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0.Introduction

Let G be a semi-simple connected simply-connected complex algebraic
group (viewed as a real Lie group), with a fixed Borel subgroup B, a
complex maximal torus T C B, and a maximal compact subgroup K. Let
g, b,b, t be their (real) Lie algebras (respectively). In this paper we will be
concerned with irreducible ( ¢C . )-modules (also called Harish-Chandra
modules), where gﬂ: = g®R C (similarly £ ) is the complexified Lie
algebra. Since the Lie algebra pair (g‘E , L ) is canonically isomorphic (as
complex Lie algebras) with the pair (§,A(g)) (cf. § 1.1) (where §:= g@ g
is the direct sum Lie algebra, A(g) is the diagonal subalgebra and, G
being a complex group, -g has the canonical complex structure), we can
equivalently consider (§,A(g))-modules. The infinitesimal character of
an irreducible (g, A(g))-module is represented by a pair (A, ) of domi-
nant (with respect to b) elements in §* := Homg (5,C ). In this paper we
will only consider irreducible (g, A(g))-modules with integral infinitesimal
character (i.e. A and p are integral weights).

Let us assume that A and p as above are both, in addition, regular. We
replace A (resp. p) by A+p (resp. p+p), where A and p are dominant (in-
tegral) weights. (The main body of the paper does not have this restriction
but we put it here just as a simplifying assumption.) Now it is known (cf.
(D] or [BB]; see Theorem 2.2 in this paper) that the Weyl group W (as-
sociated to G) parametrizes bijectively the irreducible (g, A(g))-modules
with infinitesimal character (A 4 p,u + p). Let us denote the irreducible
(8, A(g))-module thus associated to w € W by Ny, = Ny(A+ p,pu+ p). It
_ is further known that the minimal A(g)-type of N,, is V(uy — A), where
pw = —w(p + p) — p,V(pyw — A) is the (finite dimensional) irreducible
G-module with highest weight u,, — A and, for any 8 € b*, 3 denotes the
unique dominant element in the W-orbit of 5.
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On the other hand, for any w € W, there is a certain distinguished
irreducible A(g)-subquotient E,, (which is isomorphic with V (i, — ) as
a g-module) of the tensor product § -module V(A + p)* @ V(u + p)* (cf.
(Kuy;§ 2]), where V(A + p)* is the dual g-module. In particular, observe
that the minimal A(g)-type of N, coincides with FE.,. The aim of this
paper is to explain this coincidence in terms of a ‘natural’ geometrical
construction, which we now describe :

By Beilinson-Bernstein (cf. Theorem 2.2), the module N,,() +p,p+p)
is realized as the space of global sections HO(C;%,fw ®L(A® 1)), where
F is a certain ’Da—é-module on the product flag variety éTB =G/B x
G/B, and L(A ® p) is a homogeneous line bundle (cf. §§1.3 and 2.1).
The module H(G/B, F., ® L() ® 1)) embeds as a submodule of the local
cohomology module H%w/agw(t%,ﬁ()\ ® u)) (cf. Lemmas 2.3 and 2.4);

where £ := dimp G/B - f(w),Xw = G(e,w) C éTB, and X, := X, \
G(e,w). Now define a Kunneth map (got by taking the tensor product)
Yo

HYG/B,LYRH} ¢ (GIB,L(~p®—p)) = HY .= (G]B,LO® ),
where £ := L(A+p®u+p). We further show (cf. Corollary 2.12) that the
module H}% /0% (G/B,L(-p ® —p)) contains a unique A(g)-invariant 9.

(Even though we do not need, it is the unique irreducible (, A(g))-module

with infinitesimal character (0,0).) We next prove (cf. Lemma 2.14) that
the restricted map

Vo HY(G/B,L) ~ By oz (G]B,L(® ),

w/0Xw

defined by 9 (z) = ¥,(z ® 9), factors through H%(X,, £) giving rise to a

map E’; : HO(XwaE) — H%w/akvw(G/B, L(A® p)), and moreover the map

g_bi is injective (cf. Lemma 2.15). But, as proved in [Ku;], the canonical
restriction map : HY(G/B,L) = V(A +p)* @ V(u +p)" — HY( Xy, L) is
surjective and moreover H%(X,,, L) contains a unique copy E,, of the A(g)-
module V(u,, — ). We next prove that the image of F, uﬂer the map

g_bi lands inside the irreducible submodule N, of H;:} /0% (G/B, L(A®p))

and in fact is the minimal A(g)-type of Ny. (It may be mentioned that we
do not use the known information about the minimal A(g)-type of N,
instead we deduce it as a consequence of the Beilinson-Bernstein realiza-
tion of irreducible Harish-Chandra modules and our work.)
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1. Notation and preliminaries

(1.1) Notation. The notation G is reserved to denote a semi-simple
connected simply-connected complex algebraic group with a fixed Borel
subgroup B and a (complex) maximal torus 7' C B. Let g > b D b be the
(real) Lie algebras of G O B D T resp. Of course these Lie algebras have
canonical complex structures coming from the corresponding groups.

Let {a1,...,az} C b* (where b* := Homg (h,C )) be the simple roots
for the positive root system determined by b, and let {ay,...,a)} be the
corresponding simple co-roots. Define the set of integral weights §%, :=
{Mev*: MNaY) e Z, forall 1 < i < £}. The set of dominant integral
weights D is by definition {) € 9% : M) > 0, for all i}. As usual p is
the element of D, defined by p(a)) = 1,for all 1 < i < £. Denote by D —p
the set {A € b, : A+ p € D}.

Let W ~ N(T)/T denote the Weyl group, where N(T') is the normal-
izer of T in G. The group W, which has a canonical representation in b*,
is generated (as a Coxeter group) by the ‘simple’ reflections {r;}1<i<s;
where 7; € Aut §* is defined by r{(}) = XA — MaY)a;. In particular,
we can talk of the length £(w) of any w € W. For any A € D, let
Wy := {w € W : wh = A} be the stabilizer of A. Then W) is again a
Coxeter group, generated by a certain subset of simple reflections {r;}.

We also fix a maximal compact subgroup K C G, with Lie algebra E.
The complexified Lie algebra gq: = g®]RC can be identified with the
direct sum (complex) Lie algebra § := g @ g, under the complex Lie al-
gebra isomorphism ¢ : g(D — § (uniquely) defined by ¢(X) = (X,X)
for X € g; where the bar denotes the conjugate-linear isomorphism of
g determined by the compact form ¢ Clearly ¢(t®p C ) is the diagonal

subalgebra A(g) of §. From now onwards, instead of the pair (g(D , C ),
we will only consider the isomorphic pair (§,A(g)) (under ).

(1.2) Definition. Let g; be a complex Lie algebra with a complex reduc-
tive subalgebra & . A g;-module (in a complex vector space) M is called a
(91, t1)-module (also called Harish-Chandra module) if it is locally &;-finite
and is semi-simple as a £;-module. It is called an admissible (g1,%))-module
if all the isotypical components of M (under &) are finite dimensional. If
the (g1, &1)- module M is irreducible as a g;-module, it is called an irre-
ducible Harish-Chandra module (for the pair (g1,%)).
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Since the centre of the universal enveloping algebra U(§) can canon-
- jcally be identified with Z(g) x Z(g) (where Z(g) is the centre of U(g)),
the infinitesimal character of (say) an irreducible §-module is given by an .
element (A, u) € b* x b*, and moreover A and u can be assumed to be
dominant. We follow the standard convention that the trivial (one dimen-
sional) g-module has infinitesimal character (p,p).

(1.3) Definitions. We denote by G’TB the product flag variety G/B x
G/B. The group G acts on G’/B diagonally. For any w € W, we define the
Schubert variety X,, C G/B (resp. the G-Schubert variety X, C G'/B)
as the closure of the B-orbit By, := BwB/B C G/B (resp. the closure of
the G-orbit B,, = G(e,w) C G’/B) As is easy to see {Xy}uwew (resp.
{Xw}wew) are prec1sely the B-orbit closures in G/B (resp G-orbit clo-
sures in G’/B) We also set 80X, := Xy \ By (resp 80Xy = Xu\ By )
and Y,, := G/B\ 8X,, (resp. Y,, := G/B \ 90X 80X, ). Tt is easy to see that
0X. (resp 80X, ) is closed in G/B (resp. G’/B)

For any A € b%, there is defined a line bundle £L(A) on G/B; which
is associated to the principal B-bundle: G — G/B by the 1-dimensional
representation € _y (determined by the character e~* of B). More gener-
ally, given an algebraic B-module M (cf. Definition 2.9), we can consider
the corresponding vector bundle L(M) := GXxgM over G/B. For any
A € b7y, we define the line bundle L(A ® @) on é_TB as the external
tensor product of the line bundles £()) and L(ux) respectively. The re-
striction of £(A) to Xy, (resp. L(AQ® ) to X.) is denoted by L,,()) (resp.
Lo(A® ). -

For any topological space X, closed subspaces Z C Y C X, and an
a.belian sheaf S on X, Hy,»(X,S) (resp. H}/7(X,S)) denotes the local
cohomology (resp. local cohomology sheaf ) introduced by Grothendieck
([Hy; page 219, variation 2]). If Z is the empty set ¢, Hy 7(X,S) (resp.

Y/Z(X §)) is abbreviated to Hy (X, S8) (resp. H}(X,S)). The cases of
our interest will be when X is an algebraic variety over C with the Zariski

topology and § is an Ox-module (where Ox denotes the structure sheaf
of X).

For a smooth algebraic variety X over C ,Dx denotes the sheaf of
algebraic differential operators on X. A Dy-module is, by definition, a
sheaf § of left D x-modules, which is quasi-coherent as an Ox-module.

We recall the following algebraic analogue of a result of Brylinski-
Kashiwara :

(1.4) Proposition [BK; Proposition 8.5]. Let Y be a closed subvariety,
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_ of pure codimension £, of a smooth algebraic variety X , and let Z C Y
be a nowhere dense closed subvariety of Y which contains the singular
locus of Y. Then there exists a unique holonomic Dx-module with regular
singularities (cf. [BK:§ 1]) F = F(Y,X) (F does not depend upon the
choice of Z) satisfying :

(A1) F Ix\z® Hinz(X \ Z,0x\z)
and
(Py) HY (X, F) = HY(X,F*) =0,

where
» . dinu: X .
F* 1= Homoy(Rx, Extp (F,Dx)),

X

and Qx is the canonical bundle of X.

We also recall the following two results from local cohomology, for their
use in Section (2).

(1.5) Lemma [K; § 11]. (a) Let K be an affine algebraic group over C

with Lie algebra t, let X be a K-variety over C , and let S be a quasi-
coherent K-module on X (also called K-linearized Ox-module). Then, for
any closed subspacesY D Z of X, the local cohomology H;}/Z(X,S) admits
a natural t-module structure, which is functorial in the following sense:

Let X' be another K-variety over C with a quasi-coherent K-module S’
on X', a K-morphism f : X' —» X, and a K-equivariant sheaf morphism
f: f*(S) — 8'. Then, for any closed subspaces Y' D Z' of X' such
that Y/ 2 f~H(Y) and Z' 2 f71(Z), the induced map Hy, ,(X,S) —
Hy/7/(X',8') (¢f. [K; Lemma 11.3]) 4s a t-module map.

(b) If we assume, in addition, (in the first paragraph of a) thatY and Z
are both K-stable, then the t-module structure on H}’}/Z(X, S) “integrates”
to give a canonical K-module structure.

(1.6) Lemma. Let A% be the affine space of dimension d over a field k.
Then :
| (a) Hfo}(Ad,OAd) =0, for all p # d, and
(b) H‘{io}(Ad,OAd) is canonically isomorphic with Z kxt-.oxhd,
. Ny ,...,g <0
as k-vector spaces; where 0 is the origin of A%, and (z1,...,2z4) are
the coordinate functions on A¢,
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2. Formulation of the main result and its proof

(2.1). In this whole section we fix once and for all \,u € D —p (cf. § 1.1),
and w € W. Put £ = £(wo) — £(w), where wq is the longest element of W.
We set

Fu = F(X,,G/B)
N -%w = I(wac%)
Fuld) = Fu®oupL(N)

~

FoA@u) = fw®057§£(>\ ® 1)

where F(,) is as defined in Proposition (1.4). Since X, is B-stable (resp.
X, is G-stable, under the diagonal G-action) and the line bundle £(}) is
B-equivariant (resp. the line bundle £(A @ p) is G-equivariant), by the
uniqueness of F, we obtain that F,, is a quasi-coherent B-module (resp.
Fuw is a quasi-coherent G-module).

Now we recall the following fundamental result due to Beilinson and
Bernstein. (Even though we do not néed, a more general result is proved
by them.) '

(2.2) Theorem [BB]. The map w — H(G/B,Fu(A® p)) sets up a bi-
jective correspondence from VVzl\+p,u+p to the set of isomorphism classes of
irreducible (g, A(g))-modules with infinitesimal character (A + p,pu + p);
where Wy, 1, := {w € W : w is the (unique) element of minimal length
in its double coset Wy, ,wW,.,}, and Wy, is as defined in § 1.1.

Ifw¢ W, then HY(G/B, Fu(A®u)) = 0.

As a preparation to prove (or even to formulate) our main result, we
prove the following lemmas.

+putp ?

(2.3) Lemma. The canonical restriction map
H(G/B, FuA® ) ~ H*(Vu, Ful2 ® 1))

is injective, where Y., is as defined in § 1.3.

Proof. From the long exact sequence for the local cohomology (cf. [Hy;
Chap. III, Exercise 2.3]), it suffices to prove that HSX (G/B, Fu(A@u)) =
0 : By the defining property (F) of }~"_U (cf. Proposition 1.4), the sheaf
HgX (G/B, ]t'w(A®u)) = 0. In particular, by [G; page 5, Proposition 1.4],
Hoz (G/B,Fu(d @) = 0. 0
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(2.4) Lemma. There is a canonical isomorphism

0y : Hy = (G/B,LA® 1)) — HO(Y,, Fu(A ® p)).

Xw/8Xuw
Proof. By the defining property (P;) (cf. Proposition 1.4), the sheaf -
Fuw(A® p) |5 s the local cohomology sheaf ’H%— (Y, £(A @ p)). Further
’H% (Yo, L(AQ®p)) = 0 for all ¢ # ¢, since B, is a smooth closed subvariety
of Y,, of codimension £. Now the lemma follows from [G; page 5, Proposi-
tion 1.4] together with [K; Lemma 7.7]. o
(2.5) Remark. ‘Exactly the same proof as above gives an isomorphism:
Hf(w/axw(G/B,E(u)) = HO(Yy, Fu(p)), where Y, is as defined in § 1.3.
Similarly the restriction map : H(G/B, Fu(p)) — H(Yy, Fu(p)) is in-
jective (cf. Lemma 2.3). '

(2.6) Lemma. H% 103 (G%,ﬁ(x\ ® 1)) is canonically isomorphic with

H(G/B,L()) ® L(H}, 5x,,(G/B, L(W)))),

where L() is as in§ 1.3 and X, 0X,, being B-stable, Hf(w/axw(G/B, L(p))
has a canonical g-module structure which restricted to b integrates to give
a B-module structure (cf. Lemma 1.5).

Proof. By the spectral sequence [K; Lemma 8.5(d)], connecting the local
cohomology sheaves to local cohomology groups, we get :

HL

3 /a;{w(érB, L(A® p)) ~ H(G/B,S),

/aiw(@’ﬁ(’\ ® u)). (The
GF/VB’['(/\ ® p)) = 0, for

where S is the local cohomology sheaf ’H%

spectral sequence degenerates because ’H")? joF% (

all 7 # (; see the proof of Lemma 2.4.)
Further by the definition of the direct -image sheaf, applied to the
projection on the first factor 7 : G/B — G /B, we get
H°(G/B,S) ~ HY(G/B, 11.(S)).
We next assert that the direct image sheaf 71.(S) on G/ B is isomorphic
with £(X) ® L(Hg, /9%, (G/B, L(1))) :

First of all, the sheaf m,(S) is a G-linearized sheaf of Oy, g-modules.
This is clear because the map 7; is G-equivariant (under the diagonal ac-
tion of G on G/B), )‘{v'u,, 0X,, are G-stable, and L{(A®u) is a G-equiyariant
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line bundle. Let us now compute the stalk of 71.(S) at the base point
e € G/B : Consider the affine open subset U"e C G/B, where U™ is
the unipotent subgroup of G with Lie algebra @,ea_g,, where Ay is
the set of roots for b,A_ := —A,, and g4 is the root space correspond-
ing to the root @. Define a map m : 77 (U"¢) = U"e x G/B — G/B
by m(ge,z) = g7z, for g € U~ and ¢ € G/B. Then m is an affine
morphism. Also, as is easy to see, m~Y(X,) = X, N 77 (U~ ¢) and
m=Y(8X,) = 8X, N 77 (U~¢). In particular, by the spectral sequence
[G; Proposition 5.5 and Corollary 5.6) together with [H,; Chapter IIT,

. ? -1 - Y ~
Exercise 8.2], we get le‘l(U—g)nkvw/w;‘(U—g)na)'(vw(Wl (U~e), L(AQ ) =

Hf(w/axw(G/B, m.L(A ® p)). From this it is not difficult to deduce the
assertion that m.(S) = L(N) ® E(Hﬁw/aXW(G/B,E(,u))), and hence the
lemma is proved. v m]

(2.7) Definition. The Lie algebra g admits a unique complex linear in-
volution 7 such that 7 [= —1 and it sends the a-th root space g4 to g_o
for any root . Given a g-module M, we get another g-module structure
on' M by twisting the original g-module structure by 7. We denote the
twisted g-module by M™.

Let O be the category of finitely generated U(g)-modules, which are
locally finite as U(b)-modules. 'Any N € O satisfies N = Darey+ V), where
Ny is the A-th generalized weight space. Set NV = {f € Homgp (N,C ) :
f(Ny) = 0, for all but finitely many A}. Then NV has a canonical g-module
structure. Finally we set N° := (NV)7. It is easy to see that N° € O and
moreover ch(N) = ch(N?), where ch(N) := 3 (dim Ny)e is the formal
character of N.

The following lemma is well known (see,e.g., [BK; § 5]), but we recall
the proof as it will be used in the proof of Lemma (2.14).

(2.8) Lemma. Hf(w/axw(G/B,[,(,u)) ~ M(py)°, as g-modules, where
P = —w(p + p) = p.

Proof. Consider the T-equivariant biregular isomorphism (cf. [KL; § 1.4])
£ =6y :Uyx U, S wU™B/B, given by (g,h) — ghwB ( for g € Uy, and
h € U], ); where Uy, (resp. U,,) is the unipotent subgroup of G with Lie

algebra @qea,nwa_ 8a(Tesp. Baca_nuwa_ 8a), and T acts by conjugation
on U, and U,,.

As can be easily seen, there is a nowhere vanishing section s of theline
bundle £L(s) |,,u-p/B, which transforms under the canonical T-action via
the weight —wu. Further (U, X e) = B, and B, is closed in the open
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subset (U, X U!) of G/B. Hence by [K; Lemmas 7.7 and 7.9],
Hwa/BXw(G/BVC(/‘)) Hew(th‘C(/J‘))
8 Hf,y(Uu % Upy Ovyxuy,) ® s

(I1).... Hf{w/axw(G/B,ﬁ(p)) R er}(U{u,OU,Q,) RC [Uy] ® s,
by [G; Proposition 5.5],

Q

N

where € [U,] is the ring of regular functions on U,. So, by Lemma (1.6),
ch H 1ox,(G/B,L(n)) = ch Hy(Uy,,0uy) chC [Uy]- e
— e'ZaeA+nwA+°‘ ( H (1 _ e—a)—l)

a€A NwAy
( H (1- e—ﬂ)—l) 7
BEA L NWA_
= ektw. H (1 - e_o‘.)_l
a€A; .
= ch M(py)

= ch (M(pw)?), (cf.§2.7).

So both the modules of the lemma have the same character. From this
it is not difficult to establish that they are isomorphic as g-modules (cf.
[BK; § 5] or [Kuz; § 3)). ]

(2.9) Definition. A B-module M is called algebraic if the action of B
on M is locally finite and any finite dimensional B-submodule of M is an
algebraic B-module. '

The following result can easily be deduced from Peter-Weyl theorem.
(In fact a more general result is proved by Bott [B; Theorem I}.)

(2.10) Proposition. Let M be an algebraic B-module. Then H°(G/B,
L(M)) is G-module isomorphic with ©eep(V(6)*®¢ [M @ V(6))F), where
we put the trivial G-module structure on the space of B-invariants [M ®
V(6)]B, V(8) is the irreducible G-module with highest weight 8 and V(6)*
18 its dual.

(2.11) Corollary. As G-modules
S 1oz, (CTB.LOOW)~ V= NB( D VO 8V(O)i-w),
' 6eD
o> A—pwll

where ., is as in' Lemma (2.8), V()]s ., denotes the (A — pu,)-th wéz’ght
space in V(0) and, for any x € v*, X denotes the unique dominant element
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in the W-orbit of x.
Proof. Combining Lemmas (2.6) and (2.8) we get :

B o2 (GIB,LA®W) ~ HYG/B,LO)® LM (1))
Doen(V(0)* ®[V(8) ®C _» ® M(1)°]B),
by Proposition (2.10)
- ®eep(V(0)" ® [V(6) ® M(nw ~ A)°]P)
Dsen(V(6)" ® Home(M(uw — A)7, V(6)))
(cf. Definition 2.7)
®oen(V(6)" ® [V(O)r-ua ),
since M (py — A) is U(n)—free.

Q

Q

Q

Q

We next observe that if any x € §* occurs as a weight in V(6), then
Il x [|<]| 6 || and equality occurs if and only if x = 6 :

We can assume, without loss of generality, that x is dominant. Write
= x + f for some f € 5., Za;, where Z . is the set of non-negative
integers. Then || 6 ||2=|| x II* + || B8 lI* +2 < x,8 > . In particular,
I x II<I| @ || and equality occurs if and only if 8 = 0. Thls proves the
assertion and hence the corollary. o

The following is an immediate consequence of the above corollary.

(2.12) Corollary. For any w € W, Hﬁ( Jo%s (G/B,E(—p ® —p)) has a

unique (up to scalar multiples) G-invariant, where £ is as in § 2.1.

(2.13) The basic map. For any w € W and A, u € D — p, there is defined
a canonical Kunneth map (got by taking the tensor product)

Yo = 3" HUG/B, LA +p @ u+p)) ® HY (G/B,L(~p® —p))

Xw/0Xw

- H‘w/ax (G/B,L(A® 1)),

where £ is as in § 2.1. (Observe that pr jo% (GTB, LAQp)) =0, for all
p# L)

By naturality, the map %, is a g-module map, where we put the tensor
product g-module structure on the domain (cf. Lemma 1.5). By the above
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corollary, H% (G/B,E(—p ® ~p)) contains a unique' G-invariant 9.

Xu/0Xw '
Hence by restricting ., (since ¥ is G-invariant) we get a G-module map

W2 HOGTB, L+ 0@ u+p) » By = (GIB,LO® 1),

Xuw/0Xo
given by ¥? (z) = ¥, (z ® 9).
Now we have the following crucial :

(2.14) Lemma The map Y2, factors through H° (Xw,ﬁw) i.e., there
ezists a map w : HY( Xy, Ly) — H[ Jo% (G/B L(X\ ® p)) making the

following diagram commutative:

27 4
HG/B,L) ™ Hy .o (G/B.LO® M)
Tw N\ /P
HY (X, L)

where vrw is the canonical restriction, and L := LA+ pQ p + p) (Ly has
a similar meaning).

Proof. From the naturality of the Kunneth map, we get that the following
~diagram (D) is commutative :

HGTB,0)® Y o (GBL(-p®—p) ~ HY .o (G]B,L)

s 15
HO(ﬁBaﬁ)®HO(?w’fw(_P®“P))_-’ HO(?wafW(A®#))

where £’ := L£(} ® p), and Y, is as defined in § 1.3 and the vertical
isomorphisms are induced by the isomorphism of Lemma (2.4).

Define a subsheaf K,, = {z € F, : Ix, z = 0} (resp. K, = {z €

Fuw i Iz z = = 0}), where Zx, (resp. Iy ) denotes the ideal sheaf of
Xy in G/B (resp of X, in G/B) Set ICw( p) = Ku®0g, 5 L(—p) and
Ku(-p® —p) = w®o~ﬁ(—p® ~p).

By the very definition, ¥4(Quw ® H'(Yy,Kuw(—p ® —p))) = 0, where
Q) is the kernel of the restriction map r,,. But, by Kumar {Ku;; Theorem
1.5], the map 7, is surjective and hence, to prove the lemma, it suffices to
show that ¥ € H(Yy, Ku(-p ® —-p)):

We first observe that

() -+ H(Yu, Ku(=p ® —p)) = H(G/B, L(~p) ® LIH(Yu,Ku(—p))))»
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where Y,, is as defined in § 1.3. By Remark (2.5),

H%,/0x.,(G/B,L(=p)) = H°(Yy, Fu(=p))-
Further by (I3) (cf. proof of Lemma 2.8)

HO(Yy,Ku(-p)) =~ {z€H e}( ,Ou: ) : fz =0, for all |
. f eC [U,)] with f(e) =0} ®C [Uy] ® s.

Hence
(I3)--- HO(Ywa’Cw("P))“ (3’;1 "'$ZI)®@ [Uw) ® s,

by Lemma (1.6), where {z1,...,z;} are the coordinate functions on U} ~
Lie U/, ( Lie U], denotes the Lie algebra of U/, ). In particular, H%(Y,,,
Kw(-p)) # 0. Now HO(Y,,,K,(—~p)) is a B-stable subspace of H°(Y,,,
Fu(—p)) = M(—p)° (cf. Remark 2.5 and Lemma 2.8). As is easy to see,
any B-stable non-zero subspace of M(X)? (for any A € h*) contains the
A-th weight space. So H°(Y,,, Ky (—p)) contains the (—p)-th weight space.

(This can also be obtained from I5 .) This proves, by (I2) and Proposition
(2.10), that 9 € HO(Y,,,K.,(—p ® —p)); thus proving the lemma. O

(2.15) Lemma. The map

B B K, Lu(A+ p@p+p) > H (GJB,L(A ® 1))

£
Xu)0X,
(defined in the above lemma) is injective.

Proof. The sheaf K, |}7w is supported in the G-orbit B, (cf. Definition
1.3) and moreover (by definition) it is a sheaf of Op, -modules. Since
the section 9 € HO(Y,,Ku(—p ® —p)) is G-invariant, 9(z) # 0 (as an
element of the stalk K w(—=p ® —p)g) for any z € B,. Now take any ¢ #
0€ H(Xuw,Lo(A+p®p + p)). Then there exists a zo € B, such that
t(zo) # 0. But then, by the commutative diagram (D) (of Lemma 2.14),

B (4)(zo) # 0. In particular, B)(t) # 0. ~ o
We recall the following result due to Kumar.

(2.16) Theorem [Ku;; Theorem 2.10 and Proposition 2.9]. The G-module
HY Xy, Lu(M+p ® i+ p)) contains a unique copy of the irreducible G-
module V (i, — A); where p,, is as in Lemma (2.8), and the bar is as in
Corollary (2.11).

Now we come to the main result of this paper :
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(2.17) Theorem. Let G be a semi-simple connected simply-connected
complex algebraic group and fizx \,u € D — p (cf. § 1.1). Then, for any
w e W/{+p,u+p’

FulV (= 2) € HYGB, Fu(A® 1),

where W3, ., is as in Theorem (2.2), py, is as in Lemma (2.8), and@i

is the G-module map defined in Lemma (2.14).

In particular, W;,(V(Nw — A)) occurs with multiplicity exactly one in
the irreducible Harish-Chandra module Ny, := HY(G/B, F,(A ® 1)) (cf.
Theorem 2.2) and is its minimal A(g)-type.

(Recall that, by Lemmas (2.3) and (2.4), Ny, canomca.lly embeds inside

Hﬁ( /6% (G’/B L(A®p)), and moreover the map 1,b is injective by Lemma

(2.15).)
Proof. By Corollary (2.11), any irreducible G-submodule V'(6) of N,
(in fact of Hﬁ? jo% (G/B,L(A ® p))) satisfies either || 6 ||>|| A — pw ||

or § = py, — A, and in the later case it occurs with multiplicity one in

Hﬁ( 53 (G’/B L(A® u)). So the proof of the theorem will be completed,

if we show that V(u. — A) does occur as a component in N,

In view of Lemma (2.4) and the long exact local cohomology sequence
[Hy; Chap. III, Exercise 2.3] (cf. proof of Lemma 2.3), it suffices to show

that H1~ (G’/B Fuw(A® 1)) does not contain V (1, — ) as a component;

which 1s content of the next lemma. This completes the proof of the
theorem (modulo the next lemma). a

(2.18) Lemma. The irreducible G-module V(u,, — A) is not a component
of H;XW(G/B"F”(/\ ® 1)), for anyw e Wi, . -

Proof. By the deﬁning'property (P,) of the sheaf F,, (cf. Proposition
1.4), H3 . (G/B, Fu(p)) = 0. So, by an analogue of Lemma (2.6),

(L)~ H}z (G[B, Fu(A@n)) ~ H(G/B, LN®L(H)x, (G B, Ful(i)))).
Consider the following exact sequence (7) :
Hix,,(G/B, Fu(p)) = 0~ H(G/B, Fu(n)) — H®(Yu, Fu(n))

~ Hjx,(G/B, Fu(w) — H'(G/B, Fu(p)) = 0,
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where the vanishing of HY(G/B, Fy (1)) is due to [BB;§ 2. Furtﬁer, by
[BB] (see also [Ka]), H%(G/B, Fu(u)) is the irreducible highest weight g-
module L(u,,) with highest weight u,, (use the fact that w is of smallest
length in its coset wW,;,, since w € W,(+p,u+p by assumption). Hence, by
combining Lemma (2.8) with Remark (2.5), we get (by the exact sequence
7) o
Hyx,(G/B, Fou(1)) = M(pw)” | L)
But then, by (/4) and Proposition (2.10), we get
(Is)-- Hyz (GIB,Fu(A®m)) ~ doen(V(6)" B[C -2 ® K (1)@ V(9))7),

as G-modules, where K(uy) 1= M ()’ / L(ptw)- So, to complete the proof
of the lemma, we need to show that

Ci=[C 3@ K(p)® V(A= )P = 0
As is easy to see "
€ ~ Homy(A € 5, V(T =),
where A is the kernel of the map : M(py) = L(ptw). So
CORE C = Homy~(A®C -, V(i — 1)),

where b~ is the opposite Borel subalgebra of g.
Next we claim that u,s — A does not occur as a weight in V{(pu,, — A),
for any w’ € W such that

(I7)--- Huw' = Py — B, for some £ 0 € Zf=IZ+ai :
We first obtain
|t = APl i = AN 42 < B A+ >
So if gy — A does occur as a weight in V' (i, — A), then
(Ig)--- < B,A+ p >= 0 (cf. proof of Corollary 2.11).
Rewriting (I7) we get
(L) wh' (gt p) = (p+p) = vl B

But, by assumption, w € W/'\+p,#+p ; in particular, vw > w for any
v € Wy4,. This, together with (Ig), gives that

(Io) - - wTlf e ZZJrai ,and of course w~!f # 0.
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Further by (Io)
(f11) -~ —w e Zia;

Now (I10) and ([71) contradict each other, proving the assertion that

' — A does not occur as a weight in V/(uu,, — A). This proves the vanishing
of C, by (Is). O
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