A Geometric Realization of Minimal t-type of Harish-Chandra Modules for Complex S.S. Groups ¹

Bertram Kostant and Shrawan Kumar

0.Introduction

Let G be a semi-simple connected simply-connected complex algebraic group (viewed as a real Lie group), with a fixed Borel subgroup B, a complex maximal torus $T \subset B$, and a maximal compact subgroup K. Let $\mathfrak{g}, \mathfrak{b}, \mathfrak{h}, \mathfrak{k}$ be their (real) Lie algebras (respectively). In this paper we will be concerned with irreducible ($\mathfrak{g}^{\mathbb{C}}$, $\mathfrak{k}^{\mathbb{C}}$)-modules (also called Harish-Chandra modules), where $\mathfrak{g}^{\mathbb{C}} := \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ (similarly $\mathfrak{k}^{\mathbb{C}}$) is the complexified Lie algebra. Since the Lie algebra pair ($\mathfrak{g}^{\mathbb{C}}$, $\mathfrak{k}^{\mathbb{C}}$) is canonically isomorphic (as complex Lie algebras) with the pair (\mathfrak{g} , $\Delta(\mathfrak{g})$) (cf. § 1.1) (where $\mathfrak{g} := \mathfrak{g} \oplus \mathfrak{g}$ is the direct sum Lie algebra, $\Delta(\mathfrak{g})$ is the diagonal subalgebra and, G being a complex group, \mathfrak{g} has the canonical complex structure), we can equivalently consider (\mathfrak{g} , $\Delta(\mathfrak{g})$)-modules. The infinitesimal character of an irreducible (\mathfrak{g} , $\Delta(\mathfrak{g})$)-module is represented by a pair (λ, μ) of dominant (with respect to \mathfrak{b}) elements in $\mathfrak{h}^* := \operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$. In this paper we will only consider irreducible (\mathfrak{g} , $\Delta(\mathfrak{g})$)-modules with integral infinitesimal character (i.e. λ and μ are integral weights).

Let us assume that λ and μ as above are both, in addition, regular. We replace λ (resp. μ) by $\lambda+\rho$ (resp. $\mu+\rho$), where λ and μ are dominant (integral) weights. (The main body of the paper does not have this restriction but we put it here just as a simplifying assumption.) Now it is known (cf. [D] or [BB]; see Theorem 2.2 in this paper) that the Weyl group W (associated to G) parametrizes bijectively the irreducible $(\mathfrak{g}, \Delta(\mathfrak{g}))$ -modules with infinitesimal character $(\lambda+\rho,\mu+\rho)$. Let us denote the irreducible $(\mathfrak{g},\Delta(\mathfrak{g}))$ -module thus associated to $w\in W$ by $N_w=N_w(\lambda+\rho,\mu+\rho)$. It is further known that the minimal $\Delta(\mathfrak{g})$ -type of N_w is $V(\overline{\mu_w-\lambda})$, where $\mu_w:=-w(\mu+\rho)-\rho,V(\overline{\mu_w-\lambda})$ is the (finite dimensional) irreducible G-module with highest weight $\overline{\mu_w-\lambda}$ and, for any $\beta\in\mathfrak{h}^*,\overline{\beta}$ denotes the unique dominant element in the W-orbit of β .

¹1991 Mathematics Subject Classification. Primary 22E47.

This paper is in final form and no version of it will be submitted for publication elsewhere.

^{© 1992} American Mathematical Society 0271-4132/92 \$1.00 + \$.25 per page

On the other hand, for any $w \in W$, there is a certain distinguished irreducible $\Delta(\mathfrak{g})$ -subquotient E_w (which is isomorphic with $V(\overline{\mu_w - \lambda})$ as a \mathfrak{g} -module) of the tensor product $\widetilde{\mathfrak{g}}$ -module $V(\lambda + \rho)^* \otimes V(\mu + \rho)^*$ (cf. [Ku₁; § 2]), where $V(\lambda + \rho)^*$ is the dual \mathfrak{g} -module. In particular, observe that the minimal $\Delta(\mathfrak{g})$ -type of N_w coincides with E_w . The aim of this paper is to explain this coincidence in terms of a 'natural' geometrical construction, which we now describe:

By Beilinson-Bernstein (cf. Theorem 2.2), the module $N_w(\lambda + \rho, \mu + \rho)$ is realized as the space of global sections $H^0(\widetilde{G/B}, \widetilde{\mathcal{F}}_w \otimes \mathcal{L}(\lambda \otimes \mu))$, where $\widetilde{\mathcal{F}}_w$ is a certain $\mathcal{D}_{\widetilde{G/B}}$ -module on the product flag variety $\widetilde{G/B} := G/B \times G/B$, and $\mathcal{L}(\lambda \otimes \mu)$ is a homogeneous line bundle (cf. §§1.3 and 2.1). The module $H^0(\widetilde{G/B}, \widetilde{\mathcal{F}}_w \otimes \mathcal{L}(\lambda \otimes \mu))$ embeds as a submodule of the local cohomology module $H^\ell_{\widetilde{X}_w/\partial \widetilde{X}_w}(\widetilde{G/B}, \mathcal{L}(\lambda \otimes \mu))$ (cf. Lemmas 2.3 and 2.4); where $\ell := \dim_{\mathbb{C}} G/B - \ell(w), \widetilde{X}_w := \overline{G(e,w)} \subset \widetilde{G/B}$, and $\partial \widetilde{X}_w := \widetilde{X}_w \setminus G(e,w)$. Now define a Kunneth map (got by taking the tensor product) ψ_w :

$$H^0(\widetilde{G/B},\mathcal{L})\otimes H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(-\rho\otimes -\rho))\to H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(\lambda\otimes \mu)),$$

where $\mathcal{L}:=\mathcal{L}(\lambda+\rho\otimes\mu+\rho)$. We further show (cf. Corollary 2.12) that the module $H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(-\rho\otimes-\rho))$ contains a unique $\Delta(\mathfrak{g})$ -invariant ϑ . (Even though we do not need, it is the unique irreducible $(\widetilde{\mathfrak{g}},\Delta(\mathfrak{g}))$ -module with infinitesimal character (0,0).) We next prove (cf. Lemma 2.14) that the restricted map

$$\psi_w^{\vartheta}: H^0(\widetilde{G/B}, \mathcal{L}) \to H^{\ell}_{\widetilde{X}_w/\partial \widetilde{X}_w}(\widetilde{G/B}, \mathcal{L}(\lambda \otimes \mu)),$$

defined by $\psi_w^{\vartheta}(x) = \psi_w(x \otimes \vartheta)$, factors through $H^0(\widetilde{X}_w, \mathcal{L})$ giving rise to a map $\overline{\psi}_w^{\vartheta}: H^0(\widetilde{X}_w, \mathcal{L}) \to H^{\ell}_{\widetilde{X}_w/\partial \widetilde{X}_w}(\widetilde{G/B}, \mathcal{L}(\lambda \otimes \mu))$, and moreover the map $\overline{\psi}_w^{\vartheta}$ is injective (cf. Lemma 2.15). But, as proved in [Ku_I], the canonical restriction map: $H^0(\widetilde{G/B}, \mathcal{L}) \approx V(\lambda + \rho)^* \otimes V(\mu + \rho)^* \to H^0(\widetilde{X}_w, \mathcal{L})$ is surjective and moreover $H^0(\widetilde{X}_w, \mathcal{L})$ contains a unique copy E_w of the $\Delta(\mathfrak{g})$ -module $V(\overline{\mu_w - \lambda})$. We next prove that the image of E_w under the map $\overline{\psi}_w^{\vartheta}$ lands inside the irreducible submodule N_w of $H^{\ell}_{\widetilde{X}_w/\partial \widetilde{X}_w}(\widetilde{G/B}, \mathcal{L}(\lambda \otimes \mu))$ and in fact is the minimal $\Delta(\mathfrak{g})$ -type of N_w . (It may be mentioned that we do not use the known information about the minimal $\Delta(\mathfrak{g})$ -type of N_w , instead we deduce it as a consequence of the Beilinson-Bernstein realization of irreducible Harish-Chandra modules and our work.)

Acknowledgements. This work was done in the academic year 1988-89, while the second author was visiting The Institute for Advanced Study, Princeton; hospitality of which is gratefully acknowledged.

1. Notation and preliminaries

(1.1) Notation. The notation G is reserved to denote a semi-simple connected simply-connected complex algebraic group with a fixed Borel subgroup B and a (complex) maximal torus $T \subset B$. Let $\mathfrak{g} \supset \mathfrak{h} \supset \mathfrak{h}$ be the (real) Lie algebras of $G \supset B \supset T$ resp. Of course these Lie algebras have canonical complex structures coming from the corresponding groups.

Let $\{\alpha_1,...,\alpha_\ell\}\subset \mathfrak{h}^*$ (where $\mathfrak{h}^*:=\operatorname{Hom}_{\mathbb{C}}(\mathfrak{h},\mathbb{C})$) be the simple roots for the positive root system determined by \mathfrak{b} , and let $\{\alpha_1^\vee,...,\alpha_\ell^\vee\}$ be the corresponding simple co-roots. Define the set of integral weights $\mathfrak{h}_Z^*:=\{\lambda\in\mathfrak{h}^*:\lambda(\alpha_i^\vee)\in Z\!\!\!Z, \text{ for all }1\leq i\leq\ell\}$. The set of dominant integral weights D is by definition $\{\lambda\in\mathfrak{h}_Z^*:\lambda(\alpha_i^\vee)\geq 0, \text{ for all }i\}$. As usual ρ is the element of D, defined by $\rho(\alpha_i^\vee)=1$, for all $1\leq i\leq\ell$. Denote by $D-\rho$ the set $\{\lambda\in\mathfrak{h}_Z^*:\lambda+\rho\in D\}$.

Let $W \approx N(T)/T$ denote the Weyl group, where N(T) is the normalizer of T in G. The group W, which has a canonical representation in \mathfrak{h}^* , is generated (as a Coxeter group) by the 'simple' reflections $\{r_i\}_{1 \leq i \leq \ell}$; where $r_i \in \text{Aut } \mathfrak{h}^*$ is defined by $r_i(\lambda) = \lambda - \lambda(\alpha_i^{\vee})\alpha_i$. In particular, we can talk of the length $\ell(w)$ of any $w \in W$. For any $\lambda \in D$, let $W_{\lambda} := \{w \in W : w\lambda = \lambda\}$ be the stabilizer of λ . Then W_{λ} is again a Coxeter group, generated by a certain subset of simple reflections $\{r_i\}$.

We also fix a maximal compact subgroup $K\subset G$, with Lie algebra \mathfrak{t} . The complexified Lie algebra $\mathfrak{g}^{\mathbb{C}}:=\mathfrak{g}\otimes_{\mathbb{R}}\mathbb{C}$ can be identified with the direct sum (complex) Lie algebra $\tilde{\mathfrak{g}}:=\mathfrak{g}\oplus\mathfrak{g}$, under the complex Lie algebra isomorphism $\varphi:\mathfrak{g}^{\mathbb{C}}\to\tilde{\mathfrak{g}}$ (uniquely) defined by $\varphi(X)=(\overline{X},X)$ for $X\in\mathfrak{g}$; where the bar denotes the conjugate-linear isomorphism of \mathfrak{g} determined by the compact form \mathfrak{t} . Clearly $\varphi(\mathfrak{t}\otimes_{\mathbb{R}}\mathbb{C})$ is the diagonal subalgebra $\Delta(\mathfrak{g})$ of $\tilde{\mathfrak{g}}$. From now onwards, instead of the pair $(\mathfrak{g}^{\mathbb{C}},\mathfrak{t}^{\mathbb{C}})$, we will only consider the isomorphic pair $(\tilde{\mathfrak{g}},\Delta(\mathfrak{g}))$ (under φ).

(1.2) **Definition.** Let \mathfrak{g}_1 be a complex Lie algebra with a complex reductive subalgebra \mathfrak{k}_1 . A \mathfrak{g}_1 -module (in a complex vector space) M is called a $(\mathfrak{g}_1,\mathfrak{k}_1)$ -module (also called Harish-Chandra module) if it is locally \mathfrak{k}_1 -finite and is semi-simple as a \mathfrak{k}_1 -module. It is called an admissible $(\mathfrak{g}_1,\mathfrak{k}_1)$ -module if all the isotypical components of M (under \mathfrak{k}_1) are finite dimensional. If the $(\mathfrak{g}_1,\mathfrak{k}_1)$ - module M is irreducible as a \mathfrak{g}_1 -module, it is called an irreducible Harish-Chandra module (for the pair $(\mathfrak{g}_1,\mathfrak{k}_1)$).

Since the centre of the universal enveloping algebra $U(\tilde{\mathfrak{g}})$ can canonically be identified with $Z(\mathfrak{g})\times Z(\mathfrak{g})$ (where $Z(\mathfrak{g})$ is the centre of $U(\mathfrak{g})$), the *infinitesimal character* of (say) an irreducible $\tilde{\mathfrak{g}}$ -module is given by an element $(\lambda,\mu)\in\mathfrak{h}^*\times\mathfrak{h}^*$, and moreover λ and μ can be assumed to be dominant. We follow the standard convention that the trivial (one dimensional) $\tilde{\mathfrak{g}}$ -module has infinitesimal character (ρ,ρ) .

(1.3) **Definitions.** We denote by $\widetilde{G/B}$ the product flag variety $G/B \times G/B$. The group G acts on G/B diagonally. For any $w \in W$, we define the Schubert variety $X_w \subset G/B$ (resp. the G-Schubert variety $\widetilde{X}_w \subset G/B$) as the closure of the B-orbit $B_w := BwB/B \subset G/B$ (resp. the closure of the G-orbit $\widetilde{B}_w := G(e,w) \subset G/B$). As is easy to see $\{X_w\}_{w \in W}$ (resp. $\{\widetilde{X}_w\}_{w \in W}$) are precisely the B-orbit closures in G/B (resp. G-orbit closures in G/B). We also set $\partial X_w := X_w \setminus B_w$ (resp. $\partial \widetilde{X}_w := \widetilde{X}_w \setminus \widetilde{B}_w$) and $Y_w := G/B \setminus \partial X_w$ (resp. $\widetilde{Y}_w := G/B \setminus \partial \widetilde{X}_w$). It is easy to see that ∂X_w (resp. $\partial \widetilde{X}_w$) is closed in G/B (resp. G/B).

For any $\lambda \in \mathfrak{h}_{\mathbb{Z}}^*$ there is defined a line bundle $\mathcal{L}(\lambda)$ on G/B; which is associated to the principal B-bundle: $G \to G/B$ by the 1-dimensional representation $\mathbb{C}_{-\lambda}$ (determined by the character $e^{-\lambda}$ of B). More generally, given an algebraic B-module M (cf. Definition 2.9), we can consider the corresponding vector bundle $\mathcal{L}(M) := G \times_B M$ over G/B. For any $\lambda, \mu \in \mathfrak{h}_{\mathbb{Z}}^*$, we define the line bundle $\mathcal{L}(\lambda \otimes \mu)$ on G/B as the external tensor product of the line bundles $\mathcal{L}(\lambda)$ and $\mathcal{L}(\mu)$ respectively. The restriction of $\mathcal{L}(\lambda)$ to X_w (resp. $\mathcal{L}(\lambda \otimes \mu)$ to X_w) is denoted by $\mathcal{L}_w(\lambda)$ (resp. $\mathcal{L}_w(\lambda \otimes \mu)$).

For any topological space X, closed subspaces $Z \subseteq Y \subseteq X$, and an abelian sheaf S on X, $H^*_{Y/Z}(X,S)$ (resp. $\mathcal{H}^*_{Y/Z}(X,S)$) denotes the local cohomology (resp. local cohomology sheaf) introduced by Grothendieck ($[H_1; \text{ page 219, variation 2}]$). If Z is the empty set ϕ , $H^*_{Y/Z}(X,S)$ (resp. $\mathcal{H}^*_{Y/Z}(X,S)$) is abbreviated to $H^*_{Y}(X,S)$ (resp. $\mathcal{H}^*_{Y/Z}(X,S)$). The cases of our interest will be when X is an algebraic variety over $\mathbb C$ with the Zariski topology and S is an \mathcal{O}_X -module (where \mathcal{O}_X denotes the structure sheaf of X).

For a smooth algebraic variety X over \mathbb{C} , \mathcal{D}_X denotes the sheaf of algebraic differential operators on X. A \mathcal{D}_X -module is, by definition, a sheaf \mathcal{S} of left \mathcal{D}_X -modules, which is quasi-coherent as an \mathcal{O}_X -module.

We recall the following algebraic analogue of a result of Brylinski-Kashiwara:

(1.4) Proposition [BK; Proposition 8.5]. Let Y be a closed subvariety,

of pure codimension ℓ , of a smooth algebraic variety X, and let $Z \subset Y$ be a nowhere dense closed subvariety of Y which contains the singular locus of Y. Then there exists a unique holonomic \mathcal{D}_X -module with regular singularities (cf. [BK;§ 1]) $\mathcal{F} = \mathcal{F}(Y,X)$ (\mathcal{F} does not depend upon the choice of Z) satisfying:

$$(P_1) \mathcal{F}|_{X \setminus Z} \approx \mathcal{H}^{\ell}_{Y \setminus Z}(X \setminus Z, \mathcal{O}_{X \setminus Z})$$

and

where

$$\mathcal{F}^* := \mathcal{H}om_{\mathcal{O}_X}(\Omega_X, \mathcal{E}xt_{\mathcal{D}_X}^{\dim\mathbb{C}^{-X}}(\mathcal{F}, \mathcal{D}_X)),$$

and Ω_X is the canonical bundle of X.

We also recall the following two results from local cohomology, for their use in Section (2).

(1.5) Lemma [K; § 11]. (a) Let K be an affine algebraic group over $\mathbb C$ with Lie algebra $\mathfrak k$, let X be a K-variety over $\mathbb C$, and let S be a quasicoherent K-module on X (also called K-linearized $\mathcal O_X$ -module). Then, for any closed subspaces $Y \supseteq Z$ of X, the local cohomology $H^p_{Y/Z}(X, S)$ admits a natural $\mathfrak k$ -module structure, which is functorial in the following sense:

Let X' be another K-variety over $\mathbb C$ with a quasi-coherent K-module S' on X', a K-morphism $f: X' \to X$, and a K-equivariant sheaf morphism $\hat f: f^*(\mathcal S) \to \mathcal S'$. Then, for any closed subspaces $Y' \supseteq Z'$ of X' such that $Y' \supseteq f^{-1}(Y)$ and $Z' \supseteq f^{-1}(Z)$, the induced map $H^p_{Y/Z}(X,\mathcal S) \to H^p_{Y'/Z'}(X',\mathcal S')$ (cf. [K; Lemma 11.3]) is a t-module map.

- (b) If we assume, in addition, (in the first paragraph of a) that Y and Z are both K-stable, then the \mathfrak{k} -module structure on $H^p_{Y/Z}(X,\mathcal{S})$ "integrates" to give a canonical K-module structure.
- (1.6) Lemma. Let A^d be the affine space of dimension d over a field k. Then:

(a)
$$H_{\{0\}}^p(\mathbf{A}^d, \mathcal{O}_{\mathbf{A}^d}) = 0$$
, for all $p \neq d$, and

(b) $H^d_{\{0\}}(\mathbf{A}^d, \mathcal{O}_{\mathbf{A}^d})$ is canonically isomorphic with $\sum_{\substack{n_1, \dots, n_d < 0}} kx_1^{n_1} \cdots x_d^{n_d}$, as k-vector spaces; where 0 is the origin of \mathbf{A}^d , and (x_1, \dots, x_d) are the coordinate functions on \mathbf{A}^d .

2. Formulation of the main result and its proof

(2.1). In this whole section we fix once and for all $\lambda, \mu \in D - \rho$ (cf. § 1.1), and $w \in W$. Put $\ell = \ell(w_0) - \ell(w)$, where w_0 is the longest element of W. We set

$$\begin{array}{rcl} \mathcal{F}_{w} & = & \mathcal{F}(X_{w}, G/B) \\ \widetilde{\mathcal{F}}_{w} & = & \mathcal{F}(\widetilde{X}_{w}, \widetilde{G/B}) \\ \\ \mathcal{F}_{w}(\lambda) & = & \mathcal{F}_{w} \otimes_{\mathcal{O}_{G/B}} \mathcal{L}(\lambda) \\ \widetilde{\mathcal{F}}_{w}(\lambda \otimes \mu) & = & \widetilde{\mathcal{F}}_{w} \otimes_{\mathcal{O}_{\widetilde{G/B}}} \mathcal{L}(\lambda \otimes \mu) \end{array}$$

where $\mathcal{F}(,)$ is as defined in Proposition (1.4). Since X_w is B-stable (resp. \widetilde{X}_w is G-stable, under the diagonal G-action) and the line bundle $\mathcal{L}(\lambda)$ is B-equivariant (resp. the line bundle $\mathcal{L}(\lambda \otimes \mu)$ is G-equivariant), by the uniqueness of \mathcal{F} , we obtain that \mathcal{F}_w is a quasi-coherent B-module (resp. $\widetilde{\mathcal{F}}_w$ is a quasi-coherent G-module).

Now we recall the following fundamental result due to Beilinson and Bernstein. (Even though we do not need, a more general result is proved by them.)

(2.2) **Theorem** [BB]. The map $w \mapsto H^0(G/B, \widetilde{\mathcal{F}}_w(\lambda \otimes \mu))$ sets up a bijective correspondence from $W'_{\lambda+\rho,\mu+\rho}$ to the set of isomorphism classes of irreducible $(\widetilde{\mathfrak{g}}, \Delta(\mathfrak{g}))$ -modules with infinitesimal character $(\lambda + \rho, \mu + \rho)$; where $W'_{\lambda+\rho,\mu+\rho} := \{w \in W : w \text{ is the (unique) element of minimal length in its double coset } W_{\lambda+\rho}wW_{\mu+\rho}\}$, and $W_{\lambda+\rho}$ is as defined in § 1.1.

If
$$w \notin W'_{\lambda+\varrho,\mu+\varrho}$$
, then $H^0(\widetilde{G/B}, \widetilde{\mathcal{F}}_w(\lambda \otimes \mu)) = 0$.

As a preparation to prove (or even to formulate) our main result, we prove the following lemmas.

(2.3) Lemma. The canonical restriction map

$$H^0(\widetilde{G/B}, \widetilde{\mathcal{F}}_w(\lambda \otimes \mu)) \to H^0(\widetilde{Y}_w, \widetilde{\mathcal{F}}_w(\lambda \otimes \mu))$$

is injective, where \widetilde{Y}_w is as defined in § 1.3.

Proof. From the long exact sequence for the local cohomology (cf. $[H_2; Chap. III, Exercise 2.3]$), it suffices to prove that $H^0_{\partial \widetilde{X}_w}(\widetilde{G/B}, \widetilde{\mathcal{F}}_w(\lambda \otimes \mu)) = 0$: By the defining property (P_2) of $\widetilde{\mathcal{F}}_w$ (cf. Proposition 1.4), the sheaf $\mathcal{H}^0_{\partial \widetilde{X}_w}(\widetilde{G/B}, \widetilde{\mathcal{F}}_w(\lambda \otimes \mu)) = 0$. In particular, by [G; page 5, Proposition 1.4], $H^0_{\partial \widetilde{X}_w}(\widetilde{G/B}, \widetilde{\mathcal{F}}_w(\lambda \otimes \mu)) = 0$.

(2.4) Lemma. There is a canonical isomorphism

$$\theta_w: H^{\ell}_{\widetilde{X}_w/\partial \widetilde{X}_w}(\widetilde{G/B}, \mathcal{L}(\lambda \otimes \mu)) \to H^0(\widetilde{Y}_w, \widetilde{\mathcal{F}}_w(\lambda \otimes \mu)).$$

Proof. By the defining property (P_1) (cf. Proposition 1.4), the sheaf $\widetilde{\mathcal{F}}_w(\lambda \otimes \mu) \mid_{\widetilde{Y}_w}$ is the local cohomology sheaf $\mathcal{H}^{\ell}_{\widetilde{\mathcal{B}}_w}(\widetilde{Y}_w, \mathcal{L}(\lambda \otimes \mu))$. Further $\mathcal{H}^{i}_{\widetilde{\mathcal{B}}_w}(\widetilde{Y}_w, \mathcal{L}(\lambda \otimes \mu)) = 0$ for all $i \neq \ell$, since $\widetilde{\mathcal{B}}_w$ is a smooth closed subvariety of \widetilde{Y}_w of codimension ℓ . Now the lemma follows from [G; page 5, Proposition 1.4] together with [K; Lemma 7.7].

- (2.5) **Remark.** Exactly the same proof as above gives an isomorphism: $H^{\ell}_{X_w/\partial X_w}(G/B,\mathcal{L}(\mu)) \xrightarrow{\sim} H^0(Y_w,\mathcal{F}_w(\mu))$, where Y_w is as defined in § 1.3. Similarly the restriction map: $H^0(G/B,\mathcal{F}_w(\mu)) \to H^0(Y_w,\mathcal{F}_w(\mu))$ is injective (cf. Lemma 2.3).
- (2.6) Lemma. $H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(\lambda\otimes\mu))$ is canonically isomorphic with

$$H^0(G/B, \mathcal{L}(\lambda) \otimes \mathcal{L}(H^{\ell}_{X_m/\partial X_m}(G/B, \mathcal{L}(\mu)))),$$

where $\mathcal{L}()$ is as in § 1.3 and $X_w, \partial X_w$ being B-stable, $H^{\ell}_{X_w/\partial X_w}(G/B, \mathcal{L}(\mu))$ has a canonical g-module structure which restricted to \mathfrak{b} integrates to give a B-module structure (cf. Lemma 1.5).

Proof. By the spectral sequence [K; Lemma 8.5(d)], connecting the local cohomology sheaves to local cohomology groups, we get:

$$H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(\lambda\otimes\mu))\approx H^{0}(\widetilde{G/B},\mathcal{S}),$$

where \mathcal{S} is the local cohomology sheaf $\mathcal{H}^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(\lambda\otimes\mu))$. (The spectral sequence degenerates because $\mathcal{H}^{i}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(\lambda\otimes\mu))=0$, for all $i\neq\ell$; see the proof of Lemma 2.4.)

Further by the definition of the direct image sheaf, applied to the projection on the first factor $\pi_1: \widetilde{G/B} \to G/B$, we get

$$H^0(\widetilde{G/B},\mathcal{S}) \approx H^0(G/B,\pi_{1*}(\mathcal{S})).$$

We next assert that the direct image sheaf $\pi_{1*}(\mathcal{S})$ on G/B is isomorphic with $\mathcal{L}(\lambda) \otimes \mathcal{L}(H^{\ell}_{X_w/\partial X_w}(G/B,\mathcal{L}(\mu)))$:

First of all, the sheaf $\pi_{1\star}(S)$ is a G-linearized sheaf of $\mathcal{O}_{G/B}$ -modules. This is clear because the map π_1 is G-equivariant (under the diagonal action of G on $\widetilde{G/B}$), \widetilde{X}_w , $\partial \widetilde{X}_w$ are G-stable, and $\mathcal{L}(\lambda \otimes \mu)$ is a G-equivariant

line bundle. Let us now compute the stalk of $\pi_{1*}(\mathcal{S})$ at the base point $\underline{e} \in G/B$: Consider the affine open subset $U^-\underline{e} \subset G/B$, where U^- is the unipotent subgroup of G with Lie algebra $\bigoplus_{\alpha \in \Delta_-} \mathfrak{g}_{\alpha}$, where Δ_+ is the set of roots for $\mathfrak{b}, \Delta_- := -\Delta_+$, and \mathfrak{g}_{α} is the root space corresponding to the root α . Define a map $m: \pi_1^{-1}(U^-\underline{e}) = U^-\underline{e} \times G/B \to G/B$ by $m(g\underline{e},x) = g^{-1}x$, for $g \in U^-$ and $x \in G/B$. Then m is an affine morphism. Also, as is easy to see, $m^{-1}(X_w) = \widetilde{X}_w \cap \pi_1^{-1}(U^-\underline{e})$ and $m^{-1}(\partial X_w) = \partial \widetilde{X}_w \cap \pi_1^{-1}(U^-\underline{e})$. In particular, by the spectral sequence [G; Proposition 5.5 and Corollary 5.6] together with $[H_2; \text{ Chapter III}, \text{ Exercise 8.2}]$, we get $H^\ell_{\pi_1^{-1}(U^-\underline{e})\cap\widetilde{X}_w/\pi_1^{-1}(U^-\underline{e})\cap\partial\widetilde{X}_w}(\pi_1^{-1}(U^-\underline{e}),\mathcal{L}(\lambda\otimes\mu)) \approx H^\ell_{X_w/\partial X_w}(G/B, m_*\mathcal{L}(\lambda\otimes\mu))$. From this it is not difficult to deduce the assertion that $\pi_{1*}(\mathcal{S}) \approx \mathcal{L}(\lambda) \otimes \mathcal{L}(H^\ell_{X_w/\partial X_w}(G/B, \mathcal{L}(\mu)))$, and hence the lemma is proved.

(2.7) **Definition.** The Lie algebra \mathfrak{g} admits a unique complex linear involution τ such that $\tau \mid_{\mathfrak{h}} = -1$ and it sends the α -th root space \mathfrak{g}_{α} to $\mathfrak{g}_{-\alpha}$ for any root α . Given a \mathfrak{g} -module M, we get another \mathfrak{g} -module structure on M by twisting the original \mathfrak{g} -module structure by τ . We denote the twisted \mathfrak{g} -module by M^{τ} .

Let $\widetilde{\mathcal{O}}$ be the category of finitely generated $U(\mathfrak{g})$ -modules, which are locally finite as $U(\mathfrak{b})$ -modules. Any $N \in \widetilde{\mathcal{O}}$ satisfies $N = \bigoplus_{\lambda \in \mathfrak{b}^*} N_\lambda$, where N_λ is the λ -th generalized weight space. Set $N^\vee = \{f \in \operatorname{Hom}_{\mathbb{C}}(N,\mathbb{C}) : f(N_\lambda) = 0$, for all but finitely many $\lambda\}$. Then N^\vee has a canonical \mathfrak{g} -module structure. Finally we set $N^\sigma := (N^\vee)^\tau$. It is easy to see that $N^\sigma \in \widetilde{\mathcal{O}}$ and moreover $ch(N) = ch(N^\sigma)$, where $ch(N) := \sum (\dim N_\lambda) e^\lambda$ is the formal character of N.

The following lemma is well known (see,e.g., [BK; § 5]), but we recall the proof as it will be used in the proof of Lemma (2.14).

(2.8) Lemma. $H^{\ell}_{X_w/\partial X_w}(G/B, \mathcal{L}(\mu)) \approx M(\mu_w)^{\sigma}$, as g-modules, where $\mu_w := -w(\mu + \rho) - \rho$.

Proof. Consider the T-equivariant biregular isomorphism (cf. [KL; § 1.4]) $\xi = \xi_w : U_w \times U_w' \xrightarrow{\sim} wU^-B/B$, given by $(g,h) \mapsto ghwB$ (for $g \in U_w$ and $h \in U_w'$); where U_w (resp. U_w') is the unipotent subgroup of G with Lie algebra $\bigoplus_{\alpha \in \Delta_+ \cap w\Delta_-} \mathfrak{g}_{\alpha}$ (resp. $\bigoplus_{\alpha \in \Delta_- \cap w\Delta_-} \mathfrak{g}_{\alpha}$), and T acts by conjugation on U_w and U_w' .

As can be easily seen, there is a nowhere vanishing section s of the line bundle $\mathcal{L}(\mu)|_{wU^-B/B}$, which transforms under the canonical T-action via the weight $-w\mu$. Further $\xi(U_w \times e) = \mathcal{B}_w$ and \mathcal{B}_w is closed in the open

subset $\xi(U_w \times U_w')$ of G/B. Hence by [K; Lemmas 7.7 and 7.9],

$$\begin{array}{lcl} H^{\ell}_{X_w/\partial X_w}(G/B,\mathcal{L}(\mu)) & \approx & H^{\ell}_{\mathcal{B}_w}(Y_w,\mathcal{L}(\mu)) \\ & \approx & H^{\ell}_{U_w\times e}(U_w\times U_w',\mathcal{O}_{U_w\times U_w'})\otimes s \end{array}$$

$$(I_1).... H^{\ell}_{X_w/\partial X_w}(G/B,\mathcal{L}(\mu)) \approx H^{\ell}_{\{e\}}(U'_w,\mathcal{O}_{U'_w}) \otimes \mathbb{C} [U_w] \otimes s,$$
 by [G; Proposition 5.5],

where $\mathbb{C}[U_w]$ is the ring of regular functions on U_w . So, by Lemma (1.6),

$$ch \ H_{X_{w}/\partial X_{w}}^{\ell}(G/B, \mathcal{L}(\mu)) = ch \ H_{\{e\}}^{\ell}(U'_{w}, \mathcal{O}_{U'_{w}}) \cdot ch \ \mathbb{C} \left[U_{w}\right] \cdot e^{-w\mu}$$

$$= e^{-\sum_{\alpha \in \Delta_{+} \cap w\Delta_{+}}^{\alpha} \cdot \left(\prod_{\alpha \in \Delta_{+} \cap w\Delta_{+}}^{\alpha} (1 - e^{-\alpha})^{-1}\right)} \cdot \left(\prod_{\beta \in \Delta_{+} \cap w\Delta_{-}}^{\alpha \in \Delta_{+} \cap w\Delta_{-}}^{\alpha \in \Delta_{+} \cap w\Delta_{-}}\right)$$

$$= e^{\mu_{w}} \cdot \prod_{\alpha \in \Delta_{+}}^{\alpha} (1 - e^{-\alpha})^{-1}$$

$$= ch \ M(\mu_{w})$$

$$= ch \ (M(\mu_{w})^{\sigma}), \ (cf. \S 2.7).$$

So both the modules of the lemma have the same character. From this it is not difficult to establish that they are isomorphic as \mathfrak{g} -modules (cf. [BK; § 5] or [Ku₂; § 3]).

(2.9) **Definition.** A B-module M is called *algebraic* if the action of B on M is locally finite and any finite dimensional B-submodule of M is an algebraic B-module.

The following result can easily be deduced from Peter-Weyl theorem. (In fact a more general result is proved by Bott [B; Theorem I].)

(2.10) **Proposition.** Let M be an algebraic B-module. Then $H^0(G/B, \mathcal{L}(M))$ is G-module isomorphic with $\bigoplus_{\theta \in D} (V(\theta)^* \otimes_{\mathbb{C}} [M \otimes V(\theta)]^B)$, where we put the trivial G-module structure on the space of B-invariants $[M \otimes V(\theta)]^B$, $V(\theta)$ is the irreducible G-module with highest weight θ and $V(\theta)^*$ is its dual.

(2.11) Corollary. As G-modules

$$H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(\lambda\otimes\mu))\approx V(\overline{\mu_{w}-\lambda})\oplus (\bigoplus_{\substack{\theta\in D\\ \|\theta\|>\|\lambda-\mu_{w}\|}}V(\theta)^{*}\otimes [V(\theta)]_{\lambda-\mu_{w}}),$$

where μ_w is as in Lemma (2.8), $[V(\theta)]_{\lambda-\mu_w}$ denotes the $(\lambda-\mu_w)$ -th weight space in $V(\theta)$ and, for any $\chi \in \mathfrak{h}^*$, $\overline{\chi}$ denotes the unique dominant element

in the W-orbit of χ .

Proof. Combining Lemmas (2.6) and (2.8) we get:

$$\begin{split} H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(\lambda\otimes\mu)) &\approx H^{0}(G/B,\mathcal{L}(\lambda)\otimes\mathcal{L}(M(\mu_{w})^{\sigma})) \\ &\approx \oplus_{\theta\in D}(V(\theta)^{*}\otimes[V(\theta)\otimes\mathbb{C}_{-\lambda}\otimes M(\mu_{w})^{\sigma}]^{B}), \\ &\text{by Proposition (2.10)} \\ &\approx \oplus_{\theta\in D}(V(\theta)^{*}\otimes[V(\theta)\otimes M(\mu_{w}-\lambda)^{\sigma}]^{B}) \\ &\approx \oplus_{\theta\in D}(V(\theta)^{*}\otimes\operatorname{Hom}_{\mathfrak{b}}(M(\mu_{w}-\lambda)^{\tau},V(\theta))) \\ &\qquad \qquad (\text{cf. Definition 2.7}) \\ &\approx \oplus_{\theta\in D}(V(\theta)^{*}\otimes[V(\theta)]_{\lambda-\mu_{w}}), \\ &\text{since } M(\mu_{w}-\lambda)^{\tau} \text{ is } U(\mathfrak{n})\text{-free.} \end{split}$$

We next observe that if any $\chi \in \mathfrak{h}^*$ occurs as a weight in $V(\theta)$, then $||\chi|| \le ||\theta||$ and equality occurs if and only if $\overline{\chi} = \theta$:

We can assume, without loss of generality, that χ is dominant. Write $\theta=\chi+\beta$ for some $\beta\in\sum_{i=1}^\ell Z_+\alpha_i$, where Z_+ is the set of non-negative integers. Then $\parallel\theta\parallel^2=\parallel\chi\parallel^2+\parallel\beta\parallel^2+2<\chi,\beta>$. In particular, $\parallel\chi\parallel\leq\parallel\theta\parallel$ and equality occurs if and only if $\beta=0$. This proves the assertion and hence the corollary.

The following is an immediate consequence of the above corollary.

(2.12) Corollary. For any $w \in W$, $H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(-\rho\otimes-\rho))$ has a unique (up to scalar multiples) G-invariant, where ℓ is as in § 2.1.

(2.13) The basic map. For any $w \in W$ and $\lambda, \mu \in D - \rho$, there is defined a canonical Kunneth map (got by taking the tensor product)

$$\psi_{w} = \psi_{w}^{\lambda,\mu} : H^{0}(\widetilde{G/B}, \mathcal{L}(\lambda + \rho \otimes \mu + \rho)) \otimes H^{\ell}_{\widetilde{X}_{w}/\partial \widetilde{X}_{w}}(\widetilde{G/B}, \mathcal{L}(-\rho \otimes -\rho))$$
$$\to H^{\ell}_{\widetilde{X}_{w}/\partial \widetilde{X}_{w}}(\widetilde{G/B}, \mathcal{L}(\lambda \otimes \mu)),$$

where ℓ is as in § 2.1. (Observe that $H^p_{\widetilde{X}_w/\partial\widetilde{X}_w}(\widetilde{G/B},\mathcal{L}(\lambda\otimes\mu))=0$, for all $p\neq\ell$.)

By naturality, the map ψ_w is a $\tilde{\mathfrak{g}}$ -module map, where we put the tensor product $\tilde{\mathfrak{g}}$ -module structure on the domain (cf. Lemma 1.5). By the above

corollary, $H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B}, \mathcal{L}(-\rho \otimes -\rho))$ contains a unique G-invariant ϑ . Hence by restricting ψ_{w} , (since ϑ is G-invariant) we get a G-module map

$$\psi_w^{\vartheta}: H^0(\widetilde{G/B}, \mathcal{L}(\lambda + \rho \otimes \mu + \rho)) \to H^{\ell}_{\widetilde{X}_w/\partial \widetilde{X}_w}(\widetilde{G/B}, \mathcal{L}(\lambda \otimes \mu)),$$

given by $\psi_w^{\vartheta}(x) = \psi_w(x \otimes \vartheta)$.

Now we have the following crucial:

(2.14) Lemma. The map ψ_w^{ϑ} factors through $H^0(\widetilde{X}_w, \mathcal{L}_w)$, i.e., there exists a map $\overline{\psi}_w^{\vartheta}: H^0(\widetilde{X}_w, \mathcal{L}_w) \to H^{\ell}_{\widetilde{X}_w/\partial \widetilde{X}_w}(\widetilde{G/B}, \mathcal{L}(\lambda \otimes \mu))$ making the following diagram commutative:

$$H^{0}(\widetilde{G/B}, \mathcal{L}) \xrightarrow{\psi_{w}^{\vartheta}} H^{\ell}_{\widetilde{X}_{w}/\partial \widetilde{X}_{w}}(\widetilde{G/B}, \mathcal{L}(\lambda \otimes \mu))$$

$$r_{w} \searrow \qquad \nearrow \overline{\psi}_{w}^{\vartheta}$$

$$H^{0}(\widetilde{X}_{w}, \mathcal{L}_{w})$$

where r_w is the canonical restriction, and $\mathcal{L} := \mathcal{L}(\lambda + \rho \otimes \mu + \rho)$ (\mathcal{L}_w has a similar meaning).

Proof. From the naturality of the Kunneth map, we get that the following diagram (\mathcal{D}) is commutative:

$$H^{0}(\widetilde{G/B},\mathcal{L})\otimes H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}(-\rho\otimes-\rho))\rightarrow H^{\ell}_{\widetilde{X}_{w}/\partial\widetilde{X}_{w}}(\widetilde{G/B},\mathcal{L}')$$

$$\downarrow \mathcal{S}$$

$$H^{0}(\widetilde{G/B},\mathcal{L})\otimes H^{0}(\widetilde{Y}_{w},\widetilde{\mathcal{F}}_{w}(-\rho\otimes-\rho))\rightarrow H^{0}(\widetilde{Y}_{w},\widetilde{\mathcal{F}}_{w}(\lambda\otimes\mu))$$

where $\mathcal{L}' := \mathcal{L}(\lambda \otimes \mu)$, and \widetilde{Y}_w is as defined in § 1.3 and the vertical isomorphisms are induced by the isomorphism of Lemma (2.4).

Define a subsheaf $\mathcal{K}_w = \{x \in \mathcal{F}_w : \mathcal{I}_{X_w} x = 0\}$ (resp. $\widetilde{K}_w = \{x \in \widetilde{\mathcal{F}}_w : \mathcal{I}_{\widetilde{X}_w} x = 0\}$), where \mathcal{I}_{X_w} (resp. $\mathcal{I}_{\widetilde{X}_w}$) denotes the ideal sheaf of X_w in G/B (resp. of \widetilde{X}_w in G/B). Set $\mathcal{K}_w(-\rho) = \mathcal{K}_w \otimes_{\mathcal{O}_{G/B}} \mathcal{L}(-\rho)$ and $\widetilde{\mathcal{K}}_w(-\rho \otimes -\rho) = \widetilde{\mathcal{K}}_w \otimes_{\mathcal{O}_{G/B}} \mathcal{L}(-\rho \otimes -\rho)$.

By the very definition, $\psi_w(Q_w \otimes H^0(\widetilde{Y}_w, \widetilde{\mathcal{K}}_w(-\rho \otimes -\rho))) = 0$, where Q_w is the kernel of the restriction map r_w . But, by Kumar [Ku₁; Theorem 1.5], the map r_w is surjective and hence, to prove the lemma, it suffices to show that $\vartheta \in H^0(\widetilde{Y}_w, \widetilde{\mathcal{K}}_w(-\rho \otimes -\rho))$:

We first observe that

$$(I_2)\cdots H^0(\widetilde{Y}_w,\widetilde{\mathcal{K}}_w(-\rho\otimes-\rho))\approx H^0(G/B,\mathcal{L}(-\rho)\otimes\mathcal{L}(H^0(Y_w,\mathcal{K}_w(-\rho)))),$$

where Y_w is as defined in § 1.3. By Remark (2.5),

$$H_{X_w/\partial X_w}^{\ell}(G/B, \mathcal{L}(-\rho)) \approx H^0(Y_w, \mathcal{F}_w(-\rho)).$$

Further by (I_1) (cf. proof of Lemma 2.8)

$$H^0(Y_w, \mathcal{K}_w(-\rho)) \approx \{x \in H^{\boldsymbol{\ell}}_{\{e\}}(U_w', \mathcal{O}_{U_w'}) : fx = 0, \text{ for all } f \in \mathbb{C}[U_w'] \text{ with } f(e) = 0\} \otimes \mathbb{C}[U_w] \otimes s.$$

Hence

$$(I_3)\cdots H^0(Y_w, \mathcal{K}_w(-\rho)) \approx (x_1^{-1}\cdots x_\ell^{-1}) \otimes \mathbb{C}[U_w] \otimes s,$$

by Lemma (1.6), where $\{x_1,...,x_\ell\}$ are the coordinate functions on $U_w' \approx \text{Lie } U_w'$ (Lie U_w' denotes the Lie algebra of U_w'). In particular, $H^0(Y_w, \mathcal{K}_w(-\rho)) \neq 0$. Now $H^0(Y_w, \mathcal{K}_w(-\rho))$ is a B-stable subspace of $H^0(Y_w, \mathcal{F}_w(-\rho)) \approx M(-\rho)^{\sigma}$ (cf. Remark 2.5 and Lemma 2.8). As is easy to see, any B-stable non-zero subspace of $M(\lambda)^{\sigma}$ (for any $\lambda \in \mathfrak{h}^*$) contains the λ -th weight space. So $H^0(Y_w, \mathcal{K}_w(-\rho))$ contains the $(-\rho)$ -th weight space. (This can also be obtained from I_3 .) This proves, by (I_2) and Proposition (2.10), that $\vartheta \in H^0(\tilde{Y}_w, \tilde{\mathcal{K}}_w(-\rho \otimes -\rho))$; thus proving the lemma.

(2.15) Lemma. The map

$$\overline{\psi}_w^{\vartheta}: H^0(\widetilde{X}_w, \mathcal{L}_w(\lambda + \rho \otimes \mu + \rho)) \to H^{\ell}_{\widetilde{X}_w/\partial \widetilde{X}_w}(\widetilde{G/B}, \mathcal{L}(\lambda \otimes \mu))$$

(defined in the above lemma) is injective.

Proof. The sheaf $\widetilde{\mathcal{K}}_w \mid_{\widetilde{Y}_w}$ is supported in the G-orbit $\widetilde{\mathcal{B}}_w$ (cf. Definition 1.3) and moreover (by definition) it is a sheaf of $\mathcal{O}_{\widetilde{\mathcal{B}}_w}$ -modules. Since the section $\vartheta \in H^0(\widetilde{Y}_w, \widetilde{\mathcal{K}}_w(-\rho \otimes -\rho))$ is G-invariant, $\vartheta(x) \neq 0$ (as an element of the stalk $\widetilde{\mathcal{K}}_w(-\rho \otimes -\rho)_x$) for any $x \in \widetilde{\mathcal{B}}_w$. Now take any $t \neq 0 \in H^0(\widetilde{X}_w, \mathcal{L}_w(\lambda + \rho \otimes \mu + \rho))$. Then there exists a $x_0 \in \widetilde{\mathcal{B}}_w$ such that $t(x_0) \neq 0$. But then, by the commutative diagram (\mathcal{D}) (of Lemma 2.14), $\overline{\psi}_w^{\vartheta}(t)(x_0) \neq 0$. In particular, $\overline{\psi}_w^{\vartheta}(t) \neq 0$.

We recall the following result due to Kumar.

(2.16) **Theorem** [Ku₁; Theorem 2.10 and Proposition 2.9]. The G-module $H^0(\tilde{X}_w, \mathcal{L}_w(\lambda + \rho \otimes \mu + \rho))$ contains a unique copy of the irreducible G-module $V(\overline{\mu_w - \lambda})$; where μ_w is as in Lemma (2.8), and the bar is as in Corollary (2.11).

Now we come to the main result of this paper:

(2.17) **Theorem.** Let G be a semi-simple connected simply-connected complex algebraic group and fix $\lambda, \mu \in D - \rho$ (cf. § 1.1). Then, for any $w \in W'_{\lambda+\rho,\mu+\rho}$,

$$\overline{\psi}_w^{\vartheta}(V(\overline{\mu_w-\lambda}))\subset H^0(\widetilde{G/B},\widetilde{\mathcal{F}}_w(\lambda\otimes\mu)),$$

where $W'_{\lambda+\rho,\mu+\rho}$ is as in Theorem (2.2), μ_w is as in Lemma (2.8), and $\overline{\psi}_w^{\vartheta}$ is the G-module map defined in Lemma (2.14).

In particular, $\overline{\psi}_w^{\vartheta}(V(\overline{\mu_w-\lambda}))$ occurs with multiplicity exactly one in the irreducible Harish-Chandra module $N_w:=H^0(\widetilde{G/B},\widetilde{\mathcal{F}}_w(\lambda\otimes\mu))$ (cf. Theorem 2.2) and is its minimal $\Delta(\mathfrak{g})$ -type.

(Recall that, by Lemmas (2.3) and (2.4), N_w canonically embeds inside $H^{\ell}_{\widetilde{X}_w/\partial\widetilde{X}_w}(\widetilde{G/B},\mathcal{L}(\lambda\otimes\mu))$, and moreover the map $\overline{\psi}^{\vartheta}_w$ is injective by Lemma (2.15).)

Proof. By Corollary (2.11), any irreducible G-submodule $V(\theta)$ of N_w (in fact of $H^{\ell}_{\widetilde{X}_w/\partial\widetilde{X}_w}(\widetilde{G/B},\mathcal{L}(\lambda\otimes\mu))$) satisfies either $\parallel\theta\parallel>\parallel\lambda-\mu_w\parallel$ or $\theta=\overline{\mu_w-\lambda}$, and in the later case it occurs with multiplicity one in $H^{\ell}_{\widetilde{X}_w/\partial\widetilde{X}_w}(\widetilde{G/B},\mathcal{L}(\lambda\otimes\mu))$. So the proof of the theorem will be completed, if we show that $V(\overline{\mu_w-\lambda})$ does occur as a component in N_w :

In view of Lemma (2.4) and the long exact local cohomology sequence $[H_2; \text{Chap. III, Exercise 2.3}]$ (cf. proof of Lemma 2.3), it suffices to show that $H^1_{\partial \widetilde{X}_w}(\widetilde{G/B}, \widetilde{\mathcal{F}}_w(\lambda \otimes \mu))$ does not contain $V(\overline{\mu_w - \lambda})$ as a component; which is content of the next lemma. This completes the proof of the theorem (modulo the next lemma).

(2.18) Lemma. The irreducible G-module $V(\overline{\mu_w - \lambda})$ is not a component of $H^1_{\partial \widetilde{X}_w}(\widetilde{G/B}, \widetilde{\mathcal{F}}_w(\lambda \otimes \mu))$, for any $w \in W'_{\lambda + \rho, \mu + \rho}$.

Proof. By the defining property (P_2) of the sheaf \mathcal{F}_w (cf. Proposition 1.4), $\mathcal{H}^0_{\partial X_w}(G/B, \mathcal{F}_w(\mu)) = 0$. So, by an analogue of Lemma (2.6),

$$(I_4)\cdots H^1_{\partial \widetilde{X}_w}(\widetilde{G/B},\widetilde{\mathcal{F}}_w(\lambda\otimes\mu))\approx H^0(G/B,\mathcal{L}(\lambda)\otimes\mathcal{L}(H^1_{\partial X_w}(G/B,\mathcal{F}_w(\mu)))).$$

Consider the following exact sequence (\mathcal{T}):

$$H^0_{\partial X_w}(G/B, \mathcal{F}_w(\mu)) = 0 \to H^0(G/B, \mathcal{F}_w(\mu)) \to H^0(Y_w, \mathcal{F}_w(\mu))$$
$$\to H^1_{\partial X_w}(G/B, \mathcal{F}_w(\mu)) \to H^1(G/B, \mathcal{F}_w(\mu)) = 0,$$

where the vanishing of $H^1(G/B, \mathcal{F}_w(\mu))$ is due to [BB;§ 2]. Further, by [BB] (see also [Ka]), $H^0(G/B, \mathcal{F}_w(\mu))$ is the irreducible highest weight g-module $L(\mu_w)$ with highest weight μ_w (use the fact that w is of smallest length in its coset $wW_{\mu+\rho}$, since $w \in W'_{\lambda+\rho,\mu+\rho}$ by assumption). Hence, by combining Lemma (2.8) with Remark (2.5), we get (by the exact sequence \mathcal{T})

$$H^1_{\partial X_{\cdot u}}(G/B, \mathcal{F}_w(\mu)) \approx M(\mu_w)^{\sigma}/L(\mu_w).$$

But then, by (I_4) and Proposition (2.10), we get

$$(I_5)\cdots H^1_{\partial \widetilde{X}_w}(\widetilde{G/B},\widetilde{\mathcal{F}}_w(\lambda\otimes\mu))\approx \oplus_{\theta\in D}(V(\theta)^*\otimes [\mathbb{C}_{-\lambda}\otimes K(\mu_w)\otimes V(\theta)]^B),$$

as G-modules, where $K(\mu_w) := M(\mu_w)^{\sigma}/L(\mu_w)$. So, to complete the proof of the lemma, we need to show that

$$\mathcal{C} := [\mathbb{C}_{-\lambda} \otimes K(\mu_w) \otimes V(\overline{\lambda - \mu_w})]^B = 0:$$

As is easy to see

$$\mathcal{C} \approx \operatorname{Hom}_{\mathfrak{b}}(A^{\tau} \otimes \mathbb{C}_{\lambda}, V(\overline{\lambda - \mu_{w}})),$$

where A is the kernel of the map: $M(\mu_w) \to L(\mu_w)$. So

$$(I_6)\cdots$$
 $\mathcal{C} \approx \operatorname{Hom}_{\mathfrak{h}^-}(A \otimes \mathbb{C}_{-\lambda}, V(\overline{\mu_w - \lambda})),$

where \mathfrak{b}^- is the opposite Borel subalgebra of \mathfrak{g} .

Next we claim that $\mu_{w'} - \lambda$ does not occur as a weight in $V(\overline{\mu_w - \lambda})$, for any $w' \in W$ such that

$$(I_7)\cdots \qquad \mu_{w'} = \mu_w - \beta$$
, for some $\beta \neq 0 \in \sum_{i=1}^{\ell} \mathbb{Z}_+ \alpha_i$:

We first obtain

$$\|\mu_{w'} - \lambda\|^2 = \|\mu_w - \lambda\|^2 + 2 < \beta, \lambda + \rho > .$$

So if $\mu_{w'} - \lambda$ does occur as a weight in $V(\overline{\mu_w - \lambda})$, then

$$(I_8)\cdots$$
 $<\beta,\lambda+\rho>=0$ (cf. proof of Corollary 2.11).

Rewriting (I_7) we get

$$(I_9)\cdots w^{-1}w'(\mu+\rho)-(\mu+\rho)=w^{-1}\beta.$$

But, by assumption, $w \in W'_{\lambda+\rho,\mu+\rho}$; in particular, vw > w for any $v \in W_{\lambda+\rho}$. This, together with (I_8) , gives that

$$(I_{10})\cdots$$
 $w^{-1}\beta\in\sum Z_{+}\alpha_{i}$, and of course $w^{-1}\beta\neq0$.

Further by (I_9)

$$(I_{11})\cdots \qquad -w^{-1}\beta \in \sum \mathbb{Z}_{+}\alpha_{i}.$$

Now (I_{10}) and (I_{11}) contradict each other, proving the assertion that $\mu_{w'} - \lambda$ does not occur as a weight in $V(\overline{\mu_w - \lambda})$. This proves the vanishing of C, by (I_6) .

References

- [B] Bott, R., Homogeneous vector bundles, Ann. Math. 66 (1957), 203-248.
- [BB] Beilinson, A. and Bernstein, J., Localisation de g-modules, C.R. Acad. Sc. Paris 292 (1981), 15-18.
- [BK] Brylinski, J.L. and Kashiwara, M., Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), 387-410.
 - [D] Duflo, M., Representations irreductibles des Groupes semi-simples complexes, Springer lecture notes in Mathematics no. 497 (1975), 26-88.
- [G] Grothendieck, A., Local Cohomology, Lecture notes in Mathematics no. 41, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [H₁] Hartshorne, R., Residues and Duality, Lecture notes in Mathematics no. 20, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- [H₂] Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [Ka] Kashiwara, M., Representation theory and D-modules on flag varieties, RIMS (Kyoto) Publications, 1988.
- [K] Kempf, G., The Grothendieck-Cousin complex of an induced representation, Adv. in Mathematics 29 (1978), 310-396.
- [Ku₁] Kumar, S., Proof of the Parthasarathy Ranga Rao Varadarajan conjecture, Invent. Math. 93 (1988), 117-130.
- [Ku₂] Kumar, S., Bernstein-Gelfand-Gelfand resolution for arbitrary Kac-Moody algebras, Maths. Ann. 286 (1990), 709-729.

[KL] Kazhdan, D. and Lusztig, G., Schubert varieties and Poincaré duality, Proc. Symp. Pure Math. 36 (1980), 185-203.

B.K.: Department of Mathematics, M.I.T., Cambridge, MA. 02139, USA. S.K.: School of Mathematics, T.I.F.R., Colaba, Bombay 400005, India.