f is constant and in fact f = 1 since 
sv(r = sro(e). So the sections sro give rise to a nowhere-vanishing (regular) section 
s of ~ on the whole of X such that s ix  " = sto. From this it is easy to see that 

is isomorphic with the trivial line bundle on X. This proves that a is injective, 
thereby completing the proof of the proposition. [] 

[AM] 
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