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1 Notation

The base field in this note is taken to be the field of complex numbers C.
The varieties are, by definition, quasi-projective, reduced (but not necessarily
irreducible) schemes.

Let G be a semisimple, simply-connected, complex algebraic group. A
Borel subgroup B is any maximal connected, solvable subgroup; any two of
which are conjugate to each other. We will also fix a maximal torus H ⊂ B.
The Lie algebras of G, B, and H are given by g, b, and h, respectively. For
a fixed B, any subgroup P ⊂ G containing B is called a standard parabolic.

2 Representations of G

Let R ⊂ h∗ denote the set of roots of g. Recall,

g = h⊕
⊕
α∈R

gα, where gα := {x ∈ g : [h, x] = α(h)x for all h ∈ h}.

Our choice of B gives rise to R+, the set of positive roots, such that

b = h⊕
⊕
α∈R+

gα.

We let {α1, . . . , α`} ⊂ h∗ be the simple roots and let {α∨1 , . . . , α∨` } ⊂ h be
the simple coroots, where ` := dim h (called the rank of g).
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Elements of X(H) := Hom(H,C∗) are called integral weights, and can be
identified with

h∗Z = {λ ∈ h∗ : λ(α∨i ) ∈ Z, ∀ i},

by taking derivatives. The dominant integral weights X(H)+ are those inte-
gral weights λ ∈ X(H) such that λ(α∨i ) ≥ 0, for all i.

We let V (λ) denote the irreducible G-module with highest weight λ ∈
X(H)+. Then, V (λ) has a unique B-stable line such that H acts on this line
by λ. This gives a one-to-one correspondence between the set of isomorphism
classes of irreducible finite dimensional algebraic representations of G and
X(H)+.

3 Tits system

Let N = NG(H) be the normalizer of H in G, and let W = N/H be the
Weyl group, which acts on H by conjugation. For each i = 1, . . . , `, consider
the subalgebra

sl2(i) := gαi
⊕ g−αi

⊕ Cα∨i ⊂ g.

There is an isomorphism of Lie algebras sl2 → sl2(i), taking

(
0 1
0 0

)
to

gαi
,

(
0 0
1 0

)
to g−αi

, and

(
1 0
0 −1

)
to α∨i . This isomorphism gives rise

to a homomorphism SL2 → G. Let si denote the image of

(
0 1
−1 0

)
in G.

Then, si ∈ N and S = {si}`i=1 generates W as a group, where si denotes the
image of si under N → N/H. These {si} are called simple reflections. For
details about the Weyl group, see [3, §24,27].

The conjugation action of W on H gives rise to an action on h via taking
derivatives and also on h∗ by taking duals. Below are explicit formulae for
these induced actions:

sj : h→ h : h 7→ h− αj(h)α∨j
sj : h∗ → h∗ : β 7→ β − β(α∨j )αj.

Theorem 1. The quadruple (G,B,N, S) forms a Tits system (also called a
BN-pair), i.e., the following are true:

(a) H = B ∩N and S generates W as a group;
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(b) B and N generate G as a group;

(c) For every i, siBsi * B;

(d) For every 1 ≤ i ≤ ` and w ∈ W , (BsiB)(BwB) ⊂ (BsiwB) ∪ (BwB).

There are many consequences of this theorem. For example, (W,S) is a
Coxeter group. In particular, there is a length function on W , denoted by
` : W → Z+. For any w ∈ W , `(w) is defined to be the minimal k ∈ Z+

such that w = si1 . . . sik with each sij ∈ S. A decomposition w = si1 . . . sik
is called a reduced decomposition if `(w) = k.

We also have the Bruhat-Chevalley ordering : v ≤ w if v can be obtained
by deleting some simple reflections from a reduced decomposition of w.

Axiom (d) above can be refined:

(BsiB)(BwB) ⊂ BsiwB if siw > w. (d′)

Thus, if we have a reduced decomposition w = si1 . . . sik , then

BwB = (Bsi1B) . . . (BsikB), (1)

which can be obtained from (d′) by inducting on k = `(w).
We also have the Bruhat decomposition:

G =
⊔
w∈W

BwB.

Theorem 2. The set of standard parabolics are in one-to-one correspondence
with subsets of the set [`] = {1, . . . , `}. Specifically, if I ⊂ [`], let

PI =
⊔

w∈〈si:i∈I〉

BwB,

where 〈si : i ∈ I〉 denotes the subgroup of W generated by the enclosed
elements. Then, I 7→ PI is the bijection.

Sketch of the proof. By (1) and (d), PI is clearly a subgroup containing B.
Conversely, if P ⊃ B, then, by the Bruhat decomposition,

P =
⊔
w∈SP

BwB,

for some subset SP ⊂ W . Let I be the following set:

{i ∈ [`] : si occurs in a reduced decomposition of some w ∈ SP}.

From the above (specifically Axiom (d) and (d′)), one can prove PI = P .
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4 A fibration

We begin with a technical theorem.

Theorem 3. Let F be a closed, algebraic subgroup of G and X be an F -
variety. Then, E = G×F X is a G-variety, where

G×F X := G×X/ ∼ with (gf, x) ∼ (g, fx)

for all g ∈ G, f ∈ F , and x ∈ X. The equivalence class of (g, x) is denoted
by [g, x]. Then, G acts on E by:

g′ · [g, x] = [g′g, x].

In particular, G ×F {pt} = G/F is a variety. Furthermore, the map
π : E → G/F given by [g, x] 7→ gF is a G-equivariant isotrivial fibration
with fiber X.

The variety structure on G/F can be characterized by the following uni-
versal property: if Y is any variety, then G/F → Y is a morphism if and
only if the composition G→ G/F → Y is a morphism.

Now, B is a closed subgroup. To see this, we only need to show that B is
solvable (B being a maximal solvable subgroup, it will follow that B = B).
Since the commutator G×G→ G is a continuous map, we have that [F , F ] ⊂
[F, F ], for any F ⊂ G. Using this fact and induction, Dn(F ) ⊂ Dn(F ) for
all n, where Dn(F ) denotes the n–th term in the derived series of F . Since
Dn(B) is trivial for large n, Dn(B) becomes trivial for large n, and B is
solvable. Thus, G/B is a variety. We wish to give an explicit realization of
this variety structure. In the process, we will show that G/B is a projective
variety.

Take any regular λ ∈ X(H)+, so that λ(α∨i ) > 0 for all i. The represen-
tation G→ Aut(V (λ)) gives rise to a map

π : G/B → PV (λ), g 7→ [g · v],

since [v] is fixed by B, where v is a highest weight vector of V (λ).

Claim. π is a morphism and injective.
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Proof. π is a morphism since the composition G → G/B → PV (λ) is a
morphism. To prove injectivity, it suffices to show that the stabilizer of [v] is
exactly B. Let P be the stabilizer. Now, B ⊂ P , so P is parabolic and hence
P = PI for some I ⊂ [`]. If I = ∅, then P = B. Towards a contradiction,
assume si ∈ P . Then, si stabilizes λ, but

si(λ) = λ− λ(α∨i )αi 6= λ,

since λ is regular.

We claim X = π(G/B) is closed. We will need the following theorem:

Theorem 4 (Borel fixed–point theorem, see §21 in [3]). Let Z be a projective
variety with an action of a solvable group. Then, Z has a fixed point.

Clearly, X is G-stable as a subspace of PV (λ). It follows that X rX is
G-stable. Thus, X rX has a B-fixed point which contradicts the existence
of a unique highest weight vector. Thus, X rX = ∅ and X is closed.

Lastly, to show X and G/B are isomorphic varieties, we use the following
proposition from algebraic geometry:

Proposition 5 (Theorem A.11 in [1]). If f : Y → Z is a bijective morphism
between irreducible varieties and Z is normal, then f is an isomorphism.

Observe that X is smooth because it is a G-orbit (G takes smooth points
to smooth points and any variety has at least one smooth point). In partic-
ular, X is normal and π : G/B → X is an isomorphism.

5 Line bundles on G/B

For any λ ∈ X(H), we define a line bundle L(λ) on G/B. Recall that
B = H n U , where U = [B,B] is the unipotent radical. Extend λ : H → C∗
to λ : B → C∗ by letting λ map U to 1. Consider C = Cλ as a B-module,
where b · z = λ(b)z. Then, L(λ) is the line bundle: π : G ×B C−λ → G/B.
Note that λ is made negative in the definition of L(λ).

The space of global sections

H0(G/B,L(λ)) := {σ : G/B → G×B C−λ : π ◦ σ = id}
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is a G-module, where the G-action is given by

(g · σ)(g′B) = gσ(g−1g′B).

Also, this module is finite dimensional since G/B is projective and any co-
homology of coherent sheaves on projective varieties is finite dimensional.

6 Borel–Weil theorem

Theorem 6 (Borel–Weil theorem). If λ ∈ X(H)+, then there is a G-module
isomorphism

H0(G/B,L(λ)) ' V (λ)∗.

Proof. If we pull back the line bundle L = L(λ) (given by π : G ×B C−λ →
G/B) under G → G/B, we get the bundle L̂, which is π̂ : G × C−λ → G.
We wish to compare sections of these two bundles.

Sections of L̂ are of the form σ(g) = (g, f(g)), for some map f : G→ C−λ,
so we can identify H0(G, L̂) with k[G] ⊗ C−λ. There is a B-action on k[G]
given by (b·f)(g) = f(gb). Acting diagonally, we get an action on k[G]⊗C−λ.
Since k[G]⊗C−λ is naturally isomorphic to k[G] (make the second coordinate
1), we get a new B-action on k[G] given by

(b · f)(g) = λ(b)−1f(gb). (2)

Use this action to make H0(G, L̂) a B-module.
Sections of L are of the form σ(gB) = [g, f(g)], for some map f : G →

C−λ. In order to insure that σ is well-defined, we require that for any b ∈ B:

[g, f(g)] = [gb, f(gb)] = [g, b · f(gb)] = [g, λ(b)−1f(gb)].

Therefore, f must have the property that f(g) = λ(b)−1f(gb) for all b ∈ B.
It follows that [

H0(G, L̂)
]B

= H0(G/B,L).

Now, it suffices to show
[
H0(G, L̂)

]B
' V (λ)∗.

Consider the following two (G×G)-modules. First, k[G] has a (G×G)-
action given by ((g1, g2) · f)(g) = f(g−1

1 gg2). Second, acting coordinate-wise,
we have:

M :=
⊕

µ∈X(H)+

V (µ)∗ ⊗ V (µ).
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It follows from the Peter–Weyl theorem and Tanaka–Krein duality that these
are isomorphic as (G×G)-modules. The explicit isomorphism is Φ =

∑
µ Φµ :

M→ k[G], where Φµ : V (µ)∗ ⊗ V (µ)→ k[G] is given by

Φµ(f ⊗ v)(g) = f(gv).

Furthermore, k[G] ⊗ C−λ has a (G × B)-action given diagonally, where
G is forgotten when G × B acts on the second coordinate C−λ, and the
action of G × B on k[G] is the restriction of the G × G action given above.
Since H0(G, L̂) ' k[G]⊗C−λ as (left) G-modules, where G acts on k[G] via
(g · f)(x) = f(g−1x), for g, x ∈ G and f ∈ k[G]. Since the action of G on
k[G] ⊗ C−λ commutes with the B-action given by equation (2), we get an
induced G-action on the space of B-invariants:[

H0(G, L̂)
]B
' [k[G]⊗ C−λ]B

'
⊕

µ∈X(H)+

[V (µ)∗ ⊗ V (µ)⊗ C−λ]B

'
⊕

µ∈X(H)+

V (µ)∗ ⊗ [V (µ)⊗ C−λ]B

'
⊕

µ∈X(H)+

V (µ)∗ ⊗ [Cµ ⊗ C−λ]H

' V (λ)∗,

since Cµ ⊗ C−λ will only have H-invariants if µ = λ.

It follows from the next section that the higher cohomology vanishes; that
is, for λ ∈ X(H)+ and i ≥ 1, H i(G/B,L(λ)) = 0.

7 Borel–Weil–Bott theorem

Let ρ be half the sum of the positive roots. Since G is simply-connected,
ρ ∈ X(H)+. Also, ρ has the property that ρ(α∨i ) = 1 for all i. We will need
a shifted action of the Weyl group on h∗ given by:

w ? λ = w(λ+ ρ)− ρ.
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Theorem 7 (Borel–Weil–Bott). If λ ∈ X(H)+ and w ∈ W , then

Hp(G/B,L(w ? λ)) =

{
V (λ)∗ if p = `(w)

0 if p 6= `(w)
.

Before we prove this theorem, we need to establish a number of results.
For any i, let Pi denote the minimal parabolic subgroup Pi = B t BsiB. In
what follows, if M is a B-module, the notation Hp(G/B,M) is the p-th sheaf
cohomology for the sheaf of sections of the bundle G×B M → G/B.

Lemma 8. If M is a Pi-module, then Hp(G/B,M ⊗ Cµ) = 0, for all p ≥ 0
and any µ ∈ X(H) such that µ(α∨i ) = 1.

Proof. Apply the Leray–Serre spectral sequence to the fibration G/B →
G/Pi with fiber Pi/B and the vector bundle on G/B corresponding to the
B-module M ⊗ Cµ. Thus,

Ep,q
2 = Hp(G/Pi, H

q (Pi/B,M ⊗ Cµ)) =⇒ H∗(G/B,M ⊗ Cµ).

If we can show Ep,q
2 = 0, then we are done.

It suffices to show Hq(Pi/B,M ⊗Cµ) vanishes for all q ≥ 0. By the next
exercise, we have

Hq(Pi/B,M ⊗ Cµ) 'M ⊗Hq(Pi/B,Cµ),

since M is a Pi-module by assumption. Since Pi/B ' SL2(i)/B(i) ' P1,
where SL2(i) is the subgroup of Pi with Lie algebra sl2(i) and B(i) is the
standard Borel subgroup of SL2(i), we have that

Hq(Pi/B,Cµ) ' Hq(P1,O(−µ(α∨i ))) = Hq(P1,O(−1)),

which is known to be zero (for example, [2, Ch. III, Theorem 5.1]).

Exercise 9. For any closed subgroup F ⊂ G, if M is a G-module, then
G×F M → G/F is a trivial vector bundle.

Proposition 10. If for some i, µ ∈ X(H) has the property that µ(α∨i ) ≥ −1,
then for all p ≥ 0,

Hp(G/B,L(µ)) ' Hp+1(G/B,L(si ? µ)).
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Proof. First, consider the case where µ(α∨i ) ≥ 0. Let Xi := Pi/B ' P1 and
H := H0(Xi,L(µ + ρ)). It can easily be seen (by using the definition of the
action of Pi onH) that the action of the unipotent radical Ui of Pi is trivial on

H. Moreover, Pi/Ui is isomorphic with the subgroup ŜL2(i) of G generated

by SL2(i) and H. Thus, by the Borel-Weil theorem for G = ŜL2(i), we get

H ' Vi(µ+ρ)∗, as ŜL2(i)-modules, where Vi(µ+ρ) is the irreducible ŜL2(i)-
module with highest weight µ + ρ. (Even though we stated the Borel-Weil
theorem for semisimple, simply-connected groups, the same proof gives the
result for any connected, reductive group.) Thus, we have the weight space
decomposition (as H-modules):

H ' Vi(µ+ ρ)∗ =

(µ+ρ)(α∨i )⊕
j=0

C−(µ+ρ)+jαi
.

There is a short exact sequence of B-modules:

0 −→ K −→ H −→ C−(µ+ρ) −→ 0,

where K, by definition, is the kernel of the projection. Tensoring with Cρ,
we get the following exact sequence of B-modules:

0 −→ K ⊗ Cρ −→ H⊗ Cρ −→ C−µ −→ 0.

Passing to the long exact cohomology sequence, we get:

· · · → Hp (G/B,H⊗ Cρ)→ Hp(G/B,C−µ)→
Hp+1(G/B,K ⊗ Cρ)→ Hp+1 (G/B,H⊗ Cρ)→ · · · .

By the previous lemma, Hp(G/B,H⊗ Cρ) = 0 for all p. Thus,

Hp(G/B,L(µ)) = Hp(G/B,C−µ) ' Hp+1(G/B,K ⊗ Cρ). (3)

Consider another short exact sequence of B-modules:

0 −→ C−si(µ+ρ) −→ K −→M −→ 0,

where M is just the cokernal of the inclusion. In particular, as H-modules,

M =

(µ+ρ)(α∨i )−1⊕
j=1

C−(µ+ρ)+jαi
,
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so it may be regarded as a Pi-module. Then, as B-modules, we can tensor
with Cρ to arrive at the following exact sequence:

0 −→ C−si?µ −→ K ⊗ Cρ −→M ⊗ Cρ −→ 0.

Again, passing to the long exact sequence, we see:

· · · → Hp(G/B,M ⊗ Cρ)→ Hp+1(G/B,C−si?µ)→
Hp+1(G/B,K ⊗ Cρ)→ Hp+1(G/B,M ⊗ Cρ)→ · · · .

By the previous lemma, Hp(G/B,M ⊗ Cρ) = 0 for all p. Thus,

Hp+1(G/B,L(si ? µ)) = Hp+1(G/B,C−si?µ) ' Hp+1(G/B,K ⊗ Cρ). (4)

Combining equations (3) and (4), we get the proposition in the case where
µ(α∨i ) ≥ 0.

For the case that µ(α∨i ) = −1, we have that si ? µ = µ, so the statement
reduces to proving that Hp(G/B,L(µ)) = 0, for all p. In this case, K =
0. From the isomorphism H ⊗ Cρ ' C−µ, we conclude Hp(G/B,L(µ)) '
Hp(G/B,H⊗ Cρ) which vanishes by the previous lemma.

Corollary 11. If µ ∈ X(H)+ and w ∈ W , then for all p ∈ Z, as G-modules:

Hp(G/B,L(µ)) ' Hp+`(w)(G/B,L(w ? µ)).

Proof. We induct on `(w). Assume the above for all v ∈ W such that
`(v) < `(w), and write w = siv for some v < w. Then,

Hp(G/B,L(µ)) ' Hp+`(v)(G/B,L(v ? µ)).

Now (v ? µ)(α∨i ) = (µ+ ρ)(v−1α∨i )− 1 ≥ −1, since v−1α∨i is a positive coroot
and µ+ ρ is dominant. So, applying Proposition 10, we get:

Hp(G/B,L(µ)) ' Hp+`(v)+1(G/B,L(si ? (v ? µ))) = Hp+`(w)(G/B,L(w ?µ)),

which is our desired result.

We are now ready to prove the Borel–Weil–Bott theorem.
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Proof of the Borel–Weil–Bott theorem. From the above corollary,

Hp(G/B,L(w ? λ)) ' Hp−`(w)(G/B,L(λ)).

We claim that Hj(G/B,L(λ)) = 0 if j 6= 0. Indeed, if j < 0, this is true.
Let w0 denote the unique longest word in the Weyl group, so that `(w0) =
dim(G/B). If j > 0, then by Corollary 11,

Hj(G/B,L(λ)) ' Hj+dim(G/B)(G/B,L(w0 ? λ)) = 0.

This implies

Hp(G/B,L(w ? λ)) =

{
H0(G/B,L(λ)) if p = `(w)

0 if p 6= `(w)
,

which is our desired result, by the Borel–Weil theorem.

Exercise 12. Show that for any µ not contained inW?(X(H)+), Hp(G/B,L(µ)) =
0, for all p ≥ 0.

8 Schubert varieties

For any w ∈ W , let Xw := BwB/B ⊂ G/B denote the corresponding
Schubert variety. This variety is projective and irreducible of dimension
`(w). By the Bruhat decomposition, we have the following decomposition of
Xw:

Xw =
⊔
v≤w

BvB/B.

9 Bott–Samelson–Demazure–Hansen variety

Let W be the set of all ordered sequences w = (si1 , . . . , sin), n ≥ 0, of simple
reflections, called words. For any such word, define the Bott–Samelson–
Demazure–Hansen variety as follows: if n = 0 (thus, w is the empty se-
quence), Zw is a point. For w = (si1 , . . . , sin), with n ≥ 1, define

Zw = Pi1 × · · · × Pin/Bn,

where the product group Bn acts on Pw := Pi1×· · ·×Pin from the right via:

(p1, . . . , pn) · (b1, . . . , bn) = (p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn).
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This action is free and proper. The group Pi1 (in particular, B) acts on Zw

via its left multiplication on the first factor.

Lemma 13. Zw is a smooth projective variety.

Sketch of the proof. Induct on the length of w, where length refers to the
number of terms in the sequence. Let v be the last n − 1 terms in the
sequence w, so that w = (si1) ∪ v, where order is preserved when taking the
union.

Let
π : Zw ' Pi1 ×B Zv −→ Z(si1

) = Pi1/B ' P1

be the map [p1, . . . , pn] 7→ p1B. This map has fiber Zv and since it is a
fibration, we get that Zw is smooth. Furthermore, Zw is complete since P1 is
complete and the fibers of π are complete by induction.

Furthermore, it is a trivial fibration restricted to P1r{x}, for any x ∈ P1.
Hence, projectivity follows from the Chevalley–Kleiman criterion asserting
that a smooth complete variety is projective if and only if any finite set of
points is contained in an affine open subset.

There is a map ξ : W→ W given by w = (si1 , . . . , sin) 7→ si1 · · · sin . For
any w ∈ W, we say w is reduced if si1 · · · sin is a reduced decomposition of
ξ(w).

For w ∈ W, consider the map θw : Zw → G/B given by [p1, . . . , pn] 7→
p1 · · · pnB.

Lemma 14. If w is reduced, then θw(Zw) = Xξ(w). Moreover, θw is a desin-
gularization of Xξ(w); that is, it is birational and proper.

If w is not reduced, then θw(Zw) is NOT equal to Xξ(w) in general.

Sketch of the proof. The open subset of Zw given by

(Bsi1B)× · · · × (BsinB)/Bn

maps isomorphically to the open cell BwB/B by (1) of Section (3).
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10 A fundamental cohomology vanishing the-

orem

Let w = (si1 , . . . , sin) be an arbitrary word. For any j, 1 ≤ j ≤ n, define
w(j) = (si1 , . . . , ŝij , . . . , sin). The variety

Zw(j) = Pi1 × · · · × P̂ij × · · · × Pin/Bn−1

embeds into Zw by:

[p1, . . . , pj−1, pj+1, . . . , pn] 7→ [p1, . . . , pj−1, 1, pj+1, . . . , pn].

Denote also by Zw(j) the images of these maps. These are divisors in Zw.
For λ ∈ X(H)+, let Lw(λ) = θ∗w(L(λ)) be the pull back of L(λ) under the

map θw : Zw → G/B. We state the following fundamental theorem without
proof.

Theorem 15 (Theorem 8.1.8 in [1]). Let w = (si1 , . . . , sin) be a word and
let 1 ≤ p ≤ q ≤ n be such that (sip , . . . , siq) is reduced. Then, for any
λ ∈ X(H)+ and r > 0,

Hr

(
Zw,OZw

(
−

q∑
j=p

Zw(j)

)
⊗ Lw(λ)

)
= 0.

Also, Hr(Zw,Lw(λ)) = 0.

Corollary 16. For any word w = (si1 , . . . , sin), λ ∈ X(H)+, and j such that
1 ≤ j ≤ n, the map

H0(Zw,Lw(λ))→ H0(Zw(j),Lw(j)(λ))

is surjective.

Proof. Consider the short exact sequence:

0 −→ OZw(−Zw(j)) −→ OZw −→ OZw(j)
−→ 0,

where OZw(−Zw(j)) is identified with the ideal sheaf of Zw(j) inside Zw. Since
Lw(λ) is locally free, we may tensor the above sequence to get the exact
sequence:

0 −→ OZw(−Zw(j))⊗ Lw(λ) −→ Lw(λ) −→ Lw(j)(λ) −→ 0.

Passing to the long exact sequence and applying Theorem 15 gives us our
desired result.
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11 Geometry of Schubert varieties

In this section we show that Schubert varieties are normal, have rational
singularities, and are Cohen-Macaulay.

Theorem 17 (Zariski’s Main Theorem, see [2], Chap. III, Corollary 11.4
and its proof). If f : X → Y is a birational projective morphism between
irreducible varieties and X is smooth, then Y is normal if and only if f∗OX =
OY .

Lemma 18 (Lemma A.32 in [1]). If f : X → Y is a surjective mor-
phism between projective varieties and L is an ample line bundle on Y such
that H0(Y,L⊗d) → H0(X, (f ∗L)⊗d) is an isomorphism for all large d, then
f∗OX = OY .

For any w ∈ W , choose a reduced decomposition w = si1 · · · sin , with
each sij ∈ S, and take w = (si1 , . . . , sin). Then, θw : Zw → Xw is a desin-
gularization. By the previous two results, to prove the normality of Xw, it
suffices to find an ample line bundle L(λ) such that for all large d,

H0(Xw,L(λ)⊗d) ' H0(Zw,Lw(λ)⊗d).

In fact, L(λ) is ample on G/B if and only if λ is a dominant, regular weight
(this claim is easy to prove from the results in Section 4). Since the restriction
of ample line bundles are ample, in order to show that Xw is normal, it suffices
to prove the following theorem:

Theorem 19. If λ ∈ X(H)+ and w ∈ W , then H0(Xw,L(λ))→ H0(Zw,Lw(λ))
is an isomorphism.

Before we give the proof, we recall the following useful lemma:

Lemma 20 (Projection formula, Exercise 8.3 of Chap. III in [1]). If f :
X → Y is any morphism, η is a vector bundle on Y , S is a quasi-coherent
sheaf on X, then for all i:

Rif∗(S ⊗ f ∗η) ' (Rif∗S)⊗ η.

Proof of the theorem. This map is clearly injective since Zw � Xw. Choose a
reduced decomposition of the longest element w0 ∈ W , w0 = si1 · · · siN , each
sij ∈ S, N = dim(G/B) = |R+|, and let w = (si1 , . . . , siN ). Introduce the
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following notation: for 0 ≤ j ≤ N , let wj = si1 · · · sij and wj = (si1 , . . . , sij ).
Consider the following diagram:

ZwN

θwN−−−→ XwN
= G/Bx x

ZwN−1

θwN−1−−−−→ XwN−1x x
ZwN−2

θwN−2−−−−→ XwN−2x x
...

...

In this diagram, the horizontal arrows are surjective and the vertical arrows
(which are the canonical inclusions) are injective. Passing to global sections,
we get:

H0(ZwN
,LwN

(λ)) ←−−− H0(XwN
,L(λ))y y

H0(ZwN−1
,LwN−1

(λ)) ←−−− H0(XwN−1
,L(λ))y y

H0(ZwN−2
,LwN−2

(λ)) ←−−− H0(XwN−2
,L(λ))y y

...
...

In this diagram, the horizontal arrows are of course injective and the vertical
arrows on the left are surjective by Corollary 16. Furthermore, by Lemma 20
(with S = OZwN

and η = L(λ)) and Theorem 17, the top horizontal arrow is
an isomorphism. By a standard diagram chase, all of the horizontal arrows
are isomorphisms.

Since w0 = w(w−1w0) and `(w−1w0) = `(w0) − `(w), a reduced decom-
position of w0 can always be obtained so that the first `(w) terms of the
decomposition give the word w. This completes the proof.

Thus, using Theorem 17 and Lemma 18, we get the following:
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Corollary 21. Any Schubert variety Xw is normal.

Corollary 22. For any v ≤ w and λ ∈ X(H)+, the restriction map

H0(Xw,L(λ))→ H0(Xv,L(λ))

is surjective.

Proof. By the above proof, H0(G/B,L(λ))→ H0(Xv,L(λ)) is surjective and
hence so is H0(Xw,L(λ))→ H0(Xv,L(λ)).

An irreducible projective variety Y has rational singularities if for some
desingularization f : X → Y we have that f∗OX = OY and Rif∗OX = 0 for
all i > 0. This definition does not depend on a choice of desingularization.
(In characteristic p > 0, we also need to assume that Rif∗κX = 0, for the
canonical bundle κX .) To prove that Xw has rational singularities, we use
the following theorem of Kempf:

Theorem 23 (Lemma A.31 in [1]). Let f : X → Y be a morphism of
projective varieties such that f∗OX = OY . Assume there exists an ample line
bundle L on Y such that H i(X, (f ∗L)⊗d) = 0 for all i > 0 and all large d.
Then, Rif∗OX = 0 for i > 0.

Corollary 24. Any Schubert variety Xw has rational singularities.

Proof. It suffices to prove H i(Zw,Lw(dλ)) = 0 for all large d, for all i > 0,
and some regular λ ∈ X(H)+, which follows from Theorem 15.

We recall the following general theorem:

Theorem 25 (Lemma A.38 in [1]). Any projective variety which has rational
singularities is Cohen-Macaulay.

Thus, we get:

Corollary 26. Xw is Cohen-Macaulay.

Another consequence of having rational singularities (which we will use
later) is given in the following two results.

Proposition 27. Let Y be a projective variety with rational singularities.
Then, for any desingularization f : X → Y and any vector bundle η on Y ,
H i(Y, η)→ H i(X, f ∗η) is an isomorphism for i ≥ 0.
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Proof. Applying the Leray-Serre spectral sequence, we have

Ep,q
2 = Hp(Y,Rqf∗f

∗η) =⇒ H∗(X, f ∗η).

By the projection formula (with S = OX),

Rqf∗(OX ⊗ f ∗η) ' η ⊗ (Rqf∗OX).

Since Y has rational singularities, Rqf∗OX = 0 for q > 0. Therefore, Ep,q
2 = 0

for q > 0, and hence Hp(Y, η) ' Ep,0
2 for all p, and the result follows.

Corollary 28. For any λ ∈ X(H) and i ≥ 0,

H i(Xw,L(λ)) ' H i(Zw,Lw(λ)),

for any reduced word w with ξ(w) = w. In particular, for any λ ∈ X(H)+,
H i(Xw,L(λ)) = 0 if i > 0.

Proof. By Corollary 24 and Proposition 27, H i(Xw,L(λ)) ' H i(Zw,Lw(λ)),
which vanishes by Theorem 15 for λ ∈ X(H)+.

12 Demazure modules

Let w ∈ W and λ ∈ X(H)+. The Demazure module Vw(λ) ⊂ V (λ) is the
B-submodule defined by Vw(λ) = U(b) ·V (λ)wλ, where U(b) is the enveloping
algebra of b and V (λ)wλ is the weight space of V (λ) with weight wλ. Observe
that V (λ)wλ is one-dimensional. The formal character of Vw(λ) is defined by

ch Vw(λ) =
∑

µ∈X(H)

dim(Vw(λ)µ) eµ.

If w = w0, then Vw(λ) = V (λ). Therefore, ch Vw0(λ) is given by the Weyl
character formula.

For an arbitrary w ∈ W, we need to introduce the Demazure operators
Dw. For each simple reflection si, let Dsi

: Z[X(H)] → Z[X(H)] be the
Z-linear map given by:

Dsi
(eµ) =

eµ − esiµ−αi

1− e−αi
.
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Given w = (si1 , . . . , sin) ∈W, define Dw : Z[X(H)]→ Z[X(H)] by

Dw = Dsi1
◦ · · · ◦Dsin

.

In what follows, we will also need ∗ : Z[X(H)]→ Z[X(H)] given by

∗ eµ = e−µ,

and extended Z-linearly.

Theorem 29. For any reduced word w,

chVξ(w)(λ) = Dw(eλ).

Proof. The first step is to show Vw(λ)∗ ' H0(Xw,L(λ)).
By the Borel–Weil theorem, V (λ)∗ ' H0(G/B,L(λ)). The isomorphism

φ : V (λ)∗ → H0(G/B,L(λ)) is explicitly given by φ(f)(gB) = [g, f(gvλ)],
where vλ is a highest weight vector in V (λ).

By Corollary 22, the restriction H0(G/B,L(λ)) → H0(Xw,L(λ)) is sur-
jective. Let φw denote the composition

V (λ)∗ → H0(G/B,L(λ))→ H0(Xw,L(λ)).

We compute the kernal of φw; i.e., find all f ∈ V (λ)∗ such that φw(f) is the
zero section. It suffices to check that φw(f) = 0 on BwB/B, since BwB/B
is a dense open subset of Xw. For f ∈ V (λ)∗,

φw(f) = 0 ⇐⇒ f(BwB · vλ) = 0

⇐⇒ f(B · vwλ) = 0

⇐⇒ f vanishes on Vw(λ).

Thus, kerφw = {f ∈ V (λ)∗ : f |Vw(λ) = 0}; that is, we have the following
exact sequence:

0 −→
(
V (λ)

Vw(λ)

)∗
−→ V (λ)∗ −→ H0(Xw,L(λ)) −→ 0.

Therefore, H0(Xw,L(λ))∗ ' Vw(λ), which completes the first step.
Now, take a reduced decomposition of w = si1 · · · sin and let w = (si1 , . . . , sin).

The map Zw → Xw is B-equivariant and by Corollary 28, H i(Zw,Lw(λ)) '
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H i(Xw,L(λ)) for all i as B-modules (for any λ ∈ X(H)). Therefore, their
characters coincide; that is,

ch H i(Zw,Lw(λ)) = ch H i(Xw,L(λ)).

Consider the Euler–Poincaré characteristic:

χH(Zw,Lw(λ)) :=
∑
i

(−1)i chH i(Zw,Lw(λ)) ∈ Z[X(H)].

Since chH0(Xw,L(λ)) = χH(Zw,Lw(λ)) for λ ∈ X(H)+, it suffices to show:

χH(Zw,Lw(λ)) = ∗Dw(eλ).

In fact, we will prove a stronger result which is given as the next theorem.

Theorem 30. For a B-module M , let G×BM → G/B be the associated vec-
tor bundle. Denote its pull back to Zw (for any word w) under the morphism
θw : Zw → G/B by θ∗wM . Then,

χH(Zw, θ
∗
wM) = ∗Dw(∗ ch M).

Proof. We induct on the length n of w = (si1 , . . . , sin). The Leray spectral se-
quence for the fibration Zw → Zw(n) which maps [p1, . . . , pn] 7→ [p1, . . . , pn−1],
with fibers P1 ' Pin/B, takes the form

Ep,q
2 = Hp

(
Zw(n), θ

∗
w(n)(H

q(Pin/B, θ
∗
sin
M))

)
,

and converges to Hp+q(Zw, θ
∗
wM). From this we see that

χH(Zw, θ
∗
wM) = χH(Zw(n), θ

∗
w(n)(χH(Pin/B, θ

∗
sin
M))).

By induction,

χH(Zw, θ
∗
wM) = ∗Dw(n)

(
∗χH(Pin/B, θ

∗
sin
M)
)

= ∗Dw(n)(∗ ∗ Dsin
(∗ chM)), by the next exercise

= ∗Dw(∗ chM).

Combining Theorem 30 for M = Cλ and Corollary 28, we get the follow-
ing:

Corollary 31. For any reduced word w, the operator Dw depends only upon
ξ(w).

Exercise 32. Show χH(Pin/B,Cµ) = ∗Dsin
(e−µ) and conclude that

χH(Pin/B, θ
∗
sin
M) = ∗Dsin

(∗ chM).
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13 Verma modules

For any λ ∈ h∗, define the Verma module

M(λ) := U(g)⊗U(b) Cλ,

where h acts on Cλ by the action of h via the weight λ and the nil-radical
n := [b, b] acts trivially. Then, M(λ) is a g-module under left multiplication
by elements of g on the U(g) factor. If λ ∈ h∗ r X(H), then Cλ is only a
representation of b and not of B.

Exercise 33. Show

ch M(λ) = eλ
∏
β∈R+

(
1− e−β

)−1
.

14 BGG resolution

Let λ ∈ X(H)+ and N = |R+|. We define a resolution of the form:

0→ FN → · · · → F2 → F1 → F0 = M(λ)→ V (λ)→ 0, (5)

where
Fp :=

⊕
v∈W
`(v)=p

M(v ? λ).

Fix one non-zero vector 1λ ∈ Cλ, then 1⊗ 1λ ∈ M(λ) maps to vλ, a highest
weight vector in V (λ). This map extends to

x⊗ 1λ 7→ x · vλ,

for each x ∈ U(g). Up to a scalar, this is the unique g-module map M(λ)→
V (λ). To define the maps δj : Fj+1 → Fj, we first recall the following
theorem:

Theorem 34 (Theorem 9.2.3 in [1]). Let λ ∈ X(H)+ and v, w ∈ W . If
w � v, then

Homg(M(w ? λ),M(v ? λ)) = 0.

If w ≥ v, then it is one-dimensional.
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We now define g-module maps Fv,w : M(w?λ)→M(v?λ). If w � v, then
Fv,w = 0. For any w ∈ W , take any non-zero g-module map iw : M(w?λ)→
M(λ).

Exercise 35. For any λ, µ ∈ h∗, a g-module map M(λ)→M(µ) is injective
if non-zero.

When w > v and `(w) = `(v) + 1, we write w ← v. There exists a unique
choice of non-zero g-maps Fv,w : M(w ? λ) → M(v ? λ) for every w ← v
satisfying

iv ◦ Fv,w = iw.

Define
δp =

∑
`(w)=p+1
w←v

εv,wFv,w : Fp+1 → Fp,

where εv,w ∈ {±1} are chosen satisfying the following result due to Bernstein–
Gelfand–Gelfand.

Lemma 36 (Lemma 9.2.2 in [1]). There is a choice of ε : {v → w} →
{±1} satisfying the following: for any square as below consisting of elements
v, w, x, y ∈ W

v −−−→ xy y
y −−−→ w

,

we have
εv,xεx,wεv,yεy,w = −1.

The following is the celebrated Bernstein–Gelfand–Gelfand (BGG, for
short) resolution.

Theorem 37. The above sequence (5) is a resolution of V (λ) for any λ ∈
X(H)+.

We will give two applications of this powerful result.
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15 Application: Weyl character formula

Corollary 38 (Weyl character formula). If λ ∈ X(H)+, then

ch V (λ) =

∑
w∈W (−1)`(w)ew?λ∑
w∈W (−1)`(w)ew?0

.

Proof. From the exactness of complex (5), we easily see that

ch V (λ) =
∑
p≥0

(−1)p chFp =
∑
w∈W

(−1)`(w)chM(w ? λ).

In particular, by Exercise 33,

1 = ch V (0) =
∑
w∈W

(−1)`(w)chM(w?0) =

(∑
w∈W

(−1)`(w)ew?0

) ∏
β∈R+

(
1− e−β

)−1
,

which implies ∏
β∈R+

(
1− e−β

)
=
∑
w∈W

(−1)`(w)ew?0.

Therefore,

ch V (λ) =
∑
w∈W

(−1)`(w)chM(w ? λ)

=

(∑
w∈W

(−1)`(w) ew?λ

) ∏
β∈R+

(
1− e−β

)−1

=

∑
w∈W (−1)`(w)ew?λ∑
w∈W (−1)`(w)ew?0

.

16 Application: Kostant’s theorem on

n-homology

Let n = [b, b] denote the nil-radical of the Borel b. Then, by definition,

Hi(n
−, V (λ)) := Tor

U(n−)
i (C, V (λ)),
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where n− := [b−, b−] and b− = h ⊕
⊕

β∈R+ g−β. Since H normalizes n−

and V (λ) is a g-module, Hi(n
−, V (λ)) is canonically an H-module. Now, we

prove the following theorem due to Kostant as a consequence of the BGG
resolution.

Theorem 39. As H-modules,

Hi(n
−, V (λ)) '

⊕
w∈W
`(w)=i

Cw?λ.

Proof. By the PBW-theorem, M(λ) is free as a U(n−)-module. Specifically,
as U(n−)-modules, we have:

U(g) ' U(n−)⊗C U(b).

Thus, as U(n−)-modules,

M(λ) =
(
U(n−)⊗C U(b)

)
⊗U(b) Cλ = U(n−)⊗C Cλ.

Since any Verma module is free as a U(n−)-module, by the BGG resolution
(5) and the definition of Tor, we get that

Tor
U(n−)
i (C, V (λ)) = Hi(C⊗U(n−) F∗).

To compute Hi(C⊗U(n−) F∗), observe

C⊗U(n−) Fj =
⊕
`(w)=j

C⊗U(n−) (U(n−)⊗C Cw?λ)

=
⊕
`(w)=j

C⊗C Cw?λ

=
⊕
`(w)=j

Cw?λ.

But all of the h-module maps

C⊗U(n−) Fj =
⊕
`(w)=j

Cw?λ
1⊗δj−1−−−−→

⊕
`(v)=j−1

Cv?λ = C⊗U(n−) Fj−1

are zero, since for λ ∈ X(H)+ we have

v ? λ = w ? λ⇐⇒ v = w.

Thus, Hi(C⊗U(n−) F∗) =
⊕

`(w)=iCw?λ, proving the theorem.
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17 Grothendieck–Cousin complex

Our aim is to realize/prove the BGG-resolution geometrically.
Let X be a variety and let it be filtered by closed (but not necessarily

irreducible) sub-varieties

X = X0 ⊃ X1 ⊃ X2 ⊃ · · · .

Let S be a coherent sheaf (a vector bundle is enough for our purposes) on
X. Then, there exists a complex (called the Grothendieck–Cousin complex )
as follows:

0→ H0(X,S)→ H0
X0/X1

(X,S)→ H1
X1/X2

(X,S)→ H2
X2/X3

(X,S)→ · · · .

For Z ⊂ Y ⊂ X closed, H i
Y/Z(X,S) is the cohomology with support (see

Appendix B of [1]).

Theorem 40 (Kempf). The above complex is exact if the following properties
hold:

(1) X is a Cohen-Macaulay irreducible variety,

(2) S is a vector bundle,

(3) the maps Xi r Xi+1 → X are affine morphisms for all i (i.e., inverse
images of affine open subsets are affine) and Xi rXi+1 are affine vari-
eties,

(4) codimension of each irreducible component of Xi in X is at least i,

(5) Hn(X,S) = 0 if n > 0.

In our case, take X = G/B and Xi =
⋃
`(v)≥iX

v, where Xv = B−vB/B =

w0Bw0vB/B = w0Xw0v, where B− is the subgroup of G with Lie algebra b−.
Take S = L(λ) for λ ∈ X(H)+.

Since G/B is smooth, it is Cohen–Macaulay, and property (1) follows.
Of course, (2) is given. Since Xw is of dimension `(w), property (4) follows.
Property (5) follows from the Borel–Weil–Bott theorem, Theorem 7. Finally,

Xi rXi+1 =

 ⋃
`(v)=i

Xv

r
 ⋃
`(w)≥i+1

Xw

 =
⊔
`(v)=i

B−vB/B,
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which is affine since BvB/B ' A`(v). If we check that the inclusion ϕ :
B−vB/B → G/B is an affine morphism, then (3) will be verified.

Let UR+∩vR− be the subgroup of G with the Lie algebra⊕
β∈R+∩vR−

gβ.

Then, the map UR+∩vR− → BvB/B, g 7→ gvB, is a biregular isomorphism.
Now, identifying BvB/B with UR+∩vR− as above, we get a biregular isomor-
phism

BvB/B ×B−vB/B ' vB−B/B ' U−, (6)

under (g, x) 7→ gx, where U− := [B−, B−]. For any affine open subset V
of G/B, by the following exercise, (vB−B/B) ∩ V is an affine open subset
of vB−B/B. But, B−vB/B is an affine closed subset of vB−B/B by the
above isomorphism (6). Thus, V ∩ (B−vB/B) is a closed subset of affine
V ∩(vB−B/B) and hence V ∩(B−vB/B) is an affine open subset of B−vB/B.
This establishes (3).

Exercise 41. If U, V are affine open in any variety Y , then U ∩ V is affine.

Theorem 42 (Lemma 9.3.5 and Proposition 9.3.7 in [1]). As g-modules, for
any p ≥ 0,

Hp
Xp/Xp+1

(G/B,L(λ)) '
⊕
`(w)=p

M(w ? λ)∨,

where ∨ denotes the restricted dual.

Thus, in our case the Grothendieck–Cousin complex becomes the resolu-
tion (due to Kempf)

0 −→ V (λ)∗ −→ F∨0 −→ F∨1 −→ · · · −→ F∨N −→ 0,

which is dual to the BGG resolution.

18 Remarks

We have not given any historical comments. The interested reader can find
them in sections 8.C and 9.C of [1].
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