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ABSTRACT Let G be the group with Borel subgroup B,
associated to a Kac-Moody Lie algebra g (with Weyl group W
and Cartan subalgebra A). Then H*(G/B) has, among others,
four distinguished structures (i) an algebra structure, (it) a dis-
tinguished basis, given by the Schubert cells, (iii) a module for
W, and (iv) a module for Hecke-type operators A., for w E W.
We construct a ring R, which we refer to as the nil Hecke ring,
which is very simply and explicitly defined as a functor of W
together with the W-module h alone and such that all these
four structures on H*(G/B) arise naturally from the ring R.

Section 1

To any (not necessarily symmetrizable) generalized 1 x 1
Cartan matrix A, one associates a Kac-Moody (1, 2) algebra
g = g(A) over C and group G = G(A). If A is a classical
Cartan matrix, then G is a finite dimensional semisimple al-
gebraic group over C. We refer to this as the finite case. In
general, one has subalgebras of g; b C b C p, the Cartan
subalgebra, Borel subalgebra, and a parabolic subalgebra,
respectively. One also has the corresponding subgroups H C
B C P. Let W be the Weyl group associated to (g, b) and let
fr,}lsi-q denote the set of simple reflections. The group W
operates on A, its dual space b*, the symmetric algebra S =
S(b*), and the quotient field Q = Q(t*) of S.
W parameterizes the Schubert cell decomposition of the

generalized flag variety GIB = UwEw V,,, ( = Bw-1B/B). A
suitable subset W1 C W does the same for GIP.
Our principal concern is the cohomology ring H(G/P). For

notational convenience, we restrict our attention to the case
when P = B, although many of our results extend to GIP and
in fact to arbitrary Schubert varieties C GIP.
Now, besides having a ring structure, H(G/B) is also a

module for W. In addition, in the finite case, a ring of opera-
tors sd (with C-basis {AW}WIEw) on H(G/B) was introduced in
ref. 3, where Ar (1 c i c 1), although defined algebraically,
correspond topologically to the integration on fiber for the
fibration GIB -- GIPi (Pi is minimal parabolic containing r,).
The definition of the ring of operators ds on H(G/B) has been
explicitly carried out in the general case by V. Kac and D.
Peterson (unpublished work).
The problems, we wish to deal with, are to describe

H(G/B) (i) as a ring, in particular the cup product of arbitrary
two Schubert classes, and (ii) as a module for W and si. Our
main result is that all these structures arise very naturally
from a single ring R, which in itself admits a simple and con-
crete definition, using only the Weyl group W and its repre-
sentation on b* but which has some rather remarkable prop-
erties. We refer to R as the nil Hecke ring, corresponding to
the pair (W, b) for reasons that will be clear later.
We would like to remark that there are a number of serious

obstacles in trying to directly pass from the finite to the gen-
eral infinite case, and as a consequence we have sought a
new approach. Among the obstacles are (i) the characteristic
homomorphism: S -* H(G/B) fails to be surdective in gener-
al, (ii) the failure of complete reducibility of W-modules S
and H(G/B), (iii) the absence of "harmonics," and (iv) the
absence of the fundamental (top) cohomology class and fail-
ure of Poincare duality. An approach, which remains valid in
the general case, was motivated from theorem 5.9 of ref. 3,
proved by B.K. This theorem arises from the correspon-
dence of the Lie algebra cohomology H(n) (n is the nil-radi-
cal of b) and H(G/B), as proved by Kostant (4) in the finite
case, and was established, in the general case, by Kumar (5).

Section 2

The group W operates as a group of automorphisms on the
field Q = Q(f*). Let Qw be the smash product of Q with the
group algebra C[W]. More specifically, Qw is a right Q-mod-
ule (under right multiplication by Q) with a (free) basis
{8w}wew and the multiplicative structure is given by

(86w1q)(8w2q2) = Swlw2(W2 jql)q2,

for qj, q2 E Q and wl, W2 E W.
Observe that 5eQ = QSe is not central in Qw.
The ring Qw has an involutary anti-automorphism, defined

by

(Bwq)' = 8.-i(wq), for q E Q and w E W.

Let Sw C Qw be defined in the same way as Qw with S =
S(b*) replacing Q.
Now, for i= 1, ..., 1, let

Xi -(Sri.+ e) [iJ=(Sri 8S),
[aj_ a,

where ai is the simple root corresponding to ri. Also let 1: W
-+ Z+ be the length function. Inspired by ref. 3, we have the
following.
PROPOSITION 2.1. Let w E W and let w = ri1 ... ri be a

reduced expression. Then the element xw E Qw defined by
xw = xi1 ... xin is independent ofthe reduced expression. Fur-
thermore, for v, w E W,

xv xw = xvw if l(vw) = l(v) + l(w)
= 0 otherwise. 0

Let A+ (resp A-) denote the set of positive (resp negative)
roots and let s denote the Bruhat partial ordering on W. The
elements {8w}wew are a right (as well as left) Q-basis of Qw.
But also
PROPOSITION 2.2. The elements {xw}wEw form a right (as
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well as left) Q-basis of Qw. Write

W- = >E dew XV - 1, for some (unique) d,,w E Q.
v

Then (a) dvw E S, in fact dv w is a homogeneous polynomial
of degree 1(v).

(b) dw = 0, unless v s w.

(c) dw,w = V.

The upper triangular and invertible (over Q) matrix D =

(dv,w)v,wEw relating the two bases {X} and {xw,} will play an
important role in this paper.
Remark 2.3: In the finite case, the matrix D may be ex-

tracted from theorem 5.9 of ref. 3. o

Now clearly, Q has the structure of a left Qw-module, de-
fined explicitly by

(8,q)q' = w(qq'), for w E W and q, q' E Q.

Our main result centers around the subring R C Qw, de-
fined by

R = {a E Qw: adS C S}.

Obviously Sw C R. Furthermore, one can easily see that
x,, E R, for any w E W.
By applying the involution t, one gets another subring Rt

of Qw. One has the following crucial structure theorem for
R. The proof of part a of Theorem 2.4 can be simplified in the
finite case using the theory of "harmonics."
THEOREM 2.4. (a) R is free as a right (as well as left) S-

module. In fact the elements {xw}lEw form a right (as well
as left) S-basis ofR. In particular, any a E R can be uniquely
written as

a = xwpw, with some Pw E S.
W

(b) Furthermore, one has R n Rt = Sw.
Remark 2.5: Note that R is a finitely generated ring over

C, since it is generated by {xj}1jj and S. o

The elements {xw} have much in common with the stan-
dard basis of a Hecke ring. However, x, =xi- = 0. This and a
further nilpotence condition, in its action on A (Definition
2.6), persuade us to refer to R as a nil Hecke ring. A depar-
ture from usual conditions is that S is not central in R.

Definition 2.6: Regarding Qw as a right Q-module, let =

HomQ(Qw, Q). Since any 4i E fa is determined by its restric-
tion to the base {&} (and conversely), we can regard as the
Q-module of all the functions: W -+ Q with pointwise addi-

tion and scalar multiplication. Furthermore, inherits a

(commutative) algebra (over Q) structure, with the product
as pointwise multiplication of functions on W. On the other
hand, more subtly also has the structure of a left Qw-mod-
ule defined by

(a ifi)w = q,(at.S), for a E Qw, 4i E Qa, and w E W,

and the action is Q-linear.
It may be remarked that is a Q-tnodule, as well as a left

Qw-module, and since Q injects into Qw under q -- 8Sq in

particular a Q-module, but these two actions of Q do not
coincide. Whenever we refer to as a Q-module, we would
mean the first Q-action. Now let

A = {i E8: O(Rt) C S and +i(x') = 0

for all but a finite number of w E W}.
One has the following:
PROPOSITION 2.7. (a) A is an S-subalgebra of fQ.
(b) A is a free S-module. In fact {4w}wew is an S-basis of

A, where e' E a is defined (uniquely) by fW(xv-i) = 8ow, for
v, w E W.
Observe that eW(8j = dwsv (dew is defined in Proposition

2.2).
(c) A is stable under the left action ofR C Qw.
Let C0 = S/S' be the one-dimensional (over C) S-mnndule,

where S' is the augmentation ideal (evaluation at 0 E I) in S.
By Proposition 2.7, C0 Os A is clearly an algebra and the
action ofR on A descends to give an action ofR on CO®s A.
Also, from Proposition 2.7, the elements ow = 1 ® ew E
Co ®s A provide a C-basis. Furthermore, the filtered struc-
ture on A (given by the length of w) gives rise to a graded
commutative algebra structure on CO ®s A.
But now H(G/B, C) has a C-basis {ew}wEw, which is dual

to the homology basis defined by the closure Vw of the Schu-
bert cells V,,w. Furthermore H(G/B) is a module for Wand Si
(Section 1).
Our next result is the following:
THEOREM 2.8. The map 6: H(G/B, C) -O Co®s A, defined

by 6(ew) = eW for all w E W, is a graded algebra isomor-
phism. Moreover, the action ofw E W and Aw on H(G/B)
corresponds (under 0) respectively to that of 8S, xw E R on
C®OsA. 0
This theorem enables us to write down the cup product of

any two elements eVew in terms of {8'} basis, because of the
following:
PROPOSITION 2.9. (a) For any v, w E W

avow = I Pw U
V,W5gU

where pgw is a (unique) homogeneous polynomial ofdegree
1(v) + 1(w) - 1(u). In particular, Pg,w = 0 if 1(v) + 1(w) < 1(u).

(b) Fix v E W and define the two matrices Dv and P, by
Dv(wu) = BWdvsu and Pv(wu) = pV,,
Then explicitly, Pv = DDv-D-1, where D is defined in

Proposition 2.2. o
A similar result holds for the action of arbitrary w E Won

H(G/B).
In the symmetrizable case Theorem 2.8 admits a proof and

an interpretation in the geometrical setting, which we feel
worthwhile to elaborate upon.

Section 3

In this section, we put symmetrizability assumption on a.
Let n be the nil-radical of b.
Let C(n) (resp C(g, t)) denote the co-chain complex, with

co-chain map d, associated to the Lie algebra n (resp Lie
algebra pair (g, f)) and let End C(n) denote the algebra of all
the C-linear maps: CQn) -) C(n) (product coming from com-
position of maps). Let EndbC(n) be the subspace of b invari-
ants in End CQn). End C(n) inherits, from C(n), a derivation
8, such that 82 = 0.
The map i1 (defined below) is basic for this section.
LEMMA 3.1. With suitable topologies on C(g, b) and

EndbC(n), there exists a (unique) continuous map Iq: C(Q, I)
EndC(n) such that

iq(a ® e(a)) = 2r e(a)i(a),

for a E C(n) and a E AP(n),

where E and i are the usual exterior and interior multiplica-
tions on the Grassmann algebra C(n) and e : A(n) - C(n-)
is induced from the Killing form.

Proc. Nad Acad Sd USA 83 (1986)



Proc. NatL. Acad2 Sci USA 83 (1986) 1545

Moreover l is infective. 0

Recall the operator S = da + ad, acting on C(g, 1), from
section 3.4 of ref. 5. Although i7 is not a co-chain map, we
have the following:
PROPOSITION 3.2. 6(7q(s)) = O,for s E Ker S. In particular,

we get a map i: Ker S -* H(EndbC(n), 8).o
Let C{W} denote the ring of all the functions: W -+ C, the

product being pointwise multiplication. Using a result of
Garland and Lepowsky (ref. 6, theorem 8.6), on the struc-
ture of H*(n) as an b-module, and the Kunneth theorem, we
can identify the ring H(EndbC(n), 8) with the ring C{W}. The
map 71, under this identification, gives rise to the map -7: Ker
S-*{w}.

Section 3.3. A filtration ofC(g, t) and EndbC(n). The com-
plex C(g, I) has a decreasing filtration {%n}nZ- defined by

= E C (g, I).
Osks-n

By taking the image of ',, under 7, we get a filtration
{9n}nCZ- of End4C(n). This filtration is an "appropriate com-
pletion" of a filtration on End4C(n) arising as a "super" ana-
logue of the usual filtration of differential operators on a
manifold.
The filtration {19Q} gives rise to a decreasing filtration

Din (n E Z-) of C{W}. Explicitly ,in = 7(Ker S n (.n)

LEMMA 3.4. m C ,m+n,
In particular, we can speak of the corresponding graded

algebra Gr C{W} = Yn-o Gr', where Gr` =
Let {Is}'w be the d - a harmonic forms, which are ex-

actly dual to the Schubert homology classes (see theorem 4.5
of ref. 5). We define the elements Cw E C{W} by c"w = 71(so)
Now we are ready to state the following:
THEOREM 3.5. The map ,: H*(g, I) -* Gr C{W}, defined

by P[swl = Cw mod -1(w),+1 is a graded algebra isomor-
phism. ([sw fdenotes the cohomology class of sw.) °
The following theorem links Section 2 with Cw.
THEOREM 3.6. For any v, w E W, Cw(v)(hp) = w(v),

where hp is an element of l satisfying oa(x, p) = x(hp) and C'
is as defined in Proposition 2.7. o
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